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Abstract
In many cybersecurity contexts, the real-time detections of hostile actions play a fundamental role in protecting network
infrastructures. In this scenario, Intrusion Detection Systems (IDS), based on signature-based or anomaly detection, are
widely used to analyze network traffic. The signature-based detection relies on databases of known attack signatures, and
anomaly detection is mainly based on Artificial Intelligence (AI) techniques. The latter is promising to detect new kinds of
cyberattacks in real time.

In this work, we propose ReTiNA-IDS, a framework that integrates the CICFlowmeter tool with Machine Learning
techniques to analyze Real-Time network traffic patterns and detect abnormalities that may suggest a possible intrusion. The
considered machine learning techniques, random forest and multi-layer network, are based on selected features to enhance
efficiency and scalability. To select the features and train the models, we use a version of the public dataset, CSECICI-IDS2018.
The framework’s effectiveness has been tested in real-case scenarios by identifying different forms of intrusion. Analyzing
the results, we conclude that the proposed solution shows valuable features.
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1. Introduction
Intrusion Detection Systems (IDS) are relevant tools em-
ployed in cybersecurity to protect networks from possible
cyber attacks.

In recent years, the world of cyber security has become
more turbulent, with a rise in the number of cyber-attacks
that target businesses worldwide. For this reason, always
new methodologies are needed to shield vital assets from
hostile actors in reaction to this expanding danger.

Recently, an increasing focus on the use of Artificial
Intelligence (AI) in cyber security. As a subset of artificial
intelligence, machine learning algorithms can improve
danger detection and automate procedures. Organiza-
tions may examine massive volumes of data in real-time,
spot patterns suggestive of malicious behaviour, and take
preemptive measures to reduce risks by utilizing machine
learning algorithms.

In this work, we propose ReTiNA-IDS, a framework
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that integrates the CICFlowmeter tool with Machine
Learning techniques to analyze real-time network traf-
fic patterns and detect abnormalities that may suggest a
possible intrusion. The integrated methodology, which
is based on random forest and multi-layer networks, is
based on selected features to enhance efficiency and scala-
bility. To select the features and train the models, the pub-
lic dataset CSECICI-IDS2018 has been used. The frame-
work’s effectiveness has been tested in real-case scenarios
by identifying different forms of intrusion. Analyzing the
results, we conclude that the proposed solution shows
valuable features.

The paper is structured as follows. In Section 2 related
works are discussed while in Section 3 some basic back-
ground is introduced. In Section 4 the tool ReTiNa-IDS
is presented, while in Section 5 some evaluation experi-
ments are proposed. Section 6 concludes the paper.

2. Related Works
The use of machine learning approaches in intrusion
detection systems to obtain real-time analysis has been
exploited by many researchers. Many of them take advan-
tage of Deep Learning (DL) approaches. ARCADE is an
unsupervised DL-based approach for early anomaly de-
tection using 1D Convolutional Neural Networks (CNNs)
proposed by Lunardi et al. [1]. The approach builds
a profile of normal traffic based on raw packet bytes.
Kathareios et al. designed and tested a real-time net-
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work AD system, able to operate on encrypted and non-
encrypted network packets, based on two learning stages:
an autoencoder for adaptive unsupervised AD and a
custom nearest-neighbour classifier to filter false pos-
itives [2]. Shuai proposed a prototype that combines
big data processing frameworks like Apache Hadoop,
Apache Kafka, and Apache Storm, along with ML tech-
niques, i.e., Naïve Bayesian (NB), Support Vector Machine
(SVM), and Decision Tree (DT). The proposed approach
considers six features related to the IP addresses of the
sender, receiver, and correspondent port without taking
into account flow measurements. Ho et al. suggested an
Intrusion Detection System (IDS) based on CNN that clas-
sifies all packet traffic as benign or malicious, detecting
network intrusions [3]. Atefnia and Ahmadi proposed
a modular deep neural network model that consists of
four complete architectures that are combined with an
aggregator module, each generating distinct outputs [4].
The four architectures are a Deep Feed-Forward Mod-
ule (DFFM), a Stacked Restricted Boltzmann Machine
Module (SRBMM), and two recurrent modules, one uti-
lizing gated recurrent units (GRUM) and the other utiliz-
ing long short-term memory (LSTMM). Catillo et al. [5]
proposed an approach based on Deep Autoencoder, and
Fitni and Ramli [6] proposed a model based on deci-
sion trees that takes into account 23 features selected
by Spearman’s rank correlation coefficient [7]. Gamage
and Samarabandu considered four DL architectures, i.e.,
feed-forward neural network, autoencoder, deep belief
network, and LSTM [8]. Karatas et al. in [9] reviewed
the implementation of a Synthetic Minority Oversam-
pling Technique (SMOTE) [10] to balance the data by
exploiting six models. Kanimozhi and Jacob presented
a two-layer MLP to detect only botnet attacks that ex-
ploit a grid search for hyper-parameter optimization and
a 10-fold cross-validation for mitigating the overfitting
problems [11]. Huancayo Ramos et al. extended this ap-
proach by considering botnet data and Random Forests.
Kim et al. also designed a model that exploits CNN for
training on a single type of attack, specifically Denial of
Service (DoS) attacks [12].

3. Background
In this section, we present the CICFlowMeter, an Ether-
net traffic Bi-flow generator and analyzer for anomaly
detection, and the Random Forest, a machine learning
method used for classifying flow data and evaluating
the importance of features. This classifier will then be
integrated into CICFlowMeter for classifying network
flows.

3.1. CICFlowMeter
CICFlowmeter is a network traffic flow generator and
analyser [13, 14]. It generates bidirectional flows, where
the first packet determines the forward (source to desti-
nation) and backward (destination to source) directions.
The tool enables the extraction of more than 80 statisti-
cal network traffic features such as Duration, Number of
packets, Number of bytes, Length of packets, etc. Such
features can be calculated independently for both direc-
tions. The tool is developed in JAVA and provides a useful
Graphical User Interface, shown in Figure 1 to monitor
network flows in real-time. TCP flows are usually termi-
nated upon connection teardown (by FINpacket), while
a flow timeout terminates UDP flows [15].

Figure 1: Example of the CICFlowmeter’s GUI

The tool is developed in JAVA and provides a useful
GUI (Graphical User Interface) to monitor network flows
in real time.

3.2. Machine Learning Approaches and
Feature Selection

The Random Forest is an ML ensemble model used for
both classification and regression tasks. During training,
the model creates numerous decision trees and deter-
mines the output class by either the mode (for classifi-
cation) or the mean/average prediction (for regression)
of the classes predicted by individual trees. Introduced
by Breiman in [16], this approach combines the bagging
technique with the random selection of features. Such a
random selection ensures that the decision trees within
the forest are uncorrelated. In the bagging phase, de-
cision trees are constructed from bootstrap samples of
the training dataset, where each sample is drawn with
replacement, allowing for the possibility of repeated sam-
ples. These replicated datasets are then used to train
decision trees, ensuring that each tree only sees different
portions of the original dataset during training. This bag-
ging approach is coupled with random feature selection,



which involves using distinct random subsets of the en-
tire feature space to train each tree in the random forest.
Usually, around

√
𝑛 features are employed in each split

for a classification task that considers ′𝑛′ features.

3.3. Dataset: CSE-CIC-IDS2018
The data used in this study is the CSE-CIC-IDS2018, a
benchmark dataset for the evaluation of IDSs. Such data
was collected by the Communications Security Establish-
ment (CSE) and the Canadian Institute for Cybersecurity
(CIC). The recorded data consists of ten days of traffic
and includes seven types of attacks. Liu et al. identified
some issues in such dataset related to the creation life-
cycle, including attack orchestration, feature generation,
documentation, and labelling and provided to reconstruct
the datasets by deleting artefacts and corrected labelling
logic, including corrected implementations of existing
features and new features that capture valuable flow state
information [17]. Table 1 reports the corrupt amount of
data.

Attack Type Corruption Rate (%)

Bot 50.06
Web - Brute Force 53.85
Web Attack - XSS 50.43
DoS Attacks >50
DDoS Attacks >50
FTP-Patator 100.00
Infiltration 76.84
SQL Injection 54.02
SSH-Patator 49.97

Table 1
Corruption Rate of Different Attacks on the CSE-CIC-IDS
2018 dataset [17]

3.4. Metrics
We evaluate the performance and effectiveness of the ap-
proaches by using Precision (𝑃 ), Recall (𝑅) and , defined
as follows

𝑃 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

𝐹1 = 2
𝑃 ·𝑄
𝑃 +𝑄

where 𝑇𝑃 represents the number of true positive, 𝐹𝑁
denotes the number of false negative, 𝐹𝑃 represents the
number of false positive, 𝑇𝑁 denotes the number of true
negative.

Table 2
The first 13 attributes ordered by importance

Id Attribute Description
1 FWD Init Win Bytes The total number of bytes sent in

initial window in the forward direction
2 Packet Length Std Standard deviation length of a packet
3 Packet Length Mean Mean length of a packet
4 Bwd Packet Length Std Standard deviation size of packet

in backward direction
5 Bwd Packet Length Max Maximum size of packet in backward direction
6 Bwd PSH Flags Number of times the PSH flag was set in packets

travelling in the backward direction
7 ACK Flag Count Number of packets with ACK
8 Fwd Seg Size Min Minimum segment size observed in

the forward direction
9 Fwd PSH Flags Number of times the PSH flag was set in packets

travelling in the forward direction
10 CWR Flag Count Number of packets with CWR
11 Packet Length Variance Variance length of a packet
12 Fwd Packet Length Max Maximum size of packet in forward direction
13 Bwd Packet Length Mean Mean size of packet in backward direction

4. ReTiNA-IDS Approach
ReTiNA-IDS, Real-Time anomaly Detection IDS
Approach, integrates a ML model mainly based on
Random Forest in the CICFlowMeter tool to detect
Real-Time cyber-attacks and act as a simple IDS. The
Random Forest classifier considers only 13 of the 80
features calculated by the CICFlowMeter tool. The list
of features with the relative description, selected by
another Random Forest model, is in Table 2. After being
trained, the model has been exported in a pmml format
with the use of the “sklearn-pmml-model“ library from
Sklearn [18]. The exported model is then imported into
CICFlowMeter, which is developed in Java.

4.1. ML Pipeline
The proposed approach is based on Random Forest, de-
scribed in Section 3.2, and its scheme is shown in Figure 2.

Figure 2: Pipeline of our Approach

4.1.1. Data Preprocessing

In this study, the used dataset is a revised version of
CSE-CIC-IDS2018, as introduced in Section 3.3. The
dataset consists of the network traffic captured on ten
days, stored in 10 distinct files according to the day of
data capture, as shown in Table 3.



Table 3
CSE-CIC-IDS2018 files

Id File Name Size
1 Wednesday-14-02-2018 3.03 GB
2 Thursday-15-02-2018 2.18 GB
3 Friday-16-02-2018 3.92 GB
4 Tuesday-20-02-2018 3.19 GB
5 Wednesday-21-02-2018 3.68 GB
6 Thursday-22-02-2018 3.23 GB
7 Friday-23-02-2018 3.17 GB
8 Wednesday-28-02-2018 3.54 GB
9 Thursday-01-03-2018 3.54 GB
10 Friday-02-03-2018 3.43 GB

The first step of the preprocessing consists of data
cleaning, i.e., removing missing values, such as incom-
plete rows, and containing invalid (or infinite) numerical
values. Moreover, many non-relevant features for spot-
ting cyber-attacks have been eliminated, such as the IP
address of the sender and receiver, the connection times-
tamp, the protocol type, and the destination/sender port.
Furthermore, the traffic data related to Web Attacks is
deleted since its volume is insufficient.

4.1.2. Data Balancing and Data Augmentation

The collected data related to network traffic is substan-
tially unbalanced: benign traffic is more prevalent than
malicious traffic. To balance the data, we have used the
one step of the bootstrapping procedure, implemented
in the resample function of Sklearn. Due to the corrupted
data on the original dataset, it does not contain data re-
lated to FTP Brute Force attacks. Therefore, we have
added this kind of data by collecting such data during a
simulation of brute force attacks via FTP (File Transfer
Protocol). The simulation involved the use of a Windows
host (victim machine) and a Kali-Linux host (attacker ma-
chine), both in the same local area network (connected
to the same router). The victim machine runs a FileZilla
server, an open-source software utility that facilitates the
transmission of files using the File FTP. It enables users
to establish their own FTP servers or connect to existing
FTP servers to exchange data, and the victim machine
accepts connections on port 21, used to attack. When the
FileZilla server on the victim machine is running, the Kali
Linux host performs a brute-force attack using Patator, a
multi-purpose brute-forcer tool [19]. Table 4 shows the
amount of data and the relative kind of attack, after the
cleaning and balancing phases.

4.1.3. Feature Selection and Classifier

To select the features, a Random Forest has been consid-
ered and implemented by setting up the depth of each
decision tree and number of estimators to 16 and 20,

Table 4
Amount data per network traffic class

Class Count
BENIGN 145904
DoS Attack 145904
BruteForce Attack 99147
PortScan Attack 49740
BotNet Attack 142921

Total 583.616

Table 5
Classification Performance Metrics Random Forest

Class Precision Recall F1-score

BENIGN 1.00 1.00 1.00
Botnet Ares 1.00 1.00 1.00
BruteForce Attack 1.00 1.00 1.00
DoS Attack 1.00 1.00 1.00
Infiltration - NMAP Portscan 0.99 1.00 1.00

Accuracy 1.00

respectively. To avoid eventually issue related to overfit-
ting, we consider the cross-validation with 5-fold. Figure
3 shows the obtained confusion matrix.

Figure 3: Confusion Matrix of the Random Forest Classifier

The performance of the model, evaluated in terms of
Precision, Recall and 𝐹1-score, is shown in the Table 5.

5. Experimental Setup
The ML models have been implemented in a Google Co-
lab document with Python 3. The default CPU in the
environment is an Intel Xeon CPU equipped with 2 vir-
tual CPUs (vCPUs) and 13GB of RAM [20]. For this study,
the configuration involved the utilization of extra RAM,
resulting in a total memory capacity of 50GB (included
with Google Colab Pro [20]).

For data handling, preprocessing, analysis, training,
and evaluation metrics, the recommended model was
built and evaluated using Numpy [21], Pandas [22], and
Scikit Learn [23]. Matplotlib [24] were used to visual-
ize the data. The testing phase for this study used a
Windows operating system for the with the following
specifications: an Intel Core i5-4670 CPU at 3.40GHz, 16
GB of DDR4 memory and a Nvidia GTX 1050 Ti GPU.



5.1. Testing
Retina-IDS, a tool that integrates an ML model into CI-
CFlowMeter, analyzes data patterns and distinguishes
benign traffic from malicious traffic. The testing phase of
ReTiNA-IDS intends to assess the efficiency and efficacy
of the machine learning model in real-world network
situations. We take advantage of the Graphical Network
Simulator-3 (GNS3) software, an open-source network
simulation tool used for creating, modelling, and testing
virtual and real networks [25], to perform the simulations.
To reach the aim, we create a simple network composed
of a Cisco router [26] and two generic switches, outlining
two different areas of a hypothetical Local Area Network
(LAN), a Windows machine and a Kali Linux machine.
Figure 4shows the network infrastructure.

Figure 4: Network structure in GNS3 for testing simulations

The Windows machine represents the hypothetical
victim running the Retina-IDS tool, acting as an IDS,
while the Kali Linux machine plays the role of attacker.
The victim machine is a Windows 10 host, while the
used Kali Linux version is Kali 2023.4. Instead, the victim
machine is a Windows 10 host.

Different attack simulations were performed, each one
resulting in a positive detection by the tool:

• DoS attacks
• File Transfer Protocol (FTP) and Secure SHell

(SHH) Bruteforce attacks
• Portscan attacks

Additionally, more tests were performed with the tool
running in a normal traffic situation (without performing
any cyberattack) in a local network and in the University
of Camerino’s network, for a total of around 5 hours of
workload. The purpose of letting the tool run for hours
on end was to see whether any crashes occurred during
execution and to spot any false positive results. During
the experiments zero false positives were identified.

6. Conclusion and Future Work
In this work, we have presented ReTiNA-IDS, a tool that
integrates an ML model into CICFlowMeter, which ana-
lyzes data patterns and distinguishes benign traffic from
malicious traffic in real-time. The ML model is based on
a Random Forest, used to select features and to classify
the data. The testing phase, performed by running the
tool in a normal traffic situation (without performing
any cyberattack) in a local network and the University
of Camerino’s network, shows that the tool does not
identify false positives.

In the near future, we intend to test the approach in bot-
net traffic to investigate the performance of the ReTiNA-
IDS. To reach this aim, we intend to create a central server
to control potentially infected hosts. Moreover, we have
planned to consider other machine learning models, both
supervised and unsupervised. Moreover, motivated by
the results obtained for modelling and verifying prop-
erties of Collective Adaptive Systems [27, 28, 29], we
intend to define formal approaches to specify and verify
properties of the data traffic to monitor the traffic and
identify anomalous pattern in the traffic.
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