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Abstract
Most of the current state-of-the-art models used to solve the search and ranking tasks in Information

Retrieval (IR) are considered “black boxes” due to the enormous number of parameters employed, which

makes it difficult for humans to understand the relation between input and output. Thus, in the current

literature, several approaches are proposed to explain their outputs, trying to make the models more

explainable while maintaining the high level of effectiveness achieved. Even though many methods

have been developed, there is still a lack of a common way of describing and evaluating the models and

methods of the Explainabile IR (ExIR) field. This work shows how a common theoretical framework for

explainability (previously presented in the biomedical field) can be applied to IR. We first describe the

general framework and then focus on specific explanation techniques in the IR field, focusing on core IR

tasks: search and ranking. We show how well-known methods in ExIR fit into the framework and how

specific IR explainability evaluation metrics can be described using this new setting.
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1. Introduction

The emergence of Deep Learning (DL), and in particular the application of Pretrained Language

Models (PLMs), have drastically changed the Information Retrieval (IR) landscape. Previously

skeptically considered by part of the community [1], the advent of the first publicly available

PLM (BERT [2]) has completely changed the adoption of DL models in the IR field, especially in

the core IR tasks, i.e. search and ranking, given their high effectiveness. Even though PLM-based

approaches are highly effective, they are also opaque and way more challenging to analyze,

debug, and understand than the traditional IR methods, such as the well-known BM25 [3].

Therefore, in pursuit of ensuring more reliable and trustworthy IR systems, recent years have

witnessed a growing interest in the field of Explainable Information Retrieval (ExIR) [4]. The

motivation to go beyond the opacity of the current state-of-the-art method is not purely technical

(e.g., to create more robust and simple to debug IR systems) or ethical (e.g., to easily investigate

possible unfair behavior in the model), but it also has a compliance nature, given the current or
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upcoming international regulation for Artificial Intelligence (AI) systems, such as the AI Act, in

which the concept of explainability is a crucial one [5], even though most of the state-of-the-art

eXplainable Artificial Intelligence (XAI) methods can provide only a limited answer to the

compliance requirements [6].

As commonly happens in a fast-growing field, one of the problems faced by ExIR is the

difficulty of relating different approaches since different terminology is used and different

evaluation metrics have been proposed. For example, some methods are called “interpretable”

while others “explainable“ and some works present evaluation metrics related to the same

concept. However, it is unclear how they should be compared or which characteristic of

the model they try to underline. Some recent surveys [4, 7] tried to organize the relevant

literature; however, they did not create a common framework useful to compare and evaluate

the explainability of different IR models. This is problematic, especially if we want to evaluate

various methods that belong to different categories, which usually have different evaluation

metrics.

With this work, we aim to show how one of our recent contributions presented in the

biomedical domain, a theoretical framework for explainability [8], can be suitably employed

also in the IR domain, and thus describe all the methods present in the ExIR literature through

the same lens. By applying the framework to IR, we show how the current most popular

explanation methods in IR fit the framework. Even though we highlight that the framework

is not a novel contribution per se, we claim that starting to apply it to the new explanation

techniques and model presented in IR is an important step towards building more rigorous

explanation methods that take into account all the aspects related to this interdisciplinary

and complex subfield. We present how three so-called post-hoc explanation methods fit the

framework: LIRME[9], MULTIPLEX [10], and the explainability techniques based on IR axioms,

while also analyzing two so-called “intrinsically interpretable” (or “intrinsically explainable”)

models such as ColBERT[11] (not explicitly interpretable but considered interpretable) and

Interpretable LambdaMART (ILMART)[12].

The paper is organized as follows: in Sec. 2, we present the most related works; in Sec. 3,

we briefly summarize the framework; in Sec. 4 we highlight the peculiarities of applying the

framework in the IR presenting 5 case studies, and, finally, in Sec. 5 we present our conclusions.

2. Related Works

Even though the focus on the explainability aspects in IR is relatively new, numerous works

have been published, but no general framework has been proposed. To the author’s knowledge,

this work presents the application of a general framework to explainability techniques in IR

for the first time in the literature. Nonetheless, other works have been presented in the form

of surveys, categorizing ExIR works and trying to create a common taxonomy. However, they

do not directly try to create a common framework to describe and compare ExIR methods but

mainly focus on categorizing them.

The more relevant survey is the one presented by Anand et al. [4], in which the authors have

nicely categorized 32 ExIR approaches into three general categories: i) post hoc, 2) grounding to

IR properties, and 3) interpretable by design. The survey presents various explanation aspects,



Figure 1: Overview of the theoretical framework of explainability. Schema presented in [8].

including the difference between local and global explanations and the difference between

pointwise, pairwise, and listwise explanations. One of the main conceptual differences between

their survey and our work is that they differentiate between “interpretability" (interpretability

by design) and “explainability" (mainly post hoc explainability) while we approach the problem

differently; we disagree with this categorization, and we claim that every model has some ex-

plainability degree, and differentiating between interpretable by design and post hoc explainable

by design models is not well defined and sometimes misleading.

Saha et al. [7], in another survey, provide an overview of ExIR methods similar to [4] but

also add some methods from the related Natural Language Processing (NLP) field. Similarly

to Anand et al., they differentiate between interpretable and explainable models and further

categorize the approaches into categories, including embeddings, sequence models, attention,

transformers, and BERT. Similarly to [7], their work is designed to solve the categorization

problem of the various explanation techniques, and they do not provide a common framework

to describe and compare the ExIR methods available.

More broadly, some attempts have been made to outline the differences in the terminology

used in XAI related field, such as in [13] and in [14]. Still, they lack a definition of an explanation’s

inner structure and meaning.

In brief, as we have common frameworks to describe the learning phase of various Machine

Learning (ML) tasks, including supervised learning, unsupervised learning, and reinforcement

learning, among others [15], we aim to present a common framework to create an explanation

for a ML model decision. This work shows that the framework is also suitable for all the existing

ExIR techniques.

3. Theoretical Framework for Explainability

In this section, we briefly recap each framework component, accompanying the descriptions

using, as an example, the well-known explanation technique based on analyzing the attention



weights used in a transformer model, e.g., [16]. Since the transformer-based models are really

popular and the worthiness of the explanations based on the attention weights is debated [17, 18],

we aim to show how to analyze explanations techniques for which the consensus on their

usefulness is not shared across the community using a common framework. A schema of the

whole framework and the relation between the components taken from the original paper is

presented in Fig. 1.

3.1. Explanation Framework components

In the following paragraphs, we present the fundamental components of the framework: evidence,
interpretation, explanation, and explanation interface.

Evidence The evidence, used to create explanations for an AI system, is any information that

we can retrieve from a model and that can give some understanding of its inner workings (e.g.,
model parameters, gradients, input/output values, etc.). Two related concepts of evidence are

the evidence extractor and the explanatory potential. The former is the process of retrieving the

evidence from the model and/or its input/output data, while the latter is described as “how much

of a model the selected type of evidence can explain”. In particular, the concept of explanatory
potential is fundamental in the framework since it helps the developer of the explanation

technique to understand the maximum expected faithfulness level of the explanation. The

measure of the explanatory potential can change case by case, just as we use different metrics

for evaluating different tasks. However, if we retrieve the evidence directly from the model, a

good metric for the explanatory potential can be the ratio between the number of parameters

analyzed and the total number of parameters of the model. We identify the evidence with the

symbol 𝑒, and with 𝑝𝑜𝑡(·) the function computing the explanatory potential, and thus with

𝑝𝑜𝑡(𝑒), we identify the explanatory potential of the evidence.

Example. In the case of attention-based explanation, the evidences are the attention weights,

which can be extracted just by retrieving the weights of the attention modules in the model. The

explanatory potential of this explanation can be measured as the ratio between the number of

parameters in the attention modules and the total number of parameters of the net. In the case

of BERT with only 12 transformer blocks
1
, we have that the parameters used in the attention

modules related to the “weight” and “bias” for queries and keys are 14,174,208
2

while the total

number of parameters of the model is 109,482,240, and thus, we can say that the explanatory

potential is approximately 13%. In this way, the explanation technique’s explanatory potential

is between 0% and 100%, and an explanatory potential of 13% seems insufficient to provide a

faithful explanation.

Interpretation An interpretation is a function applied to some evidence and mapping its

instances into explanations. Interpretation can be any function applied to the evidence. Still, it

is usually based on some social attribution, which makes it easier for humans to understand

the content and lowers the cognitive load. Interpretation can also be as simple as the identity

1

https://huggingface.co/google-bert/bert-base-uncased

2

We only consider the weights directly involved in computing the attention weights.

https://huggingface.co/google-bert/bert-base-uncased


Figure 2: Overview of the outcome on the user of the interaction between faithfulness and plausibility.
Schema presented in [8].

function, as in the so-called "white box" models, where no actual interpretation is needed; only

the evidence is sufficient. We identify the interpretation function with the symbol 𝑖(·).
Example. In the case of attention-based explanation, the common interpretation is that the

weights of the model’s attention module can summarize the importance of the input token to

the final prediction. There are two main caveats to this interpretation. First, each attention head

at each transformer block gives a different weight, and it is tricky to combine this information.

Second, each transformer block’s input and output tokens do not necessarily relate to the same

token. It is common to assume that the token in the 𝑗-th position always refers to the same

concept, but this is not necessarily true; furthermore, assuming that each token is contextualized

after each block of the transformer, we could have that they replace the concept of the token

itself.

Explanation The concept of “explanation” is defined as “the output of an interpretation
function applied to some evidence, providing the answer to a “why question” posed by the user”.

In mathematical terms, the explanation 𝜖 results from applying the interpretation function to

the retrieved evidence, 𝜖 = 𝑖(𝑒).
Example. In our attention-based example, the explanation is the triples formed by the input

token, the output token, and the associated attention weight for each head for each transformer

block.

Explanation interface Last but not least, the explanation has to be presented to the end

user with an adequate user interface characterized by three main properties: (i) human under-

standability, (ii) informativeness, and (iii) completeness. The human-understandability measures

how easily the user can understand the explanation provided. The informativeness (i.e., depth)

measures how much information is given to the user to understand the behavior of the AI

system for a specific user need. Finally, the completeness (i.e., width) describes how well the

explanation pictures the entire inner workings of the model.

Example. In the case of attention-based explanation, every attention weight is presented by

transformer block and attention head interactively; see [16] for an example.



3.2. Explanation Framework Evaluation

The framework presents two main aspects to take into account during the evaluation of an AI

system, namely the plausibility and the faithfulness of the explanation.

Faithfulness We define the property of faithfulness of an interpretation as the degree to which

an interpretation accurately reflects the behavior of the transformation function applied by a ML

model. Various measures of faithfulness can be associated with different types of explanations,

analogous to the metrics used to evaluate an ML model’s performance on a given task.

When designing a faithful explanation method, we can opt for two approaches. Faithfulness

can be achieved by design incorporating this property into pre-selected interpretations during

the model design process (white box models), or alternatively, we can ignore the explanation

during the design and propose an explanation after the creation of the model (post hoc explana-

tion). Although formal proofs are currently lacking in the literature, several tests for faithfulness

have been recently proposed [19, 17, 18, 20].

Plausibility Plausibility is the degree to which an explanation aligns with the user’s un-

derstanding of the model’s partial or overall inner workings. It is worth highlighting that

plausibility is mainly a property influenced by users. Unlike faithfulness, the plausibility of

explanations can mainly be assessed via user studies. We highlight that plausibility and faithful-

ness can be competing properties of an explanation. Interestingly, an unfaithful but plausible

explanation may deceive a user into believing that a model behaves according to a rationale

when this is not the case. Given the attention weights’ low explanatory potential and tricky

interpretation, we claim that they are unfaithful but plausible. Fig. 2 provides a simplified

problem overview.

Summing up, in this section, we presented the main components and evaluation criteria of

the framework proposed in [8]. The components are general enough to include any explanation

technique, and it is worth highlighting that the framework does not distinguish between post

hoc explanation techniques and explainable by design models. All the models have to be

interpreted given some evidence. The models usually called “intrinsically interpretable” are

simply models in which the interpretation of the evidence is trivial.

4. Applying the Framework to Search and Ranking Applications

The proposed framework has been presented in the realm of bioinformatics, focusing on the

most common explanation techniques and explainable models in the literature. This section

shows how the framework can be successfully adapted to the particular case of ExIR. We

describe five explanation techniques and associated evaluation metrics from five different

works in the literature. In particular, we chose three so-called post hoc explanation methods:

LIRME [9], MULTIPLEX [10], and the explanation technique based on the adherence to IR axioms

presented in [21]. In addition, we analyze two considered white-box models: ColBERT [11]

and ILMART [12]. For each explanation method proposed, we identify i) the evidence used, 2)
the interpretation, 3) how the evaluation strategies relate to the concept of faithfulness and

plausibility. In this case, we leave the analysis of the explanation interface for future work.



4.1. LIRME

In [9], the authors present a method to locally approximate the function of a complex text

ranking model with a simple local surrogate function, similar to LIME [22] but considering

sampling strategies more suitable for the ranking task. The local surrogate model is created as a

scoring function 𝑆(𝐷,𝑄) =
∑︀

𝑡∈𝐷∩𝑄𝑤(𝑡,𝐷) in which 𝐷 represents a document, 𝑄 the query,

𝑡 a term in the document and query and 𝑤(𝑡,𝐷) the term weight, learned with an optimization

function to approximate the real and complex function 𝑓(𝐷,𝑄) of the text ranker.

Evidence After having fixed the query 𝑄, the optimization function (Eq. 1 in [9]) to de-

fine 𝑆(·, ·) uses as evidence 𝑒 the predictions made on a sample of the documents, thus

𝑒 = {(𝐷𝑖, 𝑠𝑖)}𝑁1 where 𝑁 is the total number of sampled documents, 𝐷𝑖 is a sampled document

and 𝑠𝑖 = 𝑓(𝐷,𝑄) is the score of the complex model. The explanatory potential of this evidence

𝑝𝑜𝑡(𝑒) can be estimated by the ratio of the documents sampled (𝑁 ) over the total number of

possible sampled documents in the (possibly infinite) neighborhood of the document. In [9], it

is assumed that the sampled documents are only those obtained by removing terms from the

document, thus limiting the neighborhood.

Interpretation The interpretation function 𝑖(·), in this case, takes in input the whole evidence

𝑖
(︀
{(𝐷𝑖, 𝑠𝑖)}𝑁1

)︀
a return the model 𝑆(·, ·). In other words, the assumption is that we can explain

the model’s behavior just by looking at its output and using a simple model that mimics the

behavior of 𝑓(·, ·). 𝑆(·, ·), as defined in [9] gives an estimate of the term importance for the

model decision for each term, so if 𝑤(𝑡,𝐷) is relatively high, it is important for the scoring

function, and the opposite otherwise.

Evaluation The authors assessed the quality of their explanation with two metrics, the expla-
nation consistency and the explanation correctness. On the one hand, evaluating the explanation
consistency measures how a “particular choice of samples around the pivot document, D, should

not result in considerable differences in the predicted explanation vector.”. This metric measures

faithfulness since it measures how much the sampling can change the explanation provided.

Thus, this is a proxy for how difficult the function is in that particular subspace; the higher the

consistency, the higher the faithfulness of the explanation. On the other hand, the explanation
correctness measures how many terms of high contributions in the surrogate models correspond

to terms occurring in documents that are judged relevant by assessors. Since its formulation

does not consider the original model and is explicitly linked with the relevances given by the

assessors, it can be considered a sort of user study and, thus, a measure of plausibility.

4.2. MULTIPLEX

In [10], the authors present an explanation method designed to find the subset of terms most

impacting in the prediction of a text-ranker. The problem statement defined the term subset

to be identified as “small,” and that can explain most of the preference pairs {𝐷𝑖 ≻ 𝐷𝑗} from

the original ranking 𝜋 produced by a complex model, where 𝐷𝑖 is the 𝑖-th document in the



ranking 𝜋. To find the subset of terms, multiple simple ranking models are used to rank the

most important features.

Evidence Similarly to LIRME, the evidence 𝑒 can be defined as 𝑒 = {(𝐷𝑖, 𝐷𝑗 , 𝑝𝑖)}𝑁1 where

𝑁 is the number of preference pairs are sampled from 𝜋, 𝐷𝑖 and 𝐷𝑗 are document in position

𝑖 and 𝑗 and 𝑝𝑖 represents the preference of the complex model for the pair (either positive or

negative). The explanatory potential of this evidence 𝑝𝑜𝑡(𝑒), as for LIRME, can be estimated by

the ratio of the sampled preference 𝑁 with respect to the total number of possible preference

pairs. We have full explanatory potential for this particular task if all the pairs are sampled.

Interpretation The interpretation function 𝑖(·) for MULTIPLEX takes as input the whole

evidence and returns a subset of terms that explain most of the preference pairs. During the

interpretation, various assumptions and heuristics were taken into account to find the subset of

terms, including using only a limited subset of the terms used by the documents, using three

simple ranking models (term matching, position-aware, and semantic similarity) to identify the

utility of each term, and using the approximation introduced by the optimization algorithm to

combine the found utility of each term.

Evaluation In [10], the evaluation is mainly measured by the “fidelity” of the explanation.

The fidelity is computed with “the fraction of the maintained preference pairs by the explainers

given the explanation terms.” Naturally, in our framework, this is a measure of faithfulness

in the explanation. Besides an anecdotal example, no evaluation has been performed using

information from the end-user, and thus, no plausibility evaluation has been performed.

4.3. Explanation by IR axioms

Since other works, as [4], consider the explanation through IR axioms a completely different

category, as a last example of so-called “post-hoc” explanation, we analyze the work by Câmara

and Hauff [21]. In the aforementioned work, the authors used the concept of diagnostic datasets

to analyze if BERT fulfills the retrieval axioms proposed by [23]. In particular, they created one

diagnostic dataset, one for each axiom, and checked if the rank produced by the model was

aligned with the one artificially created using the heuristic. The explanation aimed to explain

the model predictions using one or more heuristics.

Evidence As in the case of LIRME and MULTIPLEX, the evidence is only based on the model

score attributed to a document-query pair, i.e., 𝑒 = {(𝐷𝑖, 𝑠𝑖)}𝑁1 for a fixed query, where 𝐷𝑖

is the 𝑖-th document of a diagnosing dataset, and 𝑠𝑖 is the associated score. The explanatory

potential 𝑝𝑜𝑡(𝑒) can be, therefore, estimated with the ratio between the number of documents

taken into account 𝑁 and the number of documents in the countable (in general case, possibly

infinite) document space that can be created for the particular diagnosing dataset.

Interpretation The interpretation of the evidence 𝑖(𝑒 = {(𝐷𝑖, 𝑠𝑖)}𝑁1 ) says that if the docu-

ment order produced by BERT is aligned with the order of the diagnosing dataset, BERT follows

the particular axiom with which the dataset was created.



Evaluation The evaluation is based only on the agreement between BERT ranking and

the order of the documents in the diagnosing dataset. Therefore, there is no measure of the

explanation’s faithfulness but only a quantitative measurement of its plausibility since measuring

the agreement with a diagnosing dataset is a proxy for measuring the agreement with a fictitious

user.

4.4. ColBERT

Even though not explicitly presented as an explainable model, ColBERT is usually considered

an “intrinsically interpretable” model [4] in which the weights on the so-called late interaction

between tokens are considered term importance [24]. The late interaction is implemented

using the MaxSim operator, in which for each query token representation after the last trans-

former block 𝑞𝑖, with 1 < 𝑖 < 𝑀 , where 𝑀 is the number of query tokens, the maximum

similarity to all the other document tokens is computed and then summed up. The MaxSim

between a query 𝑄 and a document 𝐷 is therefore defined as: Φ(𝑄,𝐷) =
∑︀𝑀

𝑖=1𝑤𝑖, with

𝑤𝑖 = max𝑗∈{1,...,𝑁} 𝜑(𝑞𝑖, 𝑑𝑗), and where 𝑁 is the number of document tokens, 𝑑𝑗 is the 𝑗-th

token of 𝐷, and 𝜑(·, ·) is a similarity function.

Evidence The evidence used during the explanation is the subset of similarity values resulting

from the MaxSim operator. Thus, the evidence is the set of similarity values 𝑒 = {𝑤𝑖}𝑀1 . Since

we can consider the set of similarities as a part of the model weights, the explanatory potential

is equal to 𝑝𝑜𝑡(𝑒) = 𝑁/𝑊 , where 𝑊 is the total number of model weights. Since 𝑁 in the

small BERT version is 512 and 𝑊 > 100, 000, 000, we have 𝑝𝑜𝑡(𝑒) < 5.12 · 10−6
, where 𝑝𝑜𝑡(𝑒)

is theoretically bounded between 0 and 1.

Interpretation In the common interpretation, the similarity of the query-document token

pairs contributing to the summation {max𝑗∈{1,...,𝑀} 𝜑(𝑞𝑖, 𝑑𝑗)}, represents the importance of

the term association between 𝑞𝑖 and 𝑑𝑗 . We can, therefore, rank the most important query and

document token for each query.

Evaluation The original paper does not evaluate the explainability of those scores. However,

other papers have explored their properties, e.g. [24]. In this case, we highlight that the

explanatory potential of those weights is minimal and that the “contextualization” brought after

each transformer block might result in a token at the end of the transformer in which there is

more “context” than the token itself, as mentioned in the previous section.

4.5. ILMART

In [12], an explainable by-design model for ranking with hand-crafted features has been pre-

sented. The authors presented a simple additive model by constraining the well-known Lamb-

daMART algorithm [25] using only one or two features per tree, creating a scoring function

that is a sum of univariate or bivariate functions. Formally, the score of a query-document

pair (𝑄,𝐷) is defined as 𝑆(𝑄,𝐷) =
∑︀

𝑖∈ℳ 𝜏𝑖(𝐷) +
∑︀

{𝑗,𝑘}∈ℐ 𝜏𝑗𝑘(𝐷), where ℳ is the set of

feature, ℐ is the set of all the possible pair of features, and 𝜏𝑖(𝐷) and 𝜏𝑗𝑘(𝐷) are respectively



the univariate and bivariate functions. In addition, to limit the complexity of the function, the

author presents a greedy way to limit the number of univariate and bivariate functions.

Evidence The evidence in this type of model considered explainable by design (as others in

the literature as NeuralRankGAM [26] or BM25) is the entire model itself, and thus this type of

model has full explanatory potential.

Interpretation Given the explainable design, interpreting the evidence is trivial and can be

formalized as the identity function since the output of 𝑖(𝑒) is the model itself. We highlight that

even though the interpretation is considered trivial, the final explanation provided might not be

plausible for the user.

Evaluation The authors claim that the model does not need explanation and thus does not

provide any evaluation that can be mapped in our framework, but just a measure of the model’s

effectiveness (similarly to [26]). The plausibility aspect is only mentioned with an anecdotal

example of model visualization. In this case, both faithfulness and plausibility evaluation are

missing.

5. Conclusion

In this paper, we presented how a theoretical explainability framework presented to be applied

in the biomedical domain can also be suitable for the IR field, with a particular focus on the

core IR tasks, i.e., search and ranking. We first summarize the framework and then show

how a selection of explanation techniques presented in the IR literature can easily fit in the

framework. We selected three so-called “post hoc" techniques (including one in the category

of explanation based on IR axioms) and two “white box" models and highlighted that the

explanation procedure is the same for all the methods considered. All explanations start from

evidence and are provided to the user through an interpretation; the main difference is that the

interpretation can be convoluted or trivial. We also showed that the evaluation performed in the

papers analyzed can always be mapped to one of the two evaluation categories we identified,

namely, faithfulness or plausibility. We claim that this unified view can be a starting point

to create a common vocabulary for the ExIR field and to allow a better comparison between

explanation techniques previously thought to be diametrically opposed, helping to pave the

path to a more structured and robust field development.
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