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Abstract
In this paper, we develop a many-valued semantics for the description logic 𝐿𝑇𝐿𝒜ℒ𝒞 , a temporal extension of

description logic 𝒜ℒ𝒞, based on Linear-time Temporal Logic (LTL). We add a typicality operator to represent

defeasible properties, and discuss the use of the (many-valued) temporal conditional logic and of weighted KBs

for explaining the dynamic behaviour of a network.
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1. Introduction

Preferential extensions of Description Logics (DLs) allow reasoning with exceptions through the

identification of prototypical properties of individuals or classes of individuals. Defeasible inclusions
are allowed in the knowledge base, to model typical, defeasible, non-strict properties of individuals.

Their semantics extends DL semantics with a preference relation among domain individuals, along the

lines of the preferential semantics introduced by Kraus, Lehmann and Magidor [1, 2] (KLM for short).

Preferential extensions and rational extensions of the description logic 𝒜ℒ𝒞 [3] have been studied

[4, 5, 6], and several different closure constructions have been developed [7, 8, 9, 10, 11, 12], inspired by

Lehmann and Magidor’s rational closure [2] and Lehmann’s lexicographic closure [13]. More recently,

multi-preferential extensions of DLs have been developed, by allowing multiple preference relations

with respect to different concepts [14, 15, 16], as the semantic for ranked and weighted knowledge

bases with typicality.

LTL extensions of Description Logics are very well-studied in DLs literature, and we refer to [17, 18]

for surveys on temporal DLs and their complexity and decidability. While preferential extensions of

LTL with defeasible temporal operators have been recently studied [19, 20, 21] to enrich temporal

formalisms with non-monotonic reasoning features, a preferential extension of a temporal DL has been

proposed in [22], based on the approach proposed in [5] to define a description logic with typicality.

More specifically, in [22] we build over a temporal extension of 𝒜ℒ𝒞, LTL𝒜ℒ𝒞 [17], based on Linear

Time Temporal Logic (LTL), to develop a temporal 𝒜ℒ𝒞 with typicality, LTLT
𝒜ℒ𝒞 . Generalizing the

approach in [5], a typicality operator T (that selects the most typical instances of a concept) is added to

LTL𝒜ℒ𝒞 to represent temporal properties of concepts which admit exceptions.

It is proven that the preferential extension ofLTLT
𝒜ℒ𝒞 can be polynomially encoded intoLTL𝒜ℒ𝒞 , and

this approach allows borrowing decidability and complexity results from LTL𝒜ℒ𝒞 . A similar encoding
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can be given for a multi-preferential extension of LTLT
𝒜ℒ𝒞 , by allowing a concept-wise preferential

semantics, where different preferences are associated to different concepts.

In this paper, we aim at developing a many-valued extension of LTL𝒜ℒ𝒞 with typicality, which

makes it possible to represent a concept inclusions such as

∃lives_in.Town ⊓Young ⊑ T(♢Granted_Loan),

(meaning that who lives in town and is young, normally is eventually granted a loan), where the

interpretation of some concepts (e.g., Young) may be non-crisp.

In the paper we first recall fuzzy extensions of 𝒜ℒ𝒞 and temporal extensions of 𝒜ℒ𝒞. Then, we

develop a many-valued extension of LTL𝒜ℒ𝒞 , by building on many-valued DLs, which are widely

studied in the literature, both for the fuzzy case [23, 24, 25, 26, 27] and for the finitely-valued case

[28, 29, 30, 31]. Then we add a typicality operator to the language of the many-valued LTL𝒜ℒ𝒞 , to get

a many-valued temporal extension of 𝒜ℒ𝒞 with typicality.

We discuss extensions of the closure constructions for weighted knowledge bases with typicality

[15, 32, 33] to the temporal case. This allows for a finer grained representation of the plausibility of

prototypical properties of a concept, including temporal properties, by assigning weights to the different

typicality properties. We discuss how the preferential temporal logic can be used to provide a logical

interpretation of the transient behaviour of (recurrent) neural networks.

2. Fuzzy 𝒜ℒ𝒞
Fuzzy description logics have been widely studied in the literature for representing vagueness in DLs

[23, 24, 25, 26, 27], based on the idea that concepts and roles can be interpreted as fuzzy sets. Formulas

in Mathematical Fuzzy Logic [34] have a degree of truth in an interpretation rather than being true or

false; similarly, axioms in a fuzzy DL have a degree of truth, usually in the interval [0, 1]. The finitely

many-valued case is also well studied for DLs [28, 29, 30, 31]. We first recall the semantics of a fuzzy

extension of 𝒜ℒ𝒞, following [25]; then we will consider the finitely-valued case.

Let 𝑁𝐶 be a set of concept names, 𝑁𝑅 a set of role names and 𝑁𝐼 a set of individual names. The set

of 𝒜ℒ𝒞 concepts (or, simply, concepts) can be defined inductively as follows:

(i) 𝐴 ∈ 𝑁𝐶 , ⊤ and ⊥ are concepts;

(ii) if 𝐶 and 𝐷 are concepts, then 𝑟 ∈ 𝑁𝑅, then 𝐶 ⊓ 𝐷, 𝐶 ⊔ 𝐷, ¬𝐶, ∀𝑟.𝐶, ∃𝑟.𝐶 are

concepts.

A fuzzy interpretation for 𝒜ℒ𝒞 is a pair 𝐼 = ⟨∆, ·𝐼⟩ where: ∆ is a non-empty domain and ·𝐼 is fuzzy
interpretation function that assigns to each concept name 𝐴 ∈ 𝑁𝐶 a function 𝐴𝐼 : ∆ → [0, 1], to each

role name 𝑟 ∈ 𝑁𝑅 a function 𝑟𝐼 : ∆ ×∆ → [0, 1], and to each individual name 𝑎 ∈ 𝑁𝐼 an element

𝑎𝐼 ∈ ∆. A domain element 𝑥 ∈ ∆ belongs to the extension of 𝐴 to some degree in [0, 1], i.e., 𝐴𝐼
is a

fuzzy set.

The interpretation function ·𝐼 is extended to complex concepts as follows:

⊤𝐼(𝑥) = 1, ⊥𝐼(𝑥) = 0,

(¬𝐶)𝐼(𝑥) = ⊖𝐶𝐼(𝑥),
(𝐶 ⊓𝐷)𝐼(𝑥) = 𝐶𝐼(𝑥)⊗𝐷𝐼(𝑥),
(𝐶 ⊔𝐷)𝐼(𝑥) = 𝐶𝐼(𝑥)⊕𝐷𝐼(𝑥),
(∃𝑟.𝐶)𝐼(𝑥) = sup𝑦∈Δ 𝑟𝐼(𝑥, 𝑦)⊗ 𝐶𝐼(𝑦),

(∀𝑟.𝐶)𝐼(𝑥) = inf𝑦∈Δ 𝑟𝐼(𝑥, 𝑦)▷ 𝐶𝐼(𝑦),
where 𝑥 ∈ ∆, and ⊗, ⊕, ▷ and ⊖ are arbitrary but fixed t-norm, s-norm, implication function, and

negation function, chosen among the combination functions of some fuzzy logic. In particular, in

Gödel logic 𝑎 ⊗ 𝑏 = 𝑚𝑖𝑛{𝑎, 𝑏}, 𝑎 ⊕ 𝑏 = 𝑚𝑎𝑥{𝑎, 𝑏}, 𝑎 ▷ 𝑏 = 1 if 𝑎 ≤ 𝑏 and 𝑏 otherwise; ⊖𝑎 = 1 if
𝑎 = 0 and 0 otherwise. In Łukasiewicz logic, 𝑎 ⊗ 𝑏 = 𝑚𝑎𝑥{𝑎 + 𝑏 − 1, 0}, 𝑎 ⊕ 𝑏 = 𝑚𝑖𝑛{𝑎 + 𝑏, 1},

𝑎▷ 𝑏 = 𝑚𝑖𝑛{1− 𝑎+ 𝑏, 1} and ⊖𝑎 = 1− 𝑎. Following [25], we will not commit to a specific choice of

combination functions,



A fuzzy 𝒜ℒ𝒞 knowledge base 𝐾 is a pair (𝒯 ,𝒜) where 𝒯 is a fuzzy TBox and 𝒜 a fuzzy ABox. A

fuzzy TBox is a set of fuzzy concept inclusions of the form 𝐶 ⊑ 𝐷 𝜃 𝑛, where 𝐶 ⊑ 𝐷 is an 𝒜ℒ𝒞 concept

inclusion axiom, 𝜃 ∈ {≥,≤, >,<} and 𝑛 ∈ [0, 1]. A fuzzy ABox 𝒜 is a set of fuzzy assertions of the

form 𝐶(𝑎)𝜃𝑛 or 𝑟(𝑎, 𝑏)𝜃𝑛, where 𝐶 is an 𝒜ℒ𝒞 concept, 𝑟 ∈ 𝑁𝑅, 𝑎, 𝑏 ∈ 𝑁𝐼 , 𝜃 ∈ {≥, ≤, >,<} and

𝑛 ∈ [0, 1]. Following Bobillo and Straccia [27], we assume that fuzzy interpretations are witnessed, i.e.,

the sup and inf are attained at some point of the involved domain. The interpretation function ·𝐼 is also

extended to axioms as follows:

(𝐶 ⊑ 𝐷)𝐼 = inf 𝑥∈Δ𝐼𝐶𝐼(𝑥)▷𝐷𝐼(𝑥) (𝐶(𝑎))𝐼 = 𝐶𝐼(𝑎𝐼)

Definition 1 (Satisfiability and entailment for ℒ𝒞𝑛 knowledge bases). Let 𝐾 = (𝒯 ,𝒜) be a
weighted ℒ𝒞𝑛 knowledge base, and 𝐼 be an interpretation. The satisfiability relation |= is defined as
follows:

• 𝐼 |= 𝐶 ⊑ 𝐷 𝜃𝛼 if (𝐶 ⊑ 𝐷)𝐼 𝜃𝛼;
• 𝐼 |= 𝐶(𝑎) 𝜃𝛼 if 𝐶𝐼(𝑎𝐼) 𝜃𝛼;
• 𝐼 |= 𝑟(𝑎, 𝑏) 𝜃 𝑛 if 𝑟𝐼(𝑎𝐼 , 𝑏𝐼)𝜃 𝑛.
• for a set 𝑆 of axioms, 𝐼 |= 𝑆 if 𝐼 |= 𝐸 for all 𝐸 ∈ 𝑆;
• 𝐼 |= 𝐾 if 𝐼 |= 𝒯 and 𝐼 |= 𝒜.

If 𝐼 |= Γ, we say that 𝐼 satisfies Γ or that 𝐼 is a model of Γ (for Γ being an axiom, a set of axioms, or a
KB). An axiom 𝐸 is entailed by 𝐾 , written 𝐾 |= 𝐸, if 𝐼 |= 𝐸 holds for all models 𝐼 of 𝐾 .

For the finitely many-valued case, we assume the truth space to be 𝒞𝑛 = {0, 1
𝑛 , . . . ,

𝑛−1
𝑛 , 𝑛𝑛}, for an

integer 𝑛 ≥ 1 [28, 29, 30]. In the following, we will use 𝒜ℒ𝒞𝑛 to refer to a finitely-valued extension

of 𝒜ℒ𝒞 interpreted over the truth space 𝒞𝑛, without committing to a specific choice of combination

functions.

3. The temporal Description Logic 𝐿𝑇𝐿𝒜ℒ𝒞

The temporal Description Logic 𝐿𝑇𝐿𝒜ℒ𝒞 is a temporal extension of 𝒜ℒ𝒞 based on linear time temporal

logic (LTL) The concepts of 𝐿𝑇𝐿𝒜ℒ𝒞 can be formed by adding to the constructors of 𝒜ℒ𝒞 the temporal

operators ○ (next), 𝒰 (until), ♢ (eventually) and □ (always) of LTL. Temporal extensions of Description

Logics are very well-studied in the literature; see, for instance, the survey on temporal DLs and their

complexity and decidability by Lutz et al. [17].

The set of temporally extended concepts is the following:

𝐶 ::= 𝐴 | ⊤ | ⊥ | 𝐶 ⊓𝐷 | 𝐶 ⊔𝐷 | ¬𝐶 | ∃𝑟.𝐶 | ∀𝑟.𝐶 | ○𝐶 | 𝐶𝒰𝐷 | ♢𝐶 | □𝐶

where 𝐴 ∈ 𝑁𝐶 , and 𝐶 and 𝐷 are temporally extended concepts.

A temporal interpretation for 𝐿𝑇𝐿𝒜ℒ𝒞 is a pair ℐ = (∆ℐ , ·ℐ), where ∆ℐ
is a nonempty domain; ·ℐ is

an extension function that maps each concept name 𝐶 ∈ 𝑁𝐶 to a set 𝐶ℐ ⊆ N×∆ℐ
, each role name

𝑟 ∈ 𝑁𝑅 to a relation 𝑟ℐ ⊆ N×∆ℐ ×∆ℐ
, and each individual name 𝑎 ∈ 𝑁𝐼 to an element 𝑎ℐ ∈ ∆ℐ

.

Following [17] we assume individual names to be rigid, i.e., having the same interpretation at any time

point. In a pair (𝑛, 𝑑) ∈ N×∆ℐ
, 𝑛 represents a time point and 𝑑 a domain element; (𝑛, 𝑑) ∈ 𝐶ℐ

means

that 𝑑 is an instance of concept 𝐶 at time point 𝑛, and similarly for (𝑛, 𝑑1, 𝑑2) ∈ 𝑟ℐ . Function ·ℐ is

extended to complex concepts as follows:

⊤ℐ = N×∆ℐ ⊥ℐ = ∅ (¬𝐶)ℐ = (N×∆ℐ)∖𝐶ℐ

(𝐶 ⊓𝐷)ℐ = 𝐶ℐ ∩𝐷ℐ (𝐶 ⊔𝐷)ℐ = 𝐶ℐ ∪𝐷ℐ

(∃𝑟.𝐶)ℐ = {(𝑛, 𝑥) ∈ N×∆ℐ | ∃𝑦.(𝑛, 𝑥, 𝑦) ∈ 𝑟ℐ and (𝑛, 𝑦) ∈ 𝐶ℐ}
(∀𝑟.𝐶)ℐ = {(𝑛, 𝑥) ∈ N×∆ℐ | ∀𝑦.(𝑛, 𝑥, 𝑦) ∈ 𝑟ℐ ⇒ (𝑛, 𝑦) ∈ 𝐶ℐ}



(○𝐶)ℐ = {(𝑛, 𝑥) ∈ N×∆ℐ | (𝑛+ 1, 𝑥) ∈ 𝐶ℐ}
(♢𝐶)ℐ = {(𝑛, 𝑥) ∈ N×∆ℐ | ∃𝑚 ≥ 𝑛 such that (𝑚,𝑥) ∈ 𝐶ℐ}
(□𝐶)ℐ = {(𝑛, 𝑥) ∈ N×∆ℐ | ∀𝑚 ≥ 𝑛, (𝑚,𝑥) ∈ 𝐶ℐ}
(𝐶𝒰𝐷)ℐ = {(𝑛, 𝑥) ∈ N×∆ℐ | ∃𝑚 ≥ 𝑛 s.t. (𝑚,𝑥) ∈ 𝐷ℐ

and (𝑘, 𝑥) ∈ 𝐶ℐ ,∀𝑘 (𝑛 ≤ 𝑘 < 𝑚)}

While the definition above assumes a constant domain (i.e., that the domain elements are the same at all

time points), in the following we will also consider the case with expanding domains, when there is a

sequence of increasing domains ∆ℐ
0 ⊆ ∆ℐ

1 ⊆ . . ., one for each time point.

For simplicity, in the following we will focus on the case of non-temporal TBox, i.e., to a TBox

containing a set of concept inclusions 𝐶 ⊑ 𝐷, where 𝐶,𝐷 are temporally extended concepts, but

without temporal operator applied to the concept inclusions themselves.

The notions of satisfiability and model of a knowledge base can be easily extended to LTLT
𝒜ℒ𝒞 with

non-temporal TBox. All inclusions in the (non-temporal) TBox 𝒯 are regarded as global temporal

constraints, and have to be satisfied at all time points, i.a., a concept inclusion 𝐶 ⊑ 𝐷 is satisfied in an

interpretation ℐ if 𝐶ℐ ⊆ 𝐷ℐ
.

It has been proven that, for non-temporal TBoxes, concept satisfiability in LTL𝒜ℒ𝒞 w.r.t. non-

temporal TBoxes is ExpTime-complete, both with expanding domains [35] and with constant domains

[17]. The complexity of other cases and, specifically, the cases of temporal ABoxes [36] and temporal

TBoxes (which allow temporal operators over concept inclusions), have as well been studied in the

literature, and we refer to [17] for a discussion of the result and algorithms for satisfiability checking.

In [22] we have shown that, in the two-valued case, a typicality operator can be added to LTL𝒜ℒ𝒞 and

that a preferential extension of LTL𝒜ℒ𝒞 with typicality can be polynomially encoded into LTL𝒜ℒ𝒞 . The

encoding allows borrowing some decidability and complexity results from 𝐿𝑇𝐿𝒜ℒ𝒞 to its preferential

version with typicality.

In the following section, we first develop a many-valued semantics for LTL𝒜ℒ𝒞 and, then, we define

the typicality operator. Finally, we extend the notion of weighted KBs to the temporal, many-valued

case.

4. A many-valued semantics for 𝐿𝑇𝐿𝒜ℒ𝒞

Let us now move to the many-valued case. To define a temporal extension of 𝐿𝑇𝐿𝒜ℒ𝒞 with typicality,

we develop a many-valued semantics for 𝐿𝑇𝐿𝒜ℒ𝒞 , by interpreting, at each time point, all concepts and

role names over a truth degree set 𝒮 equipped with a preorder relation ≤𝒮
, a bottom element 0𝒮 , and a

top element 1𝒮 . We denote by <𝒮
and ∼𝒮

the related strict preference relation and equivalence relation.

In the following we will assume 𝒮 to be the unit interval [0, 1] or the finite set 𝒞𝑛, for an integer 𝑛 ≥ 1,

and that ⊗, ⊕, ▷ and ⊖ are a t-norm, an s-norm, an implication function, and a negation function

in some well known system of many-valued logic. In particular, in the following we will restrict to

continuous t-norms.

A many-valued temporal interpretations for 𝐿𝑇𝐿𝒜ℒ𝒞 is a pair ℐ = (∆ℐ , ·ℐ), where ∆ℐ
is a non-

empty domain; ·ℐ is an interpretation function that maps each concept name 𝐴 ∈ 𝑁𝐶 to a function

𝐴ℐ : N×∆ℐ → 𝒮 , each role name 𝑟 ∈ 𝑁𝑅 to a function 𝑟ℐ : N×∆ℐ ×∆ℐ → 𝒮 , and each individual

name 𝑎 ∈ 𝑁𝐼 to an element 𝑎ℐ ∈ ∆ℐ
. Again, in the following definition we assume individual names

to be rigid, i.e., having the same interpretation at any time point 𝑛. Given a time point 𝑛 ∈ N and a

domain element 𝑑 ∈ ∆ℐ
, the interpretation 𝐴ℐ

of a concept name 𝐴 assigns to the pair (𝑛, 𝑑) a value

𝐴ℐ(𝑛, 𝑑) ∈ 𝒮 representing the degree of membership of 𝑑 in concept 𝐴 at time point 𝑛; and similarly

for roles.

The interpretation function ·𝐼 is extended to complex concepts as follows (where, for the semantics

of the temporal operators, we adapt a formulation from [37]):



⊥ℐ(𝑛, 𝑥) = 0, ⊤ℐ(𝑛, 𝑥) = 1

(¬𝐶)ℐ(𝑛, 𝑥) = ⊖𝐶ℐ(𝑛, 𝑥)

(𝐶 ⊓𝐷)ℐ(𝑛, 𝑥) = 𝐶ℐ(𝑛, 𝑥)⊗𝐷ℐ(𝑛, 𝑥)

(𝐶 ⊔𝐷)ℐ(𝑛, 𝑥) = 𝐶ℐ(𝑛, 𝑥)⊕𝐷ℐ(𝑛, 𝑥)

(∃𝑟.𝐶)ℐ(𝑛, 𝑥) = 𝑠𝑢𝑝𝑦∈Δ 𝑟ℐ(𝑛, 𝑥, 𝑦)⊗ 𝐶ℐ(𝑛, 𝑦)

(∀𝑟.𝐶)ℐ(𝑛, 𝑥) = 𝑖𝑛𝑓𝑦∈Δ 𝑟ℐ(𝑛, 𝑥, 𝑦)▷ 𝐶ℐ(𝑛, 𝑦)

(○𝐶)ℐ(𝑛, 𝑥) = 𝐶ℐ(𝑛+ 1, 𝑥)

(♢𝐶)ℐ(𝑛, 𝑥) =
⨁︀

𝑚≥𝑛𝐶
ℐ(𝑚,𝑥)

(□𝐶)ℐ(𝑛, 𝑥) =
⨂︀

𝑚≥𝑛𝐶
ℐ(𝑚,𝑥)

(𝐶𝒰𝐷)ℐ(𝑛, 𝑥) =
⨁︀

𝑚≥𝑛(𝐷
ℐ(𝑚,𝑥)⊗

⨂︀𝑚−1
𝑘=𝑛 𝐶ℐ(𝑘, 𝑥))

The semantics of ♢, □ and 𝒰 requires a passage to the limit. Following [37], one can introduce a

bounded version for ♢, □ and 𝒰 , by adding new temporal operators ♢𝑡 (eventually in the next 𝑡 time

points), □𝑡 (always within 𝑡 time points) and 𝒰𝑡, with the interpretation:

(♢𝑡𝐶)ℐ(𝑛, 𝑥) =
⨁︀𝑛+𝑡

𝑚=𝑛𝐶
ℐ(𝑚,𝑥)

(□𝑡𝐶)ℐ(𝑛, 𝑥) =
⨂︀𝑛+𝑡

𝑚=𝑛𝐶
ℐ(𝑚,𝑥)

(𝐶𝒰𝑡𝐷)ℐ(𝑛, 𝑥) =
⨁︀𝑛+𝑡

𝑚=𝑛(𝐷
ℐ(𝑚,𝑥)⊗

⨂︀𝑚−1
𝑘=𝑛 𝐶ℐ(𝑘, 𝑥))

so that (♢𝐶)ℐ(𝑛, 𝑥) = 𝑙𝑖𝑚𝑡→+∞(♢𝑡𝐶)ℐ(𝑛, 𝑥) and (□𝐶)ℐ(𝑛, 𝑥) = 𝑙𝑖𝑚𝑡→+∞(□𝑡𝐶)ℐ(𝑛, 𝑥) and

(𝐶𝒰𝐷)ℐ(𝑛, 𝑥) = 𝑙𝑖𝑚𝑡→+∞(𝐶𝒰𝑡𝐷)ℐ(𝑛, 𝑥). The existence of the limits is ensured by the fact that

(♢𝐶)ℐ(𝑛, 𝑥) and (𝐶𝒰𝐷)ℐ(𝑛, 𝑥) are increasing in 𝑛, while (□𝐶)ℐ(𝑛, 𝑥) is decreasing in 𝑛.

Note that, here, we have not considered the additional temporal operators (“soon”, “almost always”,

etc.) introduced by Frigeri et al. [37] for representing vagueness in the temporal dimension. As a

consequence, for the case 𝒮 = [0, 1], the semantics above is an extension to 𝒜ℒ𝒞 of the FLTL (Fuzzy

Linear-time Temporal Logic) semantics by Lamine and Kabanza [38].

Proposition 1. For all concepts 𝐶 and 𝐷, and for all time points 𝑛, the following properties hold:
(♢𝐶)ℐ(𝑛, 𝑥) = 𝐶𝐼(𝑛, 𝑥)⊕ (♢𝐶)ℐ(𝑛+ 1, 𝑥)
(□𝐶)ℐ(𝑛, 𝑥) = 𝐶𝐼(𝑛, 𝑥)⊗ (□𝐶)ℐ(𝑛+ 1, 𝑥)
(𝐶𝒰𝐷)ℐ(𝑛, 𝑥) = 𝐷𝐼(𝑛, 𝑥)⊕ (𝐶𝐼(𝑛, 𝑥)⊗ (𝐶𝒰𝐷)ℐ(𝑛+ 1, 𝑥))

Note that, although in this section we have considered a constant domain ∆ℐ
, for a many-valued prefer-

ential temporal interpretation ℐ , expanding domains could have been considered as well, considering a

domain ∆ℐ
𝑛 for each time point 𝑛, with condition ∆ℐ

0 ⊆ ∆ℐ
1 ⊆ . . ., as for LTL𝒜ℒ𝒞 in the the two-valued

case [17].

As in [22], for simplicity, we consider knowledge bases with non-temporal TBox and ABox, where a

non-temporal TBox 𝒯 is a set of concept inclusions 𝐶 ⊑ 𝐷, where (as in the two-valued case) 𝐶,𝐷
are temporally extended concepts, but no temporal operator is applied in front of concept inclusions

themselves. The notions of satisfiability and model of a knowledge base can be easily generalized to a

many-valued LTL𝒜ℒ𝒞 knowledge base with non-temporal ABox and TBox. As 𝒜 is a non-temporal

ABox, the assertions in 𝒜 are evaluated at time point 0. On the other hand, concept inclusions in the

(non-temporal) TBox 𝒯 are evaluated by considering all time points 𝑛.

Given a many-valued temporal interpretation ℐ = ⟨∆ℐ , ·ℐ⟩, the interpretation function ·𝐼 is extended

to inclusion axioms as follows:

(𝐶 ⊑ 𝐷)𝐼 = inf 𝑥∈Δ𝐼 ,𝑛∈N(𝐶
𝐼(𝑛, 𝑥)▷𝐷𝐼(𝑛, 𝑥))

Let 𝐾 be an LTL𝒜ℒ𝒞 knowledge base 𝐾 = (𝒯 ,𝒜) with non-temporal ABox and TBox.



Definition 2 (Satisfiability in many-valued LTL𝒜ℒ𝒞). Given a many-valued temporal interpretation
for ℐ = ⟨∆ℐ , ·ℐ⟩, satisfiability of an axiom in ℐ is defined as follows:

• ℐ |= 𝐶 ⊑ 𝐷 𝜃𝛼 if (𝐶 ⊑ 𝐷)ℐ 𝜃𝛼;
• ℐ |= 𝐶(𝑎) 𝜃𝛼 if 𝐶ℐ(0, 𝑎ℐ) 𝜃𝛼;
• ℐ |= 𝑟(𝑎, 𝑏) 𝜃 𝛼 if 𝑟ℐ(0, 𝑎ℐ , 𝑏ℐ)𝜃 𝛼.

The interpretation ℐ is a model of 𝐾 = (𝒯 ,𝒜) if ℐ satisfies all concept inclusions in 𝒯 and all assertions in
𝒜. A knowledge base 𝐾 = (𝒯 ,𝒜) is satisfiable in the many-valued extension of LTL𝒜ℒ𝒞 if a many-valued
temporal model ℐ = ⟨∆ℐ , ·ℐ⟩ of 𝐾 exists.

5. A many-valued 𝐿𝑇𝐿𝒜ℒ𝒞 withTypicality

As in the two-valued case [22], the language of a many-valued 𝐿𝑇𝐿𝒜ℒ𝒞 can be extended with typicality
concepts of the form T(𝐶) representing the set of typical instances of concept 𝐶 . The typicality operator

T may occur both in concepts of TBox and ABox, but it cannot be nested. Unlike [5, 10], where a

typicality operator was introduced for 𝒜ℒ𝒞, here we do not require that the typicality operator only

occurs on the left hand side of concept inclusions of the form T(𝐶) ⊑ 𝐷, and this choice is in agreement

with [39, 40]. As usual, we assume that the typicality operator T cannot be nested. Extended concepts
can be built by combining the concept constructors in LTL𝒜ℒ𝒞 with the typicality operator. They can

freely occur in concept inclusions, such as, for instance, the following ones (adapted from [22]):

T(Professor) ⊑ (∃teaches.Course)𝒰Retired
∃lives_in.Town ⊓Young ⊑ T(♢Granted_Loan)

Note that, while the semantics in [22] was two-valued, in this example, the interpretation of some

concepts (e.g., Young and Granted_Loan) may have a non-crisp value in [0, 1]. Indeed, being young is

a fuzzy concept and Granted_Loan may have a degree of truth, for the different domain individuals

(depending, e.g., on the outcome of some classifier on input exemplars).

From the semantic side, in the many valued case, the degree of membership of domain individuals

in concept 𝐶 at the different time points 𝑛 induces a preference relation ≺𝑛
𝐶 over the domain. Such

preference relations are used to define the typical 𝐶-elements at the different time points.

Given a temporal interpretation ℐ = ⟨∆ℐ , ·ℐ⟩ over a truth degree set 𝒮 , a preference relation ≺𝑛
𝐶 on

∆ℐ
can be associated to any concept 𝐶 and time point 𝑛 ∈ N, based on the many valued interpretation

of concepts in ℐ and on the the strict partial order <𝒮
: for all 𝑥, 𝑦 ∈ ∆ℐ

,

𝑥 ≺𝑛
𝐶 𝑦 if and only if 𝐶ℐ(𝑛, 𝑦) <𝒮 𝐶ℐ(𝑛, 𝑥),

where 𝑥 ≺𝑛
𝐶 𝑦 means that 𝑥 is preferred to 𝑦 wrt 𝐶 at time point 𝑛.

The many-valued temporal semantics introduced in the previous section easily extends to the language

with typicality. Note that this semantics is inherently multi-preferential.

We regard typical 𝐶-elements (at time point 𝑛) as the domain elements 𝑥 which are preferred with

respect to ≺𝑛
𝐶 among all domain elements (and such that 𝐶ℐ(𝑥) ̸= 0). The interpretation of typicality

concepts T(𝐶) can be defined as follows:

Definition 3. Given an interpretation ℐ = ⟨∆ℐ , ·ℐ⟩, for all 𝑛 ∈ N, 𝑥 ∈ ∆ℐ , (T(𝐶))ℐ(𝑛, 𝑥) = 𝐶ℐ(𝑥),
if there is no 𝑦 ∈ ∆ℐ such that 𝑦 ≺𝑛

𝐶 𝑥; (T(𝐶))ℐ(𝑛, 𝑥) = 0, otherwise.

When (T(𝐶))ℐ(𝑥) > 0, 𝑥 is said to be a typical 𝐶-element in ℐ . Note that, when ≤𝒮
is a total preorder

(as it is in the cases 𝒮 = [0, 1] and 𝒮 = 𝒞𝑛), relation ≺𝑛
𝐶 is an irreflexive, transitive and modular relation

over ∆ℐ
, like ranked preference relations in KLM-style ranked interpretations by Lehmann and Magidor

[2]. For finitely-many truth values, ≺𝑛
𝐶 is also well-founded.

For 𝐿𝑇𝐿𝒜ℒ𝒞 with typicality, the notion of satisfiability of an axiom in a multi-preferential temporal

interpretation ℐ and the notion of model of a KB, are the ones given in Definition 2 (again for non-

temporal KBs).



In the following, we will denote with LTL𝒜ℒ𝒞
𝑛T the many-valued extension of 𝐿𝑇𝐿𝒜ℒ𝒞 with

typicality, with truth degree set 𝒮 = 𝒞𝑛, for 𝑛 ≥ 1, and with 𝐿𝑇𝐿𝒜ℒ𝒞
FT the fuzzy extension of

𝐿𝑇𝐿𝒜ℒ𝒞 with typicality (where 𝒮 = [0, 1]).

6. Weighted temporal knowledge bases

Besides a set of strict concept inclusions in the TBox, weighted KBs also allow a set of typicality inclusions
(or defeasible inclusions), each one with a weight. Weighted typicality inclusions for a concept 𝐶𝑖 have

the form (T(𝐶𝑖) ⊑ 𝐷𝑗 , 𝑤𝑖𝑗), and describe the prototypical properties of 𝐶𝑖-elements (where 𝐷𝑗 is a

concept, and the weight 𝑤𝑖𝑗 is a real number). A concept 𝐶𝑖 for which weighted typicality inclusions

are provided is said to be a distinguished concept.
A weighted ℒ𝒞𝑛T knowledge base is a tuple ⟨𝒯 ,𝒟,𝒜⟩, where the (strict) TBox 𝒯 is a set of concept

inclusions, the defeasible TBox 𝒟 is a set of weighted typicality inclusions for the distinguished concepts

𝐶𝑖, and 𝒜 is a set of assertions.

Consider the weighted 𝒜ℒ𝒞T knowledge base 𝐾 = ⟨𝒯 ,𝒟, 𝒜⟩, over the set of distin-

guished concepts {Student ,Employee,Person, . . .}, with 𝒯 containing, for instance, the inclusion

Student ⊑ Person ≥ 1 .

The set 𝒟 of weighted typicality inclusions may contain, e.g., the following inclusions, describing

the prototypical properties of concept Student:
(T(Student) ⊑ Has_Classes , +50),

(T(Student) ⊑ Active ,+35) ,

(T(Student) ⊑ ∃has_Boss.⊤, -70),

That is, a student normally has classes and is active, but she usually does not have a boss (negative

weight). Accordingly, a student having classes, but not a boss, is more typical than an active student

having classes and a boss. In the two valued case, one can evaluate how typical are two domain

individuals mary and tom as students, by considering their weight with respect of concept Student ,
i.e., by summing the (positive or negative) weights of the defeasible inclusions satisfied by mary and

tom , and comparing them. The higher the weight the more typical is the individual. In the many-value

case, in defining the weight of a domain element 𝑥 with respect to a distinguished concept 𝐶𝑖, we have

to consider that, in an interpretation ℐ , at time point 𝑛, element 𝑥 may belong to other concepts to

some degree (e.g., at time point 𝑛, mary may be active with degree 0.8, i.e., Activeℐ(𝑛,mary) = 0.8).

Given a many-valued temporal interpretation ℐ = ⟨∆ℐ , ·ℐ⟩, the weight of 𝑥 ∈ ∆ℐ with respect to a
distinguished concept 𝐶𝑖 at time point 𝑛 is given by

𝑊 ℐ
𝑖,𝑛(𝑥) =

∑︀
(T(𝐶𝑖)⊑𝐷𝑗 ,𝑤𝑖𝑗)∈𝒟 𝑤𝑖𝑗 𝐷

ℐ
𝑗 (𝑛, 𝑥).

Intuitively, the higher the value of 𝑊 ℐ
𝑖,𝑛(𝑥), the more typical is 𝑥 as an instance of 𝐶𝑖), at time point

𝑛 (considering the defeasible properties of 𝐶𝑖). Here, the membership degree 𝐷ℐ
𝑗 (𝑛, 𝑥) of 𝑥 in each

concept 𝐷𝑗 at time point 𝑛 is considered.

The notions of faithful, coherent and 𝜙-coherent semantics introduced for many-valued weighted

KBs [41, 15, 16] can be smoothly extended to the temporal case. Generalizing from the non-temporal

case, we expect the membership degree of a domain element 𝑥 in a concept 𝐶𝑖 at a time point 𝑛 to be

in agreement with the weight of 𝑥 with respect to concept 𝐶𝑖, at the same time point 𝑛. We consider

some different agreement conditions at time point 𝑛, as follows.

A many-valued temporal interpretation ℐ = ⟨∆ℐ , ·ℐ⟩ is faithful at 𝑛 if, for all 𝑥, 𝑦 ∈ ∆ℐ
,

𝑥 ≺𝑛
𝐶𝑖

𝑦 ⇒ 𝑊 ℐ
𝑖,𝑛(𝑥) > 𝑊 ℐ

𝑖,𝑛(𝑦)

The interpretation ℐ is coherent at 𝑛 if, for all 𝑥, 𝑦 ∈ ∆ℐ
,

𝑥 ≺𝑛
𝐶𝑖

𝑦 iff 𝑊 ℐ
𝑖,𝑛(𝑥) > 𝑊 ℐ

𝑖,𝑛(𝑦)

Given a collection of monotonically non-decreasing functions 𝜙𝑖 : R → 𝒮 , one for each concept 𝐶𝑖 ∈ 𝒞:



- the interpretation ℐ is 𝜙-coherent at 𝑛 if, for all 𝑥 ∈ ∆ℐ
,

𝐶ℐ
𝑖 (𝑛, 𝑥) = 𝜙𝑖(𝑊

ℐ
𝑖,𝑛(𝑥))

- the interpretation ℐ is transient 𝜙-coherent at 𝑛 if, for all 𝑥 ∈ ∆ℐ
,

𝐶ℐ
𝑖 (𝑛+ 1, 𝑥) = 𝜙𝑖(𝑊

ℐ
𝑖,𝑛(𝑥))

It is easy to see that a many-valued temporal interpretation ℐ = ⟨∆ℐ , ·ℐ⟩ determines, at each

time point 𝑛, a (non-temporal) many-valued interpretation 𝐽𝑛 = ⟨∆𝐽𝑛
, ·𝐽𝑛⟩, where ∆𝐽𝑛

= ∆ℐ
, (for

𝐴 ∈ 𝑁𝐶 ), and 𝑟𝐽
𝑛
(𝑥, 𝑦) = 𝑟ℐ(𝑛, 𝑥, 𝑦) (for 𝑟 ∈ 𝑁𝑅). Letting the interpretation of typicality in 𝐽𝑛

exploit the preference relations ≺𝑛
𝐶𝑖

for each 𝐶𝑖 (see Section 5), i.e., the preference relation induced

by the many-valued interpretation of concept 𝐶𝑖 in 𝐽𝑛
, a many-valued temporal interpretation ℐ

can be regarded as a sequence 𝐽0, 𝐽1, 𝐽2, . . . of many-valued preferential interpretations, as the ones

considered in [33]. At each single time point the KLM properties of preferential consequence relation

are then be expected to hold.

When considering the single time point 𝑛, the condition that the interpretation ℐ is coherent (resp.,

faithful, 𝜙-coherent) at 𝑛, means that the preferential interpretation 𝐽𝑛
is coherent (resp., faithful,

𝜙-coherent) according to their definition in [33]. Different notions of agreement at different time points

can then be combined to give rise to different semantics of a temporal weighted KB, and different

notions of entailment (based on different closure constructions).

7. Temporal weighted KBs and the transient behaviour of a neural
network

In [33] it has been shown that many-valued Weighted KBs with typicality can provide a logical inter-

pretation to some neural network model. Specifically, the 𝜙-coherent semantics allows to capture the

stationary states of multilayer networks as well as of networks with cyclic dependencies. In this section,

we are interested in the transient behavior of a network.

Let us first recall from [42] the model of a neuron as an information-processing unit in an (artificial)

neural network. A neuron 𝑘 can be described by the following pair of equations: 𝑢𝑘 =
∑︀𝑛

𝑗=1𝑤𝑘𝑗𝑥𝑗 ,
and 𝑦𝑘 = 𝜙(𝑢𝑘 + 𝑏𝑘), where 𝑥1, . . . , 𝑥𝑛 are the input signals, 𝑤𝐾1, . . . , 𝑤𝑘𝑛 are synaptic weights; 𝑏𝑘
is the bias, 𝜙 an activation function, and 𝑦𝑘 is the output signal of unit 𝑘. By adding a new synapse

with input 𝑥0 = +1 and synaptic weight 𝑤𝑘0 = 𝑏𝑘 , one can write: 𝑢𝑘 =
∑︀𝑛

𝑗=0𝑤𝑘𝑗𝑥𝑗 , and 𝑦𝑘 = 𝜙(𝑢𝑘),
where 𝑢𝑘 is called the induced local field of the neuron. The neuron can be represented as a directed

graph, where the input signals 𝑥1, . . . , 𝑥𝑛 and the output signal 𝑦𝑘 of neuron 𝑘 are nodes of the graph.

An edge from 𝑥𝑗 to 𝑦𝑘 , labelled 𝑤𝑘𝑗 , means that 𝑥𝑗 is an input signal of neuron 𝑘 with synaptic weight

𝑤𝑘𝑗 .

A neural network can then be seen as “a directed graph consisting of nodes with interconnecting

synaptic and activation links" [42]: nodes in the graph are the neurons (the processing units) and the

weight 𝑤𝑖𝑗 on the edge from node 𝑗 to node 𝑖 represents “the strength of the connection [..] by which

unit 𝑗 transmits information to unit 𝑖" [43]. Source nodes (i.e., nodes without incoming edges) produce

the input signals to the graph. Neural network models are classified by their synaptic connection

topology. In a feedforward network the architectural graph is acyclic, while in a recurrent network it

contains cycles. In a recurrent network at least one feedback exists, so that “the output of a node in

the system influences in part the input applied to that particular element" [42]. A time delay may be

associated to feedback connections.

Let us consider a trained network 𝒩 . We do not put restrictions on the topology the network.

Following the approach in [33], 𝒩 can be mapped into a (non-temporal) weighted conditional knowledge

base 𝐾𝒩
[15, 33], by regarding the units in the network as concept names and the synaptic connections

between units as weighted inclusions.



If 𝐶𝑘 is the concept name associated to unit 𝑘 and 𝐶𝑗1 , . . . , 𝐶𝑗𝑚 are the concept names associated

to units 𝑗1, . . . , 𝑗𝑚, whose output signals are the input signals for unit 𝑘, with synaptic weights

𝑤𝑘,𝑗1 , . . . , 𝑤𝑘,𝑗𝑚 , then unit 𝑘 can be associated a set 𝒯𝐶𝑘
of weighted typicality inclusions: T(𝐶𝑘) ⊑ 𝐶𝑗1

with 𝑤𝑘,𝑗1 , . . . , T(𝐶𝑘) ⊑ 𝐶𝑗𝑚 with 𝑤𝑘,𝑗𝑚 .

It has been proven that the input-output behavior of a multilayer network 𝒩 can be captured by a

preferential interpretation 𝐼Δ𝒩 built over a set of input stimuli ∆ (e.g., the test set), through a simple

construction, which exploits the activity level of units for the input stimuli.

A logical characterization of a trained multi-layer network 𝒩 is established [33] by proving that the

preferential interpretation 𝐼Δ𝒩 , describing the network behavior over a set ∆ of input stimuli, is indeed

a 𝜙-coherent model of the weighted knowledge base 𝐾𝒩
and, vice-versa, that any 𝜙-coherent model of

the knowledge base 𝐾𝒩
captures the behavior of the network over some set ∆ of input stimuli. Also

in the case the network is not feedforward, the 𝜙-coherent semantics allows the stationary states of the

network 𝒩 to be captured.

This approach allows for the verification of conditional properties of the network (of the form

T(𝐶) ⊏ 𝐷 ≥ 𝜃) by model checking over the preferential interpretation 𝐼Δ𝒩 , or by using entailment
from the conditional knowledge base 𝐾𝒩

(e.g., in an ASP encoding of a finitely-valued semantics[32]).

Both the model checking and entailment approach have been used in the verification of properties of

feedforward neural networks for the recognition of basic emotions.

In the temporal case, when we consider a temporal preferential model ℐ of the weighted knowledge

base 𝐾𝒩
, we may represent different states of the network at different time points.

When ℐ is 𝜙-coherent at time point 𝑛, the condition (stated above) that, for all 𝑥 ∈ ∆ℐ
,

𝐶ℐ
𝑖 (𝑛, 𝑥) = 𝜙𝑖(

∑︁
ℎ

𝑤𝑖ℎ 𝐷ℐ
ℎ(𝑛, 𝑥))

imposes that the (non-temporal) interpretation 𝐽𝑛
at time point 𝑛 represents a stationary state of

network 𝒩 . In such a case, 𝜙𝑖 plays the role of the activation function, and the sum

∑︀
ℎ𝑤𝑖ℎ 𝐷ℐ

ℎ(𝑛, 𝑥)
plays the role of the induced local field.

However, the temporal formalism also allows to capture the dynamic behavior of the network beyond

stationary states, and this is especially interesting when the network 𝒩 is recurrent. In this case, the

knowledge base 𝐾𝒩
contains cyclic dependencies in DBox.

By imposing the condition that ℐ is a transient 𝜙-coherent interpretation at all time points 𝑛, one can

enforce that the interpretations 𝐽0, 𝐽1, 𝐽2, . . . at successive time points describe the dynamic evolution

of the activity of units in the network (where the activity of each unit at time point 𝑛 + 1 depends

on the activity of incoming units at time point 𝑛). The temporal formalism provides a semantics for

capturing the trajectories of the network state. Alternatively, time delayed feedback connections can be

easily captured by temporal operators in 𝐾𝒩
.

Once a trained neural network has been represented as a weighted defeasible knowledge base 𝐾𝒩
,

entailment allows for temporal properties to be proved over the runs representing the evolution of

the network, an approach which may be computationally quite costly, depending on the size of the

neural network and on the length of the runs. The non-temporal case is already challenging, and

we refer to complexity results and to an experimentation of some different ASP based encodings of

defeasible entailment for the verification of properties of a neural network, both in the feedforward

case and in the cyclic case [33, 44]. The model checking approach, on the other hand, does not require

to consider in the model ℐΔ
𝒩 the activity of all units, but only of the units involved in the properties to

be verified. Similarly, not all time points need to be considered, but only those corresponding to the

states of interest.

An interesting direction for future work, is an extension to the temporal case of the model-checking

approach developed in Datalog [45, 33] for the verification of conditional properties of a network, for

post-hoc verification.



8. Conclusions

In this paper, we develop a many-valued, temporal description logic with typicality, extending 𝐿𝑇𝐿𝒜ℒ𝒞
to deal with defeasible reasoning. Our extension of LTL𝒜ℒ𝒞 builds, on the one hand, on fuzzy and

many-valued DLs, and, on the other hand, on preferential DLs with typicality. We have first developed

a many-valued semantics for LTL𝒜ℒ𝒞 , and then added to the language a typicality operator, based on a

(multi-) preferential semantics. Finally, we have defined an extension of weighted knowledge bases

with typicality to the temporal many-valued case, for representing prototypical properties of different

classes in the temporal case.

On a different route, a preferential LTL with defeasible temporal operators has been studied in [20, 21],

where the decidability of meaningful fragments of the logic is proven, and tableaux based proof methods

for such fragments is developed [19, 21]. Our approach does not consider defeasible temporal operators

nor preferences over time points, but combines standard LTL operators with the typicality operator in

a many-valued temporal 𝒜ℒ𝒞. Preferences are over domain elements, but they change over time.

In previous work, we have developed a preferential temporal description logics with typicality

LTLT
𝒜ℒ𝒞 [22]. The monotonic logic LTLT

𝒜ℒ𝒞 is further extended with multiple preferences. Such

extensions show that the concept-wise multi-preferential semantic in [14] adapts smoothly to the

temporal case. In the two-valued case, the semantics for rank and weighted 𝒜ℒ𝒞 knowledge bases has

been defined based on semantic closure constructions [14, 15], developed in the spirit of Lehmann’s

lexicographic closure [13], Kern-Isberner’s c-representations [46, 47] and Weydert’s algebraic semi-

qualitative approach [48], Casini and Straccia’s fuzzy rational closure [49], but allowing for multiple

preferences defining a ranking on individuals for each concept. In this paper, we have considered the

temporal many-valued case and developed a semantics for weighted knowledge bases that deals with

different agreement conditions at the different time points, leading to different closure constructions for

the temporal conditional logics.

Much work has been recently devoted to the combination of neural networks and symbolic reasoning

[50, 51, 52]. While conditional weighted KBs have been shown to capture (in the many-valued case) the

stationary states of a neural network (or its finite approximation) [15, 33], and allow for combining

empirical knowledge with elicited knowledge for reasoning and for post-hoc verification, adding a

temporal dimension opens to the possibility of verifying properties concerning the dynamic behaviour

of the network, based on a model checking approach or an entailment based approach.

A different approach for dealing with defeasibility in temporal DL formalism has been proposed in

[53], by combining a (dynamic) temporal action logic [54] for reasoning about actions (whose semantics

is based on a notion of temporal answer set) and an ℰℒ⊥
ontology. The temporal action logic allows for

complex actions, and the proof methods are based on ASP encodings of bounded model checking [54].

Extending the above mentioned ASP encodings to deal with model checking in temporal preferential

interpretations is a direction of future work. Future work also includes studying the decidability for

fragments of the logic and exploiting the formalism for explainability.
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