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Abstract
Structured Declarative Language (SDL) emerges as a powerful tool for addressing the complexities of combinatorial

search and optimization problems. In this paper, we introduce SDL as a higher-level abstraction that provides

a clear and intuitive specification language, with its semantics defined through translation into Answer Set

Programming (ASP). SDL offers several advantages over directly writing in ASP, including flexibility in attribute

handling, improved code readability, and enhanced error tolerance. Key features of SDL include the irrelevance

of attribute order, seamless management of attribute arity changes, and the use of qualifying names for attribute

access. Additionally, SDL incorporates features such as automatic attribute tracking and type differentiation,

contributing to a more intuitive and reliable problem-solving process.
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1. Introduction

Combinatorial search and optimization represent foundational concepts within the realm of computer

science and mathematics, focusing on the exploration of vast solution spaces to identify optimal

configurations or arrangements. These problems arise across several domains, ranging from logistics

and scheduling [1, 2] to telecommunications and bioinformatics [3, 4]. At its core, combinatorial search

involves the systematic exploration of all possible combinations or permutations of a given set of

elements to identify a solution that satisfies specified criteria. However, the sheer size and complexity

of solution spaces in combinatorial problems often render brute-force search infeasible. Consequently,

the field of optimization emerges as a crucial discipline, aiming to devise efficient algorithms and

methodologies to navigate these vast solution spaces and identify optimal or near-optimal solutions.

Answer Set Programming (ASP) [5, 6] provides a robust framework for addressing the complexity

inherent in combinatorial search and optimization problems. Its declarative nature and expressive

syntax make it particularly well-suited for modeling and solving problems with discrete decision

variables and combinatorial constraints. One of the key advantages of ASP is its ability to handle

non-monotonic reasoning, allowing for the representation of incomplete or uncertain information and

the formulation of default assumptions. This feature is crucial in combinatorial optimization, where

decisions often need to be made under uncertainty or with partial information. Furthermore, ASP

offers powerful modeling constructs for expressing complex combinatorial constraints and objectives,

including aggregates and weak constraints [7]. These constructs enable the concise representation

of diverse optimization problems, ranging from scheduling and planning to resource allocation and

configuration [8, 9, 10]. Additionally, ASP solvers leverage efficient algorithms and optimization

techniques to search for solutions within large solution spaces [11]. These solvers employ advanced

search strategies, constraint propagation, and conflict analysis to efficiently explore the search space

and identify optimal or near-optimal solutions.

However, when working with a long-standing ASP codebase, several challenges and limitations may

arise, impacting maintenance, readability, and robustness. Here are some downsides of ASP, particularly

CILC 2024: 39th Italian Conference on Computational Logic, June 26–28, 2024, Rome, Italy
*
Corresponding author.

$ mario.alviano@unical.it (M. Alviano); carmine.dodaro@unical.it (C. Dodaro); vasileilaria@gmail.com (I. R. Vasile)

� https://alviano.net/ (M. Alviano); https://www.cdodaro.eu (C. Dodaro)

� 0000-0002-2052-2063 (M. Alviano); 0000-0002-5617-5286 (C. Dodaro)

© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:mario.alviano@unical.it
mailto:carmine.dodaro@unical.it
mailto:vasileilaria@gmail.com
https://alviano.net/
https://www.cdodaro.eu
https://orcid.org/0000-0002-2052-2063
https://orcid.org/0000-0002-5617-5286
https://creativecommons.org/licenses/by/4.0


concerning long-standing codebases:

• Propagating Changes: In a long-standing ASP codebase, the interdependencies between different

parts of the code can create challenges when making modifications. Changes made to one

section may necessitate updates in other areas to maintain consistency and functionality. Due

to the declarative nature of ASP, where rules and facts are interconnected, it is often difficult to

predict the ripple effects of a change, leading to a laborious process of identifying and updating

affected components. This can introduce overhead in maintenance efforts and increase the risk of

introducing unintended errors.

• Use of Object Variables: ASP allows the use of object variables to refer to terms, providing flexibility

in rule formulation. However, in a long-standing codebase, the extensive use of object variables

can lead to ambiguity and confusion. Object variables may be reused across different rules or

sections of the code, making it challenging to track their meaning and scope. This ambiguity

increases the likelihood of errors, such as unintentional variable reuse or misinterpretation of

variable bindings, particularly when making changes or debugging the code.

• Lack of Semantic Annotations: ASP lacks built-in mechanisms for semantically annotating terms

or sub-terms within rules. In a long-standing codebase, this absence of clear semantic annotations

can hinder code readability and comprehension. Developers may struggle to discern the intended

purpose or meaning of certain terms, leading to confusion and potential misinterpretation.

Without explicit semantic annotations, understanding the logic and semantics of complex rules

becomes more reliant on developer expertise and manual inspection, increasing the risk of errors

and hindering code maintenance and evolution.

Example 1. Consider atoms of the following forms: cab(cab_id, driver) to represent cabs and

associated drivers; customer(cust_id, name, title) to represent customers and their data;

assign(cust_id, cab_id) to assign cabs to customers. Suppose the above atoms are used in

the following rules (possibly part of a larger codebase):

% assign one cab to every customer
{assign(C,C') : cab(C',D)} = 1 :- customer(C,N,T).

% don't assign more than one customer to each cab
:- cab(C,D), #count{C' : assign(C',C)} > 1.

If the number or order of attributes associated with any of the above atoms change, all the codebase

must be adapted. For example, if the association between cabs and drivers is moved in a different

predicate, both rules above must be modified, even if neither one nor the other really use such an

association. Also note that object variables are often associated with short names, and it is easy to clash

with an already used name; in the first rule above, we had to use C' for the cab because C was already

used for the customer (and we named variables of the second rule in a different order). Moreover, there

is no clear way to distinguish the several attributes in an atom or rule, and one can unintentionally

switch attributes and obtain wrong results; is the first attribute of assign a customer or a cab? ■

Addressing these downsides in a long-standing ASP codebase requires careful attention to code

organization, documentation, and best practices. Strategies such as modularization, clear naming

conventions, and documentation of variable bindings can help mitigate the challenges associated with

propagating changes and managing object variables. Additionally, establishing conventions for semantic

annotation or leveraging external documentation tools can enhance code readability and maintainability,

facilitating the long-term management of the codebase. In this context, our contribution lies in the

development and definition of Structured Declarative Language (SDL) as a higher-level abstraction

specifically tailored to address the challenges of combinatorial search and optimization. SDL serves

as a specification language that provides a clear and concise way to express optimization problems in

a declarative manner, while its semantics are defined through a translation into ASP. This approach

offers several advantages over directly writing in ASP:



1. Abstraction and Simplification: SDL abstracts away the complexities of ASP syntax, providing a

more intuitive and concise representation of combinatorial optimization problems. By defining

problems at a higher level of abstraction, SDL facilitates clearer problem specification and solution

understanding.

2. Qualifying Names for Attribute Access: SDL enables access to attributes and their components

through qualifying names, enhancing code readability and comprehension. This feature provides

clarity in referencing attributes and reduces ambiguity, making it easier for developers to un-

derstand and modify SDL code. In fact, qualifying names add flexibility in attribute handling,

allowing for seamless modification of attribute order and arity. The order of attributes becomes

irrelevant, and modifications to arity do not necessitate alterations in rules where the affected

attributes are not utilized. This enhances code maintainability and reduces the risk of errors

during code evolution.

3. Automatic Attribute Tracking: SDL includes an automatic system for tracking the origin of at-

tributes, such as in edge(node(X), node(Y)). This facilitates error detection and debugging

by providing insights into attribute usage and dependencies. In particular, SDL ensures automatic

adherence to the typical contract of the equivalence relation within attribute handling, main-

taining consistency and integrity in problem representation. Indeed, unlike ASP, where objects

cannot distinguish between different types of strings and integers, SDL provides the capability to

differentiate between various types of objects. For instance, SDL allows for explicit differentiation

between an attribute representing a node ID and an attribute representing a paper ID (node(X)
vs paper(X), instead of two integers).

Example 2 (Continuing Example 1). In SDL, the reported portion of the codebase is encoded as follows

(syntax and semantics of SDL are defined in Sections 3–4):

record Cab: id: int, driver: str;
record Customer: id: int, name: str, title: str;
record Assign: customer: Customer, cab: Cab;

guess from Customer exactly 1
Assign from Cab

where Assign.customer == Customer and Assign.cab == Cab;
deny from Cab having

count {Assign.customer from Assign where Assign.cab == Cab} > 1;

The structure of the processed data is declared by the record instructions, so to associate names with

attributes. The number and order of attributes is completely irrelevant, as attributes are accessed via

qualified names such as Assign.customer (or also Assign.customer.title). Every instruction

only depends on the record parts that are explicitly mentioned, so for example the guess and deny
instructions above stay the same if the title attribute from Customer is removed. The attributes of

Assign are tracked to their origin, that is, Customer and Cab, so that it is unlikely to misuse one for

the other. ■

Overall, our contribution of SDL as an abstraction layer for combinatorial search and optimization

not only simplifies problem specification but also enhances code maintainability, readability, and error

tolerance. By providing a clear and intuitive language for expressing optimization problems, SDL

empowers users to tackle complex combinatorial challenges more effectively and efficiently.

2. Background

2.1. Answer Set Programming

All sets and sequences considered in this paper are finite if not differently specified. Let P, F, V be

fixed nonempty sets of predicate names, function names and variables. Function and predicate names



are associated an arity, a non-negative integer; set F includes at least one function name of arity 0.

Terms are inductively defined as follows: variables are terms; if 𝑓 ∈ F has arity 𝑛, and 𝑡1, . . . , 𝑡𝑛 are

terms, then 𝑓(𝑡1, . . . , 𝑡𝑛) is a term (parentheses are omitted if 𝑛 = 0). A ground term is a term with no

variables. An atom is of the form 𝑝(𝑡1, . . . , 𝑡𝑛), where 𝑝 ∈ P has arity 𝑛. A ground atom is an atom

with no variables. A literal is an atom possibly preceded by the default negation symbol not; they

are referred to as positive and negative literals. A conjunction conj (𝑡) is a possibly empty sequence of

literals involving the terms 𝑡. An aggregate is of one of the forms

#sum{𝑡𝑎,1, 𝑡′1 : conj 1(𝑡1); · · · ; 𝑡𝑎,𝑛, 𝑡′𝑛 : conj 𝑛(𝑡𝑛)} ⊙ 𝑡𝑔 (1)

#min{𝑡𝑎,1, 𝑡′1 : conj 1(𝑡1); · · · ; 𝑡𝑎,𝑛, 𝑡′𝑛 : conj 𝑛(𝑡𝑛)} ⊙ 𝑡𝑔 (2)

#max{𝑡𝑎,1, 𝑡′1 : conj 1(𝑡1); · · · ; 𝑡𝑎,𝑛, 𝑡′𝑛 : conj 𝑛(𝑡𝑛)} ⊙ 𝑡𝑔 (3)

where 𝑛 ≥ 1, ⊙ ∈ {<,≤,≥, >,=, ̸=} is a binary comparison operator, eachconj 𝑖(𝑡𝑖) is a conjunction,

each 𝑡′𝑖 is a possibly empty sequence of terms, and 𝑡𝑔 and each 𝑡𝑎,𝑖 are terms. Let

#count{𝑡′1 : conj 1(𝑡1); · · · ; 𝑡′𝑛 : conj 𝑛(𝑡𝑛)} ⊙ 𝑡𝑔

be syntactic sugar for

#sum{1, 𝑡′1 : conj 1(𝑡1); · · · ; 1, 𝑡′𝑛 : conj 𝑛(𝑡𝑛)} ⊙ 𝑡𝑔.

A choice is of the form

𝑡1 ≤ {atoms} ≤ 𝑡2 (4)

where atoms is a possibly empty sequence of atoms, and 𝑡1, 𝑡2 are terms. Let ⊥ be syntactic sugar for

1 ≤ {} ≤ 1 (used for strong constraints, and possibly omitted to lighten the notation). A penalty is

expressed as [𝑐@𝑙], where 𝑐, 𝑙 are terms referred to as cost and level. A rule is of one of the forms

head :– body . (5)

where head is an atom or a choice or a penalty, and body is a possibly empty sequence of literals and

aggregates. (Symbol :– is omitted if body is empty.) For a rule 𝑟, let 𝐻(𝑟) denote the atom or choice

or penalty in the head of 𝑟; let 𝐵Σ(𝑟), 𝐵+(𝑟) and 𝐵−(𝑟) denote the sets of aggregates, positive and

negative literals in the body of 𝑟; let 𝐵(𝑟) denote the set 𝐵Σ(𝑟)∪𝐵+(𝑟)∪𝐵−(𝑟). If 𝐻(𝑟) is a penalty,

let cost(𝑟) denote its cost and let level(𝑟) denote its level; in this case, 𝑟 is also called a weak constraint.

Example 3. Consider the following set of rules representing the encoding for the Maximal Clique

problem:

𝑟1 : 0 ≤ {in(X )} ≤ 1 :– node(X ).
𝑟2 : edge(Y ,X ) :– edge(X ,Y ).
𝑟3 : ⊥ :– in(X ), in(Y ), X < Y , not edge(X ,Y ).
𝑟4 : 𝑠𝑖𝑧𝑒(𝑁) :– #count{𝑋 : 𝑖𝑛(𝑋)} = 𝑁.
𝑟5 : [1@1] :– node(X ), not in(X ).

𝑟1 is a choice, 𝑟2 and 𝑟4 are rules where #count{𝑋 : 𝑖𝑛(𝑋)} = 𝑁 is an aggregate, 𝑟3 is strong

constraint, and 𝑟5 is a weak constraint, with cost(𝑟5) = 1, and level(𝑟5) = 1. ■

A variable 𝑋 occurring in 𝐵+(𝑟) is a global variable. Other variables occurring among the terms 𝑡 of

some aggregate in 𝐵Σ(𝑟) of the form (1)–(3) are local variables. And any other variable occurring in 𝑟
is an unsafe variable. A safe rule is a rule with no unsafe variables. A program Π is a set of safe rules. Let

Π𝑤 denote the program comprising all and only the weak constraints of Π. Let Πℎ denote the program

Π ∖Π𝑤 . A substitution 𝜎 is a partial function from variables to ground terms; the application of 𝜎 to an

expression 𝐸 is denoted by 𝐸𝜎. Let instantiate(Π) be the (infinite) set of rules obtained from rules

of Π by substituting global variables with ground terms, in all possible ways; note that local variables



are still present in instantiate(Π). The Herbrand base of Π, denoted base(Π), is the (infinite) set of

ground atoms occurring in instantiate(Π).
The language of ASP supports a richer syntax. For the purpose of this article, we mention the

possibility to combine terms in expressions and compare expressions with binary comparators with the

natural interpretation. Moreover, each atom occurring in a choice of the form (4) can be associated with

a conjunctive condition, using the syntax 𝑝(𝑡) : condition ; in many cases (essentially, if aggregates

are not recursive), it is possible to replace 𝑝(𝑡) : condition with 𝑝′(𝑡), where 𝑝′ is a fresh predicate (a

predicate not occurring elsewhere), by adding to the program the rule 𝑝′(𝑡) :– condition. Finally, 𝑡1
and 𝑡2 are optional in (4), and when absent their default values are essentially 0 and 𝜔.

Example 4 (Continuing Example 3). Let Πrun be the set of rules of Example 3 extended with the

following rules:

𝑟6 : node(1 ).
𝑟7 : node(2 ).
𝑟8 : edge(1 , 2 ).

Then, the following rules

𝑟1 : 0 ≤ {in(1 )} ≤ 1 :– node(1 ).
𝑟2 : 0 ≤ {in(2 )} ≤ 1 :– node(2 ).
𝑟3 : edge(2 , 1 ) :– edge(1 , 2 ).
𝑟4 : ⊥ :– in(1 ), in(2 ), 1 < 2 , not edge(1 , 2 ).
𝑟5 : 𝑠𝑖𝑧𝑒(0) :– #count{1 : 𝑖𝑛(1), 2 : 𝑖𝑛(2)} = 0.
𝑟6 : 𝑠𝑖𝑧𝑒(1) :– #count{1 : 𝑖𝑛(1), 2 : 𝑖𝑛(2)} = 1.
𝑟7 : 𝑠𝑖𝑧𝑒(2) :– #count{1 : 𝑖𝑛(1), 2 : 𝑖𝑛(2)} = 2.
𝑟8 : [1@1] :– node(1 ), not in(1 ).
𝑟9 : [1@1] :– node(2 ), not in(2 ).

are part of instantiate(Πrun). ■

An interpretation is a set of ground atoms. (Note that we are only considering finite interpretations,

as those involving an infinite number of atoms are not relevant for our work.) For an interpretation 𝐼 ,

relation 𝐼 |= · is defined as follows: for a ground atom 𝑝(𝑐), 𝐼 |= 𝑝(𝑐) if 𝑝(𝑐) ∈ 𝐼 , and 𝐼 |= not 𝑝(𝑐) if

𝑝(𝑐) /∈ 𝐼 ; for a conjunction conj (𝑡), 𝐼 |= conj (𝑡) if 𝐼 |= 𝛼 for all 𝛼 ∈ conj (𝑡); for an aggregate 𝛼 of the

form (1)–(3), the aggregate set of 𝛼 w.r.t. 𝐼 , denoted aggset(𝛼, 𝐼), is {⟨𝑡𝑎,𝑖, 𝑡′𝑖⟩𝜎 | 𝑖 = 1..𝑛, conj 𝑖(𝑡𝑖)𝜎 ∈
𝐼, for some substitution 𝜎}; if 𝛼 is of the form (1), 𝐼 |= 𝛼 if (

∑︀
⟨𝑐𝑎,𝑐′⟩∈aggset(𝛼,𝐼) 𝑐𝑎) ⊙ 𝑡𝑔 is a true

expression over integers; if 𝛼 is of the form (2), 𝐼 |= 𝛼 if (min⟨𝑐𝑎,𝑐′⟩∈aggset(𝛼,𝐼) 𝑐𝑎) ⊙ 𝑡𝑔 is a true

expression; if 𝛼 is of the form (3), 𝐼 |= 𝛼 if (max⟨𝑐𝑎,𝑐′⟩∈aggset(𝛼,𝐼) 𝑐𝑎) ⊙ 𝑡𝑔 is a true expression; for a

choice 𝛼 of the form (4), 𝐼 |= 𝛼 if 𝑡1 ≤ |𝐼 ∩ atoms| ≤ 𝑡2 is a true expression over integers; for a penalty

[𝑤@𝑙], 𝐼 |= [𝑤@𝑙] always; for a rule 𝑟 with no global variables, 𝐼 |= 𝐵(𝑟) if 𝐼 |= 𝛼 for all 𝛼 ∈ 𝐵(𝑟), and

𝐼 |= 𝑟 if 𝐼 |= 𝐻(𝑟) whenever 𝐼 |= 𝐵(𝑟); for a program Π, 𝐼 |= Π if 𝐼 |= 𝑟 for all 𝑟 ∈ instantiate(Π),
or equivalently for all 𝑟 ∈ instantiate(Πℎ). The cost associated with an interpretation is defined as

cost(Π, 𝐼) :=
∑︁

𝑟∈instantiate(Π𝑤) : 𝐼|=𝐵(𝑟)

cost(𝑟) · 𝜔level(𝑟)
(6)

where 𝜔 is the first uncountable ordinal.

For a rule 𝑟 of the form (5) and an interpretation 𝐼 , let expand(𝑟, 𝐼) be the following set:

expand(𝑟, 𝐼) := {𝑝(𝑐) :– body . | 𝑝(𝑐) ∈ 𝐼 occurs in 𝐻(𝑟)}.

The reduct of Π w.r.t. 𝐼 is the program comprising the expanded rules of instantiate(Π) whose body is

true w.r.t. 𝐼 , that is,

reduct(Π, 𝐼) :=
⋃︁

𝑟∈instantiate(𝑃𝑖), 𝐼|=𝐵(𝑟)

expand(𝑟, 𝐼).



An answer set of Π is an interpretation 𝐴 such that 𝐴 |= Π and no 𝐼 ⊂ 𝐴 satisfies 𝐼 |= reduct(Π, 𝐴).
Let AS (Π) be the set of answer sets of Π. 𝐴 is an optimal answer set of Π if 𝐴 ∈ AS (Π) and no

𝐼 ∈ AS (Π) satisfies cost(Π, 𝐼) > cost(Π, 𝐴). Let AS *(Π) be the set of optimal answer sets of Π.

Example 5 (Continuing Example 4). AS (Πrun) comprises the following set of answer sets:

A1 : {node(1 ),node(2 ), edge(1 , 2 ), edge(2 , 1 ), size(0 )}
A2 : {node(1 ),node(2 ), edge(1 , 2 ), edge(2 , 1 ), in(2 ), size(1 )}
A3 : {node(1 ),node(2 ), edge(1 , 2 ), edge(2 , 1 ), in(1 ), size(1 )}
A4 : {node(1 ),node(2 ), edge(1 , 2 ), edge(2 , 1 ), in(1 ), in(2 ), size(2 )}

where cost(Πrun ,A1 ) = 2, cost(Πrun ,A2 ) = cost(Πrun ,A3 ) = 1, cost(Πrun ,A4 ) = 0. Therefore,

A4 is an optimal answer set and AS *(Πrun) = {A4}. ■

3. SDL Syntax

To ease the presentation of the language, we group the supported instructions in three groups, namely

structure instructions, query instructions and model instructions.

3.1. Structure and Query Instructions

Structure instructions are used to declare the shape of processed data. There is only one kind of structure

instruction, defined next. A record structure is declared as

record RecordName: Attributes; (7)

where RecordName is a unique name and Attributes is a comma-separated list of key-value pairs of the

form attribute_name : attribute_type . In the scope of its record, every attribute_name is a unique

name. Every attribute_type is either a primitive type among int and str, or a record name (different

from RecordName).

Query instructions are used to shape the output to produce when the specification is evaluated. There

is only one kind of query instruction, defined next. An output directive has the form

show RecordNames; (8)

where RecordNames is a comma-separated list of record names.

Example 6 (Continuing Example 3). Consider the following structure and query instructions:

record Node: id: int;
record Edge: first: Node, second: Node;
record In: node: Node;
record Size: value: int;
show In, Size;

They shape the records and output for Maximal Clique. ■

3.2. Model Instructions

Within each model instruction, a record name alias has the form

RecordName as alias (9)

where alias is a possibly different name to identify RecordName in the model instruction. When alias
is equal to RecordName , the record name alias can be simply written as RecordName . A signed record
name alias is a record name alias possibly preceded by the keyword not.



Attributes of a record can be accessed using the dot operator as in many object-oriented programming

languages, that is, starting with the alias of the record and using a dot (.) followed by the attribute name.

If the attribute value is a record, its attributes can be accessed as well with another dot operation. In the

following, by value we refer to the alias of a record, a dot operation or an immediate value (integer

and string constants). Values can be combined to form value expressions in the common way, by using

binary operators (i.e., +, -, *, /) and parentheses. In the following, we use the terms integer expression
and string expression based on the type of the result of the expression. A Boolean expression has the form

ValueExpression ⊙ValueExpression ′
(10)

where ⊙ is a binary comparator (i.e., <, <=, >=, >, ==, !=), and ValueExpression , ValueExpression ′

are value expressions (of the same type).

A simple from fragment has the form

from SignedRecordNameAliases where BooleanExpressions (11)

where SignedRecordNameAliases is a comma-separated list of signed record name aliases, and

BooleanExpressions is an and-separated list of Boolean expressions. If BooleanExpressions is empty,

the simple from fragment can be written as follows: from SignedRecordNameAliases .

An aggregate element has the form

ValueExpressions SimpleFromFragment (12)

where ValueExpressions is a comma-separated list of value expressions, and SimpleFromFragment is

an optional simple from fragment. An aggregate has the form

AggregationFunction {AggregateElements} ⊙ValueExpression (13)

where AggregationFunction is one of sum, count, min, max; AggregateElements is a semicolon-

separated list of aggregate elements; ⊙ is a binary comparator; and ValueExpression is a value expres-

sion. If AggregationFunction is sum, the first value expression in every aggregate element must be an

integer expression. If AggregationFunction is either sum or count, then ValueExpression must be

an integer expression. A from fragment has either the form (11) or the form

from SignedRecordNameAliases where BooleanExpressions having Aggregates (14)

where Aggregates is an and-separated list of aggregates.

A definition has the form

define RecordNameAlias FromFragment ; (15)

where RecordNameAlias is a record name alias and FromFragment is a from fragment.

Example 7 (Continuing Example 6). Consider the following definitions:

define Edge as self from Edge as other
where self.first == other.second and self.second == other.first;

define Size having count {In.node from In} == Size.value;

The first definition is intended to enforce the symmetric closure of Edge. The second definition counts

the In elements. ■

A cardinality restriction has one of the forms

exactly IntegerExpression (16)

at least IntegerExpression (17)



at most IntegerExpression (18)

at least IntegerExpression and at most IntegerExpression ′
(19)

where IntegerExpression , IntegerExpression ′
are integer expressions. A guess element has the form

RecordNameAlias SimpleFromFragment (20)

where RecordNameAlias is a record name alias and SimpleFromFragment is an optional simple from

fragment. A guess instruction has the form

guess FromFragment CardinalityRestriction GuessElements; (21)

where FromFragment is an optional from fragment, CardinalityRestriction is an optional cardinality

restriction, and GuessElements is a space-separated list of guess elements.

Example 8 (Continuing Example 6). Consider the following guess instruction:

guess from Node at most 1
In where Node == In.node;

It is intended to guess a subset of Node in the record In. ■

A deny instruction has one of the forms

deny FromFragment ; (22)

deny FromFragment or pay Cost at Level ; (23)

where FromFragment is a from fragment, RecordNameAliases is a or-separated list of record name

aliases, and Cost and Level are integer expressions.

Example 9 (Continuing Example 6). Consider the following deny instructions:

deny from In as in1, In as in2, not Edge
where in1.node == Edge.first and

in2.node == Edge.second and
in1.node < in2.node;

deny from Node, not In
where In.node == Node
or pay 1 at 1;

The first instruction is intended to ensure that In nodes are connected. The second instruction is

intended to penalize nodes outside of the In selection. ■

4. SDL Semantics

Each record name occurring in a specification must be declared by exactly one record structure instruc-

tion of the form (7). The record name depends on all other record names occurring in the record structure

instruction. The directed graph having record names as nodes, and dependencies as arcs must be acyclic.

The record name is associated with a unique predicate name (usually the same name) with arity given

by the number of attributes in the record structure instruction. Record name aliases and attributes

are inductively mapped to terms by as follows: int and str are mapped to fresh variables (variables

not occurring elsewhere); a record name alias of the form (9) is mapped to RecordName(𝐴1, . . . , 𝐴𝑛),
where 𝐴1, . . . , 𝐴𝑛 are the terms obtained by mapping the attributes in the record structure instruction

declaring RecordName . Signed record name aliases are mapped analogously, possibly prepending not

if present. The dot operation is left-associative. A sequence of dot operations starts by an alias, which

is associated with an atom by the mapping given above. Each dot operation Base.AttributeName



restricts the mapping of Base (a record name alias or a sequence of dot operations) as follows: if

RecordName(𝐴1, . . . , 𝐴𝑛) is the mapping of Base , and AttributeName is the 𝑖-th attribute of the

record RecordName , then Base.AttributeName is mapped to 𝐴𝑖. Expressions are mapped naturally

(with the identity mapping).

Example 10 (Continuing Example 6). Record Node is mapped as node(ID), whereas record Edge
is mapped as edge(node(ID1), node(ID2)), where ID, ID1 and ID2 are fresh variables. The dot

operation Edge.first is mapped to node(ID1), and Edge.first.id is mapped to variable ID1. ■

A simple from fragment of the form (11) is mapped to a comma-separated list of literals (a conjunction)

comprising the mappings of all elements in SignedRecordNameAliases and BooleanExpressions . An

aggregate element of the form (12) is mapped to terms : condition , where terms are the terms mapping

ValueExpressions , and condition is the mapping of SimpleFromFragment . An aggregate of the form

(13) is mapped to #AggregateFunction{elements} ⊙ term , where elements is a semi-colon separated

list of the mappings of AggregateElements , and term is the mapping of ValueExpression .

Example 11 (Continuing Example 7). Aggregate count {In.node from In} == 0 is mapped to

#count{X: in(X)} = 0 ■

A from fragment of the form (14) is mapped to a comma-separated list of literals comprising the

mappings of all elements in SignedRecordNameAliases , Aggregates and BooleanExpressions . A

definition of the form (15) is mapped to a rule of the form (5) such that head is the mapping of

RecordNameAlias and body is the mapping of FromFragment . For instance, the two definitions from

Example 7 are essentially mapped to 𝑟2 and 𝑟4 shown in Example 3.

A guess element of the form (20) is mapped to atom : condition , where atom is the mapping of

RecordNameAlias and condition is the mapping of SimpleFromFragment (if any, and the tautology

0 = 0 otherwise). A guess expression of the form (21) is mapped to a rule of the form (5) such that

body is the mapping of FromFragment , and head is the choice 𝑡1 ≤ {elements} ≤ 𝑡2, where 𝑡1 and 𝑡2
are obtained by mapping the integer expressions in the CardinalityRestriction (equations 16–19), and

elements is a semi-colon separated list comprising the mappings of all elements in GuessElements .

For instance, the guess instruction from Example 8 is essentially mapped to 𝑟1 shown in Example 3.

A deny instruction of the form (22) is mapped to a rule of the form (5) such that head is ⊥, and body
is the mapping of FromFragment . The mapping of (23) is obtained similarly, but head is the penalty

[𝑐@𝑙], where 𝑐 is the mapping of Cost and 𝑙 is the mapping of Level . For instance, the deny instructions

from Example 9 are essentially mapped to 𝑟3 and 𝑟5 shown in Example 3.

Given a specification 𝑆, the program comprising the rules obtained by applying the above mappings

on the structure and model instructions in 𝑆 is denoted Π𝑆 . Program Π𝑆 can be processed by modern

ASP systems to address common computational tasks, among them answer set search and enumeration.

The answer sets of Π𝑆 are filtered according to the query instructions in 𝑆. Essentially, only atoms

whose predicate name occurs in some output directive are shown, and all other atoms are hidden. Let

AS (𝑆) and AS *(𝑆) be obtained from AS (Π𝑆) and AS *(Π𝑆) by removing all atoms whose predicate

does not occur in any output directive of 𝑆.

Example 12 (Continuing Examples 6–9). The specification is essentially mapped to the Πrun program,

whose answer sets are shown in Example 5. Actually, the mapping includes a few function names

to track the meaning and scope of terms. Hence, the actual program defining the semantics of the

specification is the following:

node(1). node(2). edge(node(1), node(2)).

edge(node(SF), node(SS)) :- edge(node(OF), node(OS)),
node(SF) == node(OS), node(SS) == node(OF).

size(Value) :- #count{node(Id) : in(node(Id))} = Value.

0 <= {in(node(Id')) : node(Id) == node(Id')} <= 1 :- node(Id).



:- in(node(Id)), in(node(Id')), not edge(node(F), node(S)),
node(Id) == node(F), node(Id') == node(S), node(Id) < node(Id').

[1@1] :- node(Id), not in(node(Id')), node(Id') == node(Id).

According to the query instructions in the specification, the answer sets are filtered as follows: {size(0 )},

{in(node(2 )), size(1 )}, {in(node(1 )), size(1 )}, {in(node(1 )), in(node(2 )), size(2 )}. ■

5. Use Case

In this section, we show some practical applications of SDL by presenting case studies showcasing its

usage in modeling various combinatorial problems, namely Graph Coloring, Hamiltonian Path, and

Nurse Scheduling. The SDL specifications reported in this section, along with their translations to ASP,

are available at https://github.com/dodaro/SDL/tree/main/examples.

5.1. Graph Coloring

The Graph Coloring problem is a classic combinatorial problem in graph theory. Given an undirected

graph, the goal is to assign colors to its vertices in such a way that two adjacent vertices do not share

the same color. The following is a SDL specification for solving the Graph Coloring problem:

1 record Node: id: int;
2 record Edge: first: Node, second: Node;
3 record Color: value: str;
4 record Assign: node: Node, color: Color;

5 guess from Node
6 exactly 1
7 Assign
8 from Color
9 where Assign.node == Node and Assign.color == Color;

10 deny from Assign as a1, Assign as a2, Edge
11 where a1.node != a2.node and
12 a1.color == a2.color and
13 Edge.first == a1.node and Edge.second == a2.node;

14 show Assign;

The definition of the records is provided in lines 1–4. Lines 5–9 define how colors are assigned to nodes,

with each node being assigned exactly one color. Lines 10–13 are used to prohibit the assignments

where two different connected nodes share the same color. Finally, line 14 is used to filter the output to

records Assign.

5.2. Hamiltonian Cycle

The Hamiltonian cycle problem is a well-known problem in graph theory that involves finding a cycle

that traverses every vertex in a graph exactly once, returning to the starting vertex.

The following is a SDL specification for solving the Hamiltonian Cycle problem:

1 record Node: id: int;
2 record Arc: first: Node, second: Node;
3 record InCycle: first: Node, second: Node;
4 record Reached: node: Node;
5 record Start: node: Node;

6 guess from Node
7 exactly 1

https://github.com/dodaro/SDL/tree/main/examples


8 InCycle
9 from Arc

10 where InCycle.first == Arc.first and
11 InCycle.second == Arc.second and
12 Node == Arc.first;

13 deny from Node
14 having count {
15 InCycle.first from InCycle where Node == InCycle.second
16 } != 1;

17 define Reached
18 from Start
19 where Start.node == Reached.node;

20 define Reached as r1
21 from Reached as r2, InCycle
22 where r2.node == InCycle.first and r1.node == InCycle.second;

23 deny from Node, not Reached
24 where Node == Reached.node;

25 show InCycle;

The definition of the records is outlined in lines 1 through 5. Lines 6–12 establish criteria for selecting

arcs to be included in the path, ensuring that each node has precisely one outgoing arc within the path.

Lines 13–16 are used to prohibit any node from having two or more incoming arcs within the path.

Lines 17–22 define delineate the conditions under which nodes are considered reached. Specifically, the

starting node is always reached (lines 17–19), and a node X is reached if there exists an arc in the path

from a previously reached node Y to X (lines 20–22). Lines 23–24 assert that each node must be reached.

Finally, line 25 is used to filter the output to records InCycle.

5.3. Nurse Scheduling

The Nurse Scheduling problem (NSP) consists of allocating nurses to shifts, satisfying some requirements

(here we focus on the variant analyzed in [12]). The schedule spans one year. There are three working

shifts, namely morning (id 1) lasting 7 hours, afternoon (id 2) lasting 7 hours, and night (id 3) lasting

10 hours. There are three non-working shifts, namely special rest after two consecutive nights (id 4),

rest (id 5), and holiday (id 6). Moreover, the schedule must comply with hospital, nurse and balance

requirements. Hospital requirements specify cardinality restrictions on the number of nurses in each

shift. Nurse requirements impose cardinality restrictions on the number of working hours per year,

ensuring that each nurse receives 30 days of holidays, and that the starting time of a shift is at least 24

hours later than the previous shift. Additionally, each nurse must have at least two rest days within

each fourteen-day window. Moreover, after two consecutive working nights, one special rest day is

allocated, distinct from the regular rest days. Balance requirements specify cardinality restrictions on

the number of times a nurse can be assigned to morning, afternoon, and night shifts. Below we provide

a SDL specification.

1 record Nurse: id: int;
2 record Day: id: int;
3 record Shift: id: int, hours: int;
4 record HoursLimits: min: int, max: int;
5 record DayLimits: shift: Shift, min: int, max: int;
6 record NurseLimits: shift: Shift, min: int, max: int;
7 record Assign: nurse: Nurse, shift: Shift, day: Day;

8 show Assign;



9 guess from Day, Nurse exactly 1
10 Assign from Shift
11 where Assign.nurse == Nurse and Assign.shift == Shift and

Assign.day == Day;

The definition of the records is outlined in lines 1–7, line 8 is used to filter the output as seen before,

and lines 9–11 are used to assign nurses to exactly one shift for each day. Hospital requirements are

encoded as follows:

1 deny from Day, NurseLimits
2 having count {
3 Assign.nurse from Assign
4 where Assign.shift == NurseLimits.shift and Assign.day == Day
5 } > NurseLimits.max;

6 deny from Day, NurseLimits
7 having count {
8 Assign.nurse from Assign
9 where Assign.shift == NurseLimits.shift and Assign.day == Day

10 } < NurseLimits.min;

Above, lines 1–5 enforce that for each day and shift, the number of working nurses does not exceed

a given threshold. Similarly, lines 6–10 are used to enforce that the number of working nurses is not

below a specified minimum. Nurse requirements are encoded as follows:

1 deny from Nurse, HoursLimits
2 having sum {
3 Shift.hours, Assign.day from Assign, Shift
4 where Assign.nurse == Nurse and Assign.shift == Shift
5 } > HoursLimits.max;

6 deny from Nurse, HoursLimits
7 having sum {
8 Shift.hours, Assign.day from Assign, Shift
9 where Assign.nurse == Nurse and Assign.shift == Shift

10 } < HoursLimits.min;

11 deny from Nurse
12 having count {
13 Assign.day from Assign
14 where Assign.nurse == Nurse and Assign.shift.id == 6
15 } != 30;

16 deny from Nurse, Assign as a1, Assign as a2
17 where a1.nurse == Nurse and a2.nurse == Nurse and a2.shift.id <

a1.shift.id and a1.day.id == a2.day.id+1 and a2.shift.id <= 3
and a1.shift.id <= 3;

18 deny from Nurse, Day
19 where Day.id <= 352
20 having count {
21 Assign.day from Assign
22 where Assign.nurse == Nurse and Assign.shift.id == 5 and

Assign.day.id >= Day.id and Assign.day.id < Day.id+14
23 } < 2;

24 deny from Assign as a1, Assign as a2, Assign as a3
25 where a1.nurse.id == a2.nurse.id and a1.nurse.id == a3.nurse.id and



a1.shift.id == 4 and a2.shift.id == 3 and a3.shift.id == 3 and
a2.day.id == a1.day.id-2 and a3.day.id == a1.day.id-1;

26 deny from Assign as a1, not Assign as a2
27 where a1.nurse == a2.nurse and a1.shift.id == 4 and a2.shift.id ==

3 and a2.day.id == a1.day.id-2;

28 deny from Assign as a1, not Assign as a2
29 where a1.nurse == a2.nurse and a1.shift.id == 4 and a2.shift.id ==

3 and a2.day.id == a1.day.id-1;

Above, lines 1–5 (resp. 6–10) enforce that a nurse does not exceed a maximum (resp. minimum) number

of working hours per year. Lines 11–15 ensure that each nurse is allocated precisely 30 days of holidays

per year (recall that the shift id for holidays is 6). Lines 16–17 guarantee that the starting time of a

shift is at least 24 hours later than the previous shift. Lines 18–23 establish that each nurse receives a

minimum of two rest days within every fourteen-day period (recall that the shift for rest is 5). Finally,

lines 24–29 ensure that a nurse is assigned to a special rest day shift if only if they were assigned to the

night shift during the previous two days (recall that the shift ids for night and special rest day are 3 and

4, respectively). Balance requirements are encoded as follows:

1 deny from Nurse, DayLimits
2 having count {
3 Assign.day from Assign where Assign.shift == DayLimits.shift and

Assign.nurse == Nurse
4 } > DayLimits.max;

5 deny from Nurse, DayLimits
6 having count {
7 Assign.day from Assign where Assign.shift == DayLimits.shift and

Assign.nurse == Nurse
8 } < DayLimits.min;

Above, lines 1–4 (resp. 5–8) ensure that a nurse cannot be assigned to a given shift for a number of

days greater (resp. lower) than a predetermined threshold.

6. Related Work

Numerous frameworks and methodologies have been developed to address combinatorial search and

optimization problems, often leveraging declarative programming paradigms. Among these, ASP

and OntoDLV [13] stand out as significant contributors to the field of knowledge representation and

reasoning. ASP represents a declarative programming paradigm tailored for solving combinatorial

search and optimization problems. ASP solvers, including clingo [11] and dlv [14], employ efficient

algorithms and optimization techniques to explore solution spaces. ASP’s expressive syntax and

non-monotonic reasoning capabilities make it suitable for modeling complex problem domains and

reasoning about incomplete or uncertain information. OntoDLV extends the dlv system by integrating

support for reasoning with ontologies expressed in Description Logics (DL). This integration enables

OntoDLV to provide a powerful platform for ontology-driven reasoning and query answering. By

combining DL-based ontology reasoning with ASP, OntoDLV offers enhanced expressiveness and

reasoning capabilities. It facilitates seamless integration of ontological knowledge with ASP rules,

particularly beneficial in domains such as the semantic web, bioinformatics, and data integration.

While ASP and OntoDLV have significantly contributed to combinatorial optimization, our work

on SDL introduces distinctive features and advantages. SDL serves as a higher-level abstraction

specifically designed to address combinatorial search and optimization challenges. It offers a clear and

intuitive specification language with semantics defined through translation into ASP. SDL simplifies

problem specification by abstracting away complexities of ASP syntax, enhancing code readability



and comprehension. Notably, SDL provides flexibility in attribute handling, including irrelevance of

attribute order and seamless management of attribute arity changes. It offers qualifying names for

attribute access, improving code maintainability. Additionally, SDL incorporates features for enhanced

error tolerance, such as automatic attribute tracking and type differentiation, thereby facilitating a more

intuitive and reliable problem-solving process.

Regarding the downsides of ASP mentioned in the introduction, we observe that OntoDLV can refer

attributes by their name, so that the order of attributes is often immaterial. Moreover, changing the

structure of a record does not necessarily require to modify portions of the knowledge base that are not

directly interested by the change. However, OntoDLV heavily depends on the use of object variables,

which SDL can completely avoid thanks to the use of qualifying names. Finally, while OntoDLV opted

for extending the syntax of ASP with additional constructs, SDL introduces a new structured language.

Hence, in order to use OntoDLV, a programmer must first have a clear understanding of ASP syntax,

which is instead not required to use SDL (as a full understanding of relational algebra is not required to

be proficient with SQL).

Finally, we mention that the syntax of SDL is inspired by SQL [15]. Specifically, both languages

share keywords such as from, where, as, having count, and having sum. However, SQL is

designed for managing and manipulating relational databases, enabling users to create, read, update,

and delete data, as well as perform tasks like querying for specific information, adding new records,

updating existing data, and generating reports. In contrast, SDL is used to specify and describe complex

combinatorial and optimization problems.

7. Conclusion

In this paper, we have introduced Structured Declarative Language (SDL) as a higher-level abstraction

specifically designed to address the intricacies of combinatorial search and optimization. By providing a

clear and intuitive specification language, SDL offers a powerful framework for expressing optimization

problems in a declarative manner, while its semantics are defined through translation into Answer Set

Programming (ASP). Throughout our exploration of SDL, we have highlighted several key advantages

that distinguish it from directly writing in ASP. The flexibility in attribute handling, including the

irrelevance of attribute order and the seamless management of attribute arity changes, enhances

code maintainability and reduces the risk of errors during code evolution. Additionally, the use of

qualifying names for attribute access improves code readability and comprehension, facilitating easier

understanding and modification of SDL code. Furthermore, SDL incorporates features to enhance

error tolerance and robustness in problem specification, such as automatic attribute tracking and

differentiation between object types. These features contribute to a more intuitive and reliable problem-

solving process, empowering users to tackle complex combinatorial challenges with greater efficiency

and confidence. As future work, further research and development efforts can focus on extending the

capabilities of SDL, refining its syntax, and exploring additional optimization techniques to address an

even broader range of real-world challenges. Moreover, in this paper, we have shown the semantics of

SDL through its translation to ASP. For future work, we plan to define a formal semantics for SDL and

develop additional translations to alternative formalisms, such as Constraint Programming [16] and

Satisfiability Modulo Theories [17]. Finally, we mention that a preliminary implementation of a tool for

translating SDL to ASP is available at https://github.com/dodaro/SDL.
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