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Abstract
In recent years, Large Language Models (LLMs) have emerged as powerful tools capable of understanding and generating
natural language text and source code with remarkable proficiency. Leveraging this capability, we are currently investigating
the potential of LLMs to streamline software development processes by automating two key tasks: issue report classification
and test scenario generation. For issue report classification the challenge lies in accurately categorizing and prioritizing
incoming bug reports or feature requests. By employing LLMs, we aim to develop models that can efficiently classify issue
reports, facilitating prompt response and resolution by software development teams. Test scenario generation involves the
automatic generation of test cases to validate software functionality. In this context, LLMs offer the potential to analyze
requirements documents, user stories, or other forms of textual input to automatically generate comprehensive test scenarios,
reducing the manual effort required in test case creation. In this paper, we outline our research objectives, methodologies, and
anticipated contributions to these topics in the field of software engineering. Through empirical studies and experimentation,
we seek to assess the effectiveness and feasibility of integrating LLMs into existing software development workflows. By
shedding light on the opportunities and challenges associated with LLMs in software engineering, this paper aims to pave the
way for future advancements in this rapidly evolving domain.
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1. Introduction
In recent years, the field of software engineering has
witnessed a paradigm shift with the emergence of Large
Language Models (LLMs), such as OpenAI’s GPT (Gener-
ative Pre-trained Transformer) series [1] or LlaMA [2].
These advanced Natural Language Processing (NLP) mod-
els have demonstrated remarkable capabilities in under-
standing and generating natural language text and source
code, sparking widespread interest in their potential ap-
plications across various domains. Among these applica-
tions, the introduction of LLMs in software engineering
holds significant promise for revolutionizing traditional
practices and enhancing the efficiency of software devel-
opment processes [3].

This paper aims to outline our ongoing research fo-
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cused on harnessing the power of LLMs for two key
tasks in software engineering: issue report classification
and test case generation. These tasks represent critical
components of the software development lifecycle, with
implications for both the quality of software products and
the productivity of development teams. By exploiting
the capabilities of LLMs, we seek to address challenges
inherent in these tasks and explore opportunities for au-
tomation and optimization.

Issue report classification is a fundamental aspect of
software maintenance and bug tracking, involving the
categorization and prioritization of incoming issue re-
ports, such as bug reports or feature requests [4]. Tra-
ditionally, this process has relied heavily on manual in-
tervention, leading to bottlenecks in response time and
resource allocation. Through our research, we aim to
develop and evaluate LLM-based approaches for automat-
ing issue report classification, with the goal of improving
the efficiency and accuracy of this critical task.

User Acceptance Test (UAT) generation is another area
of focus in our research, where the objective is to auto-
matically generate test cases that comprehensively vali-
date software functionality. Manual creation of test cases
can be time-consuming and error-prone, especially in
complex software systems with numerous features and
dependencies. By leveraging LLMs, we aim to explore
methods for automatically generating test cases from tex-
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tual artifacts, such as requirements documents or user
cases, thereby streamlining the testing process and re-
ducing manual effort.

The remainder of this paper is structured as follows.
In Section 2, we outline the research activities we are cur-
rently carrying out in the context of issue report labeling,
while in Section 3, we focus on our research on automatic
user acceptance test generation. Last, in Section 4, we
give closing remarks and outline future works.

2. LLMs for Issue Report
Classification

2.1. Problem Description
In collaborative Software Engineering, teams work to-
gether to develop and maintain software products. This
collaboration involves various stakeholders, including de-
velopers, testers, project managers, and end-users, who
contribute to different stages of the software development
lifecycle. Throughout this process, issue reports play a
crucial role in identifying, documenting, and addressing
problems or requested changes within the software [5].

Issue reports, which are often managed by dedicated
issue-tracking software [6], are formalized descriptions
of change requests or issues encountered by stakehold-
ers or identified during testing. These reports typically
consist of natural language text written by stakehold-
ers, possibly including details such as the nature of the
problem, steps to reproduce it, expected and observed
software behaviour, and any relevant screenshots, error
messages, or logs. Issue reports serve as a key mean
of communication between end-users or stakeholders
and the development team, providing essential feedback
on the functionality, usability, and performance of the
software product.

Issue report classification is a fundamental aspect
of software maintenance and bug tracking, involving
the categorization and prioritization of incoming is-
sue reports, such as bug reports, feature requests, or
documentation-related inquiries [7]. Misclassifying these
reports can lead to misallocated resources, delayed bug
fixes, and overall inefficiencies in the software develop-
ment lifecycle. Relying exclusively on manual interven-
tion for this classification task may lead to the intro-
duction of bottlenecks in response time and resource
allocation. Moreover, delegating the issue classification
task to the stakeholders who submit the issue reports
also often results in misclassified reports [8, 4].

2.2. State of the art
Different approaches have been proposed in the literature
to address these challenges. Antoniol et al. [9] proposed

using machine learning techniques—alternating decision
trees, naive Bayes classifiers, and logistic regression—to
automatically classify issues in bug tracking systems as
either bugs (corrective maintenance) or non-bugs (other
activities). The technique achieves classification accuracy
between 77% and 82%, highlighting the potential for auto-
mated issue routing. However, the proposed approach is
limited by its focus on three open-source systems and the
manual classification process for creating the training
dataset. With the same aim, Zhou et al. [10] proposed
an approach that combines text mining and data mining
techniques to identify corrective bug reports in software
systems, aiming to reduce misclassification noise and
enhance bug prediction accuracy. Empirical studies on
ten large open-source projects demonstrated its effec-
tiveness over baseline methods and individual classifiers.
Nevertheless, the approach’s generalizability to commer-
cial projects and dependence on manual training data
classification still need improvement. Kallis et al. [5] pro-
posed introducing Ticket Tagger. This GitHub app auto-
mates the issue labeling process using amachine-learning
model, specifically fastText, for classifying issues such as
bug reports, enhancements, or questions based on their
titles and descriptions. The evaluation on a dataset of
30,000 GitHub issues demonstrated high precision and
recall across categories. However, it faced challenges
with false positives in questions and false negatives in
enhancements, indicating room for improvement in han-
dling diverse linguistic patterns in issue descriptions.

LLMs have also proven effective for the issue report
classification problem [11, 12, 13].Nonetheless, Colavito
et al. observed that the performance of these models is
influenced by inconsistent and noisy labels, standard in
crowd-sourced datasets [12, 14]. They proposed leverag-
ing GPT-like Large Language Models (LLMs) for automat-
ing issue labelling in software projects, demonstrating
that these models can achieve performance comparable
to state-of-the-art BERT-like models without fine-tuning.
However, their experiment’s scope is limited, relying on
a small, manually verified subset of 400 GitHub issues
extracted from the well-known nlbse dataset [15], which
contains more than 1.4M issues. This may affect the gen-
eralizability of the findings across more extensive and
diverse datasets. Furthermore, a risk of misclassification
can stem from the approach employed to deal with is-
sues that are too long to fit within the LLM context-size
limit. Indeed, the proposed approach simply truncates
the reports, thus causing a loss of possible precious in-
formation.

2.3. Proposed Approach
The approach we are currently investigating for issue
report classification is based on leveraging LLMs with
a dynamic few-shot prompting strategy, with the intro-



Figure 1: Issue Report Classification Process.

duction of a more advanced summarization method to
manage issues that are too long to fit within the con-
text of the LLM, and the targeted or directed selection of
few-shot examples, achieved using Vector Databases. An
overview of our approach is presented in Figure 1 and
described as follows.

In Phase 1, we deal with issues that are too long to
fit within the LLM context. In such cases, we employ
the MapReduce programming model to summarize and
parallel refine relevant data efficiently. More in detail, we
partition the large issue report into smaller, manageable
text chunks. Each chunk is then processed in parallel
and summarized by a LLM. The result for each chunk is
then combined to obtain the final, summarized report.

In Phase 2, our approach aims at selecting, as few-shot
examples, issue reports that are more “relevant” w.r.t. the
one that is currently being classified. To this end, we
leverage a vector database such as Milvus1), in which
previously-labelled issue reports are stored as vector rep-
resentations. These vector representations are capable
of capturing the semantic meaning and context of the
issue reports in a high-dimensional space, and a similar
vector-based representation of issues has also been used
in prior works on issue report labelling [5, 7]. We then
perform a similarity search between the vector represen-
tation of the current issue report to be labelled and those
of previously-labelled issue reports in the vector database.
This helps us identify few-shot examples that are more
relevant and share common characteristics with the cur-
rent issue report. Once the examples have been identi-
fied, we craft a few-shot prompt using state-of-the-art
prompt engineering strategies [16], and then we present
the prompt to the LLM for classification (see Phase 3 in
Figure 1). We envision that providing the right num-
ber of relevant examples and additional context to the
LLMs will further enhance their promising issue report
labelling capabilities.

1Milvus. https://milvus.io/community

2.4. Assessment Strategy
To assess the effectiveness of our LLM-based approach
for issue report classification, we propose an empirical
evaluation strategy leveraging state-of-the-art LLMs such
as OpenAI’s GPT-4 [17], focusing on accuracy, precision,
recall, and F1-score. The strategy utilizes the “nlbse 2023”
dataset [15], which will be indexed into a vector database
to facilitate the extraction of vector representations for
selecting relevant few-shot examples for the LLM. This
approach avoids fine-tuning the LLM, aiming to leverage
its pre-trained capabilities to classify issue reports accu-
rately. The assessment will compare the performance
of the LLM-based method against a test set provided in
the “nlbse 2023” dataset, serving as a gold standard. This
comparison will focus on the metrics reported above to
comprehensively evaluate the LLM’s effectiveness in clas-
sifying issue reports. Classification performance will be
measured using the F1-score over all four classes (micro-
averaged), namely bug, feature, question, and documenta-
tion. The process involves experimenting with different
numbers of few-shot examples, as well as investigating
different vector representations and similarity functions
to use when retrieving the few-shot examples, to identify
the configuration that yields the highest performance
across these metrics. By conducting this evaluation, we
aim to demonstrate the potential of LLMs, like GPT-4,
in automating the classification of issue reports, thereby
offering a scalable and efficient alternative to manual clas-
sification methods in software development workflows.

3. LLMs for User Acceptance Test
Generation

3.1. Problem Description
In software development, the generation of UATs rep-
resents a critical phase within the software testing life-

https://milvus.io/community


cycle [18]. UATs are designed to ensure that software
systems meet the specified requirements and work for
the end-user as intended before the software is released.
Traditionally, creating UATs involves translating user re-
quirements and use cases into testable scenarios, requir-
ing significant manual effort and domain expertise. This
manual approach to generating UATs is time-consuming
and prone to human error, potentially leading to gaps in
test coverage or misinterpretation of requirements [18].

LLMs offer a promising avenue for automating the gen-
eration of UATs from natural language descriptions of
software requirements or use cases. LLMs have demon-
strated remarkable capabilities in understanding and gen-
erating natural language text, suggesting their potential
utility in interpreting software requirements and auto-
matically producing corresponding UATs [19, 20]. How-
ever, the application of LLMs in this context is challeng-
ing. The inherent ambiguity and variability of natural
language and the complexity of software requirements
pose significant obstacles to the accurate and reliable
generation of UATs. Furthermore, the non-deterministic
nature of LLM outputs and the limitations related to con-
text size and model interpretability necessitate careful
consideration and adaptation of these models for UAT
generation [20]. The challenge lies in leveraging LLMs
to convert natural language software requirements into
structured UATs, requiring adapting LLMs for accurate
interpretation and ensuring the UATs are comprehensive
and aligned with software functionality. Overcoming
these hurdles can streamline testing, boost efficiency,
reduce manual effort, and improve software quality.

3.2. State of the art
Several studies have explored NLP for automating test
case generation, often within specific domains or formats.
Nebut et al. [21] automate system test case generation
using UML and contracts, facing challenges with manual
intensity and scalability in complex systems. Carvalho et
al. [22] create NAT2TEST for generating test cases from
Controlled Natural Language, noting reduced efficiency
due to formal model reliance. Yue et al. [23] develop
RTCM for converting natural language test cases into
executable tests but lack comprehensive performance
analysis and generalizability. Goffi et al. [24] introduce
Toradocu, using Javadoc comments for test oracle gen-
eration, yet it remains a prototype with limitations in
processing complex conditions. Silva et al. [25] offer a
test case generation strategy using Colored Petri Nets
but do not address requirement completeness and con-
sistency, risking state explosion issues. Allala et al. [26]
propose a method integrating MDE with NLP for con-
verting user requirements into test cases, still in its initial
phase and validated on a small sample. Fischbach et al.
[27] explore test case automation from agile acceptance

criteria, finding natural language complexity a barrier
to full automation. Wang et al. [28] develop UMTG for
system-level test case creation using natural language
and domain models tailored for embedded systems and
facing scalability challenges.

Despite the promising results, many limitations per-
sist across the board. These limitations primarily revolve
around the scalability of the approaches in complex sys-
tems, the efficiency of the processes, and the general-
izability of the tools and methods to different domains
or types of software systems. These limitations under-
score the need for further research to integrate natural
language requirements more seamlessly into the test gen-
eration process.

3.3. Proposed Approach
Our approach to automating UAT generation involves an-
alyzing requirements expressed through use cases, speci-
fied using natural language. It consists of two primary
phases: 1) Identifying the list of test cases from a use case,
and 2) Elaborating the details of each test case. Through-
out this process, we employ LLMs, particularly GPT-4
[17], as a tool to interpret and translate the use cases into
comprehensive UAT documentation.

The initial phase tackles LLMs’ context limits and non-
determinism. Indeed, long textual descriptions of use
cases in inputs exceeding the context limit could result in
incomplete responses. At the same time, the model’s non-
determinism might produce inconsistent results, risking
the generation of irrelevant test cases. To mitigate these
challenges, we designed the prompt by leveraging the
few-shot learning technique and providing precise and
clear instructions for the LLM. The outcome of the iden-
tification phase is a list of test cases structured in JSON
format derived from the provided text description of the
use case. Each test case includes a unique identifier, a
clear and concise description, the flow type, an indicator
of the need for a separate UAT may not be necessary, and
explicit presence in the original use case.

The second phase focuses on generating the details of
the identified UATs. The goal is to produce a test case
aligned with the use case scenario it refers to and suf-
ficiently detailed to guide the test’s execution without
ambiguity. The details of each test case are structured in
a JSON format that facilitates understanding and imple-
mentation of the tests, containing information such as
preconditions, actors, and steps, including inputs and ex-
pected results. Since each test case is independent from
the others, multiple requests can be processed in parallel,
significantly reducing the overall execution times and
optimizing efficiency and speed of execution.

To mitigate the LLM’s non-determinism, we op-
erated in multiple directions. On one hand, we
focused on configuring GPT-4’s hyperparameters ef-



Figure 2: UAT Generation Process.

fectively. In preliminary experiments, we found
that setting the temperature, presence_penalty, and
frequency_penalty hyperparameters to 0, the best_of
hyperparameter to 1, and the top_p hyperparameter to
1, as recommended by OpenAI, yielded the most deter-
ministic outcomes.

On the other hand, to ensure GPT-4 generates spe-
cific and relevant outputs, prompts were meticulously
crafted with clear, detailed instructions and examples of
desired outputs, adopting a ”show, do not tell” strategy
[16]. This method helps the model grasp the expected
format and content more accurately. Prompts and con-
figurations underwent iterative refinements based on
feedback to enhance result consistency. Finally, outputs
were rigorously evaluated for consistency and require-
ment adherence, allowing for adjustments in response to
identified non-determinism patterns.

3.4. Assessment Strategy
To evaluate the approach we will design and carry out
an empirical experiment involving software engineering
professionals. These participants will be divided into two
groups: one utilizing our automated approach and the
other resorting to manual methods for UAT generation.
This design allows for a direct comparison of the out-
comes, providing valuable insights into the effectiveness
of the approach. By ensuring the completeness, clar-
ity, understandability, and correctness of the generated
UATs, we aim to streamline the process, enhance test
coverage, and ultimately contribute to the development
of higher-quality software products. Feedback from the
participants will also be collected to gain insights into the
usability and practicality of the approach in real-world
software development scenarios. This feedback will be
invaluable in refining the method and identifying areas
for further research and development.

4. Conclusions
In this paper, we discuss the potential of leveraging LLMs
to address two significant challenges in software en-
gineering: issue report classification and UAT genera-
tion. By employing advanced techniques such as vector
databases and few-shot learning with LLMs, we aim to
enhance the efficiency and accuracy of these essential
tasks. We envision that our approaches could signif-
icantly improve upon current manual and automated
methods, though challenges related to natural language
ambiguities and model determinism remain. Moving for-
ward, we will focus on refining our methodologies and
expanding LLM applications within software engineer-
ing to streamline development workflows and elevate
software quality. Our work indicates a bright future for
integrating LLMs in the field, promising substantial effi-
ciency and product excellence advancements.
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