
Advancing e-health with AI: Insights from our research
experience in neuroimaging, acoustic signals, and vital
parameter monitoring
Gabriella Casalino, Giovanna Castellano∗, Gennaro Vessio and Gianluca Zaza

Department of Computer Science, University of Bari Aldo Moro, Italy

Abstract
This contribution briefly describes the research being carried out in the Computational Intelligence Laboratory of the
Department of Computer Science, University of Bari Aldo Moro, in AI-based e-health. Our research encompasses a wide
array of methodologies and applications aimed at leveraging the capability of AI to empower the diagnosis, monitoring, and
treatment of various health conditions. Through multifaceted research that covers neuroimaging analysis, acoustic signal
processing, and vital parameter monitoring, our goal is to shed light on the potential of AI in enhancing healthcare services.
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1. Introduction
Integrating Artificial Intelligence (AI) into healthcare is
transforming how we diagnose, monitor, and care for
patients. At the Computational Intelligence Laboratory
(CILab) of the Department of Computer Science, Uni-
versity of Bari Aldo Moro, we are contributing to this
transformation by applying AI to neuroimaging, acoustic
signal analysis, and vital signs monitoring. Our work
aims to address current healthcare challenges by devel-
oping innovative and practical AI solutions.

This paper presents an overview of our research efforts
and achievements in these areas. By sharing our findings
and methodologies, we aim to highlight AI’s significant
impact on improving healthcare services and patient out-
comes. Our goal is to showcase our work and encourage
ongoing innovation and dialogue in the rapidly evolving
field of AI in healthcare.

2. Neuroimaging
Neuroimaging is a pivotal area within our research port-
folio, where the application of AI-driven algorithms plays
a crucial role in enabling the early and precise diagnosis
of neurological disorders.
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2.1. Alzheimer’s disease detection
Dementia, with Alzheimer’s disease (AD) being its most
common form, poses a significant global health challenge,
especially among the aging population. It currently af-
fects around 55 million people worldwide, predominantly
in low- and middle-income countries, and this number is
expected to increase as the global population ages. Un-
fortunately, effective cures remain elusive, with available
treatments focusing more on symptommanagement than
addressing the underlying causes. This underscores the
critical need for early and accurate diagnosis to improve
patient care.

AI, mainly through advanced machine and deep learn-
ing techniques, is increasingly recognized for its potential
to revolutionize the diagnosis of dementia, including AD.
Neuroimaging techniques, such as Magnetic Resonance
Imaging (MRI) and amyloid Positron Emission Tomog-
raphy (PET) scans, have been identified as promising
tools for early detection. MRI provides detailed images
of the brain, enabling the identification of brain atrophy
patterns characteristic of AD. At the same time, amy-
loid PET scans offer insights into the pathophysiology of
the disease by detecting amyloid plaques in the brain, a
hallmark of AD.

Our research has advanced the application of Convolu-
tional Neural Network (CNN) models for the automated
diagnosis of AD, using the strengths of both MRI and PET
scans [1]. We examined these neuroimaging techniques’
efficacy in uni-modal and multi-modal setups, under-
scoring the advantage of integrating data from diverse
modalities to refine diagnostic precision. Additionally,
we incorporated an explainable AI method to address
the demand for transparency in medical AI applications,
offering insights into the AI-driven diagnostic process
and contributing to a deeper understanding of AD’s un-
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Figure 1: Diagram illustrating the proposed multi-modal CNN architecture designed for AD detection, which simultaneously
processes 3D MRI and PET scan inputs for enhanced diagnostic accuracy.

derlying mechanisms.
Specifically, our investigation has yielded several key

insights, highlighting the potential of multi-modal imag-
ing strategies. By analyzing the classification results from
various model configurations on the OASIS-3 benchmark
dataset, we discovered that models utilizing 3D inputs
consistently outperformed those using 2D inputs, likely
due to the richer spatial information available in 3D scans.
Moreover, regardless of whether in 2D or 3D, MRI scans
significantly surpassed amyloid PET scans in diagnostic
performance, emphasizing MRI’s inherent value in AD
detection within our study. However, multi-modal strate-
gies, particularly our “fusion” model (shown in Fig. 1),
demonstrated a clear advantage, achieving up to 95% ac-
curacy. This underlines the complementary nature of
MRI and PET scans in AD diagnosis.
Our adoption of the Grad-CAM technique further al-

lowed us to pinpoint the brain regions most relevant
for classification, offering valuable insights into the neu-
roanatomical underpinnings of AD. This supports the
validity of our models and enhances our understanding
of AD’s neuropathology.

In another exploratory study [2], we delved into Diffu-
sion Tensor Imaging (DTI), a sophisticatedMRI technique
that assesses the integrity of white matter fiber tracts in
the brain. We explored fractional anisotropy (FA), a DTI
metric that measures the uniformity of water diffusion
directionality, which exhibits notable changes in AD pa-
tients, suggesting its utility as a diagnostic indicator.
We introduced a dual-stage deep learning approach,

combining unsupervised and supervised techniques. Ini-
tially, a 3D convolutional autoencoder was employed to
extract low-dimensional representations from FA images

in an unsupervised manner. These representations were
then used to train a supervised 3D CNN for AD detec-
tion. This innovative strategy demonstrated encouraging
outcomes on the OASIS-3 dataset and lessened the de-
pendence on extensively annotated datasets, setting the
stage for more autonomous and quantitative AD detec-
tion in clinical practice. Our future endeavors will aim
to assess this method across broader and more varied
datasets to affirm its diagnostic validity further.

2.2. Brain tumor segmentation
Brain tumor segmentation from MRI scans is crucial for
accurate diagnosis, treatment planning, and patient mon-
itoring. Recent strides in deep learning, particularly with
CNNs, have significantly advanced the automation and
precision of tumor segmentation. Nevertheless, these
models’ “black-box” nature raises challenges in explain-
ability—a vital aspect of clinician trust and decision-
making.

Graph Neural Networks (GNNs) have recently gained
attention as a novel approach to medical image analysis,
offering an alternative that might bridge the gap between
accuracy and explainability. By conceptualizing brain im-
ages as graphs—where nodes represent voxels or regions
of interest, and edges depict spatial relationships—GNNs
use relational dependencies to achieve fine segmentation.
This capability to capture both local and global contexts
through message passing between nodes positions GNNs
as a promising tool for achieving high precision in brain
tumor segmentation and providing a pathway to model
understandability.

In a recent study [3], we analyzed GNNmodels for seg-



menting brain tumors, focusing on their explainability.
Using GNNExplainer, we aimed to improve the trans-
parency of GNN models, making their decision-making
processes accessible and understandable to clinicians.

Our exploration highlighted the effectiveness of GNNs
in medical imaging. It also laid the foundation for future
research, suggesting potential synergies between GNNs
and CNNs, such as integrating GNNs with 3D U-Net
architectures, to refine segmentation results further. In
addition, collaboration with medical experts to examine
critical features identified by GNNExplainer could further
solidify the role of GNNs in clinical practice, combining
accuracy and explainability in brain tumor management.

3. Acoustic signals
The analysis of vocal characteristics from speech sam-
ples is an effective approach to identifying conditions
associated with mental diseases, notably bipolar disorder
(BD). Our research focused on extracting acoustic fea-
tures from patients with BD using a specialized mobile
application, developed at the Department of Affective Dis-
orders, Institute of Psychiatry and Neurology in Warsaw,
Poland, under the project “Smartphone-based diagnos-
tics of phase changes in the course of bipolar disorder”.
BD manifests through fluctuating mood states, including
euthymia, depression, mixed states, and mania, tradi-
tionally diagnosed through regular consultations using
standard psychiatric tools like the Hamilton Depression
Rating Scale (HDRS) and the Young Mania Rating Scale
(YMRS). These instruments allow healthcare providers to
detect symptoms and evaluate the intensity of depressive
and manic episodes, facilitating precise diagnoses and
the development of customized treatment strategies.
Our research examined several critical dimensions of

data related to BD, specifically focusing on the impor-
tance of continuous monitoring to track temporal fluc-
tuations. We addressed the challenge of missing labels
while also handling the uncertainty in labeling due to the
inherent ambiguity and variability in data classification.
Moreover, we worked on generating readily understand-
able explanations of BD state classifications leveraging
the availability of multi-layered information.

3.1. Monitoring bipolar disorder states
The specialized application captures acoustic features
daily, but patient assessments are less frequent, resulting
in a scarcity of labeled data. This gap leaves many acous-
tic features without clear annotations of the patient’s
condition.
We explored semi-supervised learning algorithms to

harness the geometric data properties and the prede-
fined knowledge of patient states. These algorithms have

shown promise in enhancing classification accuracy, even
with limited labeled data [4].

We introduced a novel algorithm, the Dynamic In-
cremental Semi-Supervised Fuzzy C-Means (DISSFCM),
designed to monitor BD states while considering the
temporal acquisition of acoustic features. DISSFCM, an
extension of the Semi-Supervised Fuzzy C-Means (SS-
FCM) algorithm, analyses data chunks sequentially in
near real-time, maintaining historical data insights with-
out extensive storage. It adapts to new information, refin-
ing the classification through an increased cluster count
representing the patient’s condition states. This method
has proven effective in predicting episodes of health and
illness with as little as 25% labeled data [5].
DISSFCM operates on labeled prototypes, summariz-

ing data clusters for each segment. It generates member-
ship matrices, clarifying each data point’s cluster associ-
ation and facilitating outcome explanation. Initially, we
applied visual analytics for interpretation [6], advancing
to natural language explanations or linguistic summaries,
which translate complex data relations into understand-
able sentences [7]. For example, we could deduce that
“Most calls in the state of hypomania have low loudness
compared to the state of euthymia”. This approach seg-
ments acoustic features into semantic categories—loud-
ness, pitch, spectrum, and voice quality—guided by psy-
chiatric expertise. Our experiments have demonstrated
the practical application of linguistic summaries as infor-
mative granules for smartphone-based BD monitoring.
They offer clear, insightful linguistic descriptions, mak-
ing the complex data and sparse psychiatric evaluations
comprehensible.

3.2. Explaining bipolar disorder states
We designed a versatile, multi-task neural network to
leverage the detailed symptom information captured dur-
ing patient assessments. This network is trained to gen-
erate several outputs, each aligning with the various
levels of labels obtained from intermediate assessment
stages. These intermediate outputs fulfill dual roles: they
enhance the model’s overall predictive accuracy and pro-
vide insights into classifying mid-level labels. Our ar-
chitecture, designed to handle data with a hierarchical
class structure, is a crucial component of PLENARY (ex-
Plaining bLack-boxmodEls in Natural lAnguage thRough
fuzzY linguistic summaries) [8]. PLENARY aims to cate-
gorize tabular data across different class levels and render
the model’s explanations into natural language, employ-
ing fuzzy linguistic summaries for clarity.

In collaboration with a neuropsychiatrist, we identified
ten critical symptoms as intermediate labels, including
anxiety, decreased activity, mood changes, disorganiza-
tion, and sleep disorders, among others. The model’s
outcomes and explanations focus on the patient’s state



and these specific symptoms. For instance, we found that
“Among records that contribute positively to predicting
mania, most of them have spectral-related features at
low level” and “Among records that contribute against
predicting decreased activity, most of them have quality-
related features at low level”.
Through rigorous experimental evaluation, we have

demonstrated that augmenting model explanations with
fuzzy linguistic summarization—especially those derived
from SHAP analyses—significantly enhances understand-
ing of the model’s predictions. This approach effectively
combines domain-specific knowledge with technical in-
sight, providing a comprehensive and accessible explana-
tion framework.

4. Vital parameters
Our research into vital parameter monitoring leverages
AI to anticipate important diseases, equipping patients
and physicians with critical insights for preemptive
healthcare management. Herein, we detail our efforts
in remote vital parameter estimation and creating eX-
plainable AI (XAI) models to support medical diagnosis.
These models use vital signs data to aid medical profes-
sionals in the early detection of cardiovascular diseases
and stress-related conditions.

4.1. Contact-less monitoring of vital
parameters

Our endeavors in vital parameter monitoring have been
concentrated on heart rate, breathing rate, blood oxy-
gen saturation (SpO2), and systolic and diastolic blood
pressure—key indicators for cardiovascular health. Tra-
ditional methods, like ECG, require direct skin contact,
often necessitating cumbersome wearable devices. To
overcome the limitations and discomfort of contact-based
monitoring, advancements have been made toward de-
veloping photoplethysmography (PPG) techniques that
operate using camera-based systems. However, these can
be expensive and not user-friendly for daily home use.

Addressing these challenges, our lab has developed an
innovative, cost-effective approach for monitoring car-
diovascular parameters that seamlessly integrates into
everyday living environments [9]. This system employs
a non-invasive, contactless device consisting of a trans-
parent mirror equipped with a camera that identifies
the user’s face and uses remote photoplethysmography
(rPPG) to analyze video frames. The prototype of the
smart mirror is shown in 2(a). This method calculates
vital parameters like blood oxygen saturation, heart rate,
and breathing rate and includes a novel technique for au-
tomatic lip color detection through clustering-based color
quantization. With this new method, we aim to relieve

individuals from the discomfort of traditional contact-
based monitoring, making it a more convenient and user-
friendly option for daily home use.
Our methodological pipeline (shown in Fig. 2(b)) ini-

tiates with the detection of the subject’s face, focusing
specifically on the forehead as the region of interest (ROI)
for signal extraction. The rPPG signal is then processed
using Independent Component Analysis (ICA) and Fast
Fourier Transform (FFT) to estimate HR and BR. At the
same time, SpO2 measurements are derived by apply-
ing the Beer-Lambert law. For lip color detection, the
system identifies the lip ROI and determines the dom-
inant color using clustering methods. Our contactless
approach has not only demonstrated measurement ac-
curacy within acceptable ranges for both stationary and
minimally moving subjects, but it has also shown supe-
rior performance compared to traditional contact devices,
instilling confidence in its reliability and accuracy.
Further enhancements included the addition of new

ROIs and a face-tracking feature to accommodate head
movements, improving usability on mobile devices [10,
11]. This comprehensive framework is adaptable to any
camera-equipped device, leading to the creation of a
smartphone application that facilitates easy, widespread
monitoring of vital health parameters [12].

4.2. Cardiovascular risk assessment
While traditional machine learning algorithms have sig-
nificantly aided physicians in diagnosing symptoms early
to prevent disease progression, their often opaque nature
presents a challenge. These “black box” models deliver
accurate predictions but lack an intuitive explanation
for their results. This makes them less practical in fields
where end-users are non-technical professionals, notably
in healthcare.
Our work concentrates on advancing XAI models,

which are mainly aimed at supporting medical decisions
in cardiovascular disease (CVD) assessment. CVDs are a
primary global health concern, responsible for approx-
imately 17.9 million deaths annually,1 spanning condi-
tions such as coronary heart disease and stroke. Given
the multifactorial causes of CVDs, including lifestyle and
genetic predispositions, early intervention and continu-
ous monitoring of vital signs are crucial to prevention.
In our efforts, we have developed a fuzzy rule-based

system to assist clinicians in evaluating cardiovascular
risks with greater interpretability [13]. This system uti-
lizes IF-THEN rules, a natural language format that sim-
plifies understanding and application, incorporating pa-
tient data like heart rate and blood oxygen saturation
to estimate CVD risk. Developed in collaboration with
medical experts, this model prioritizes accuracy while

1https://www.who.int/health-topics/cardiovascular-diseases
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(a) (b)

Figure 2: (a) Prototype of the smart mirror developed in our lab and (b) methodological pipelines for vital sign measurement.

ensuring user-friendly interpretability, offering a slight
trade-off in precision for much greater transparency.
To bridge the gap between data-driven precision and

expert intuition, we explored neuro-fuzzy systems, which
automate the generation of fuzzy rule-based models
from data, streamlining the otherwise manual and labor-
intensive process of rule formation. Our research demon-
strates that models created through neuro-fuzzy sys-
tems maintain accuracy and significantly enhance in-
terpretability, outperforming manually designed models
in cardiovascular risk prediction [14].

Expanding beyond cardiovascular health, we have ap-
plied neuro-fuzzy systems to diagnose hypertension and
stress, focusing on minimizing complexity for clearer
understanding. We have balanced accuracy and inter-
pretability by employing feature selection to refine the
number of relevant indicators and fuzzy rules, making
these models highly practical for real-world medical ap-
plications [15].
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