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Abstract
Achieving significant learning in teaching Geometry in three-dimensional space to undergraduate
students is a challenge for the teacher since it always requires a very high level of abstraction in students
to visualize mathematical objects, which is often very difficult. difficult. But in recent years, as a
result of the pandemic, the use of virtual tools has accelerated, developing skills of both teachers and
students in the management of technological resources for teaching mathematics that help strengthen
meaningful learning; One of these tools is GeoGebra, which enhances the teaching of geometry in the
classroom by providing students with a graphic visualization from three different points of view and
allows them to develop their creativity and autonomy in the search for knowledge. This article aims
to analyze the normal curvature at all points of the hyperbolic paraboloid given implicitly from the
shape operator, answering the questions of undergraduate students, specifically in the students of the
Differential Geometry course of the mathematics specialty, given that Generally, in the existing literature
of the course, only the normal curvature at the origin is calculated. To achieve this, first two tangent
vector fields were inferred to the hyperbolic paraboloid given implicitly, then the shape operator and the
normal curvature were calculated at all points of the hyperbolic paraboloid given implicitly and finally
the deduced formulas were implemented in GeoGebra using the The use of some specific commands
allowed us to obtain a real-time graphical visualization of the analysis of the normal curvature at all
points of the saddle, given implicitly, from the shape operator. It may be possible to present examples of
the calculation and graphic display of the normal curvature at some points on the surface other than the
origin, presenting a contribution to the understanding of the topic.
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1. Introduction

Learning geometry improves the development of deductive thinking and reasoning by en-
hancing students’ visualization and spatial ability [1], but achieving meaningful learning in
teaching Geometry in three-dimensional space in undergraduate students is everything. This is
a challenge for the teacher since it always requires a very high level of abstraction in students
to visualize mathematical objects that are often difficult to achieve. Technological advances
and the acceleration of virtuality in recent years have allowed the use of Information and
Communications Technologies (ICT) in the teaching-learning process in geometry, generating
more significant and relevant learning in students [2].

One of the technological tools that is becoming an almost essential ICT resource in classrooms,
especially in the teaching of geometry, is GeoGebra, given the ease that the user can have to start
using this tool due to its handling. almost intuitive and above all to its continuous development,
which means that each of the new versions that appear offers unique options that further
increase its power and effectiveness [3].

As recent advances in research in mathematics education point out, teaching enhanced by
technology can have significant potential, showing itself to be an essential support to overcome
some logistical obstacles such as the large number of students per teacher, the reduced number
of class hours available, the heterogeneity of students’ mathematical training [4], numerous
studies show that the use of GeoGebra software improves mathematical problem-solving skills
by promoting collaborative work, socio-student integration and improving the climate of class
[5].

This research arises from the study of a traditional undergraduate differential geometry course
where the normal curvature of a surface is defined, in the direction of a unit tangent vector, as
the scalar product of the shape operator in said vector by the vector, especially the specific case.
of the surface known as the saddle (hyperbolic paraboloid), analyzing, as is common in existing
literature, the normal curvature only at the origin of coordinates. To carry out this study in
class, GeoGebra was used, constituting a teaching practice that can facilitate visualization of
mathematical objects by students, allowing to generate more significant learning and a better
understanding of the geometric properties of the hyperbolic paraboloid and naturally arising
the need to elucidate the existence of specific vectors in the direction of which the primary
curvatures come to be the maximum and minimum values of the normal curvature.

Given what has been described, the research question arises: Will it be possible to analyze
the normal curvature at all points of the hyperbolic paraboloid given implicitly from the shape
operator using GeoGebra?

This paper aims to analyze the normal curvature at all points of the hyperbolic paraboloid
given implicitly from the shape operator and its visualization in GeoGebra.



2. Calculation of normal curvature at all points of the implicitly
given hyperbolic paraboloid

2.1. Deduction of two vector fields tangent to the implicitly given hyperbolic
paraboloid

To deduce two vector fields tangent to the implicitly given hyperbolic paraboloid, the following
theorem is established and proven.

Theorem 1. Let 𝑀 ∶ 𝑔 (𝑥, 𝑦 , 𝑧) = 𝑐 a surface in ℝ3 and suppose that there exists a neighborhood
of 𝑝 ∈ 𝑀 in which

1. 𝜕𝑔
𝜕𝑥 (𝑝) ≠ 0 then 𝑇𝑝 (𝑀) which is the tangent space of 𝑀 in 𝑝 is generated by 𝑉 ( ̄𝑝) =

(− 𝜕 𝑔
𝜕 𝑧 ( ̄𝑝) , 0, 𝜕 𝑔𝜕 𝑥 ( ̄𝑝)) , �⃗� ( ̄𝑝) = (− 𝜕 𝑔

𝜕 𝑦 ( ̄𝑝) , 𝜕 𝑔𝜕 𝑥 ( ̄𝑝) , 0) .

2. 𝜕𝑔
𝜕𝑦 (𝑝) ≠ 0 then 𝑇𝑝 (𝑀) is generated by 𝑉 ( ̄𝑝) = (0, − 𝜕𝑔

𝜕𝑧 ( ̄𝑝) , 𝜕𝑔𝜕𝑦 ( ̄𝑝)) , �⃗� ( ̄𝑝) =

( 𝜕𝑔𝜕𝑦 ( ̄𝑝) , − 𝜕𝑔
𝜕𝑥 ( ̄𝑝) , 0) .

3. 𝜕𝑔
𝜕𝑧 (𝑝) ≠ 0 then 𝑇𝑝 (𝑀) is generated by 𝑉 ( ̄𝑝) = (0, 𝜕𝑔𝜕𝑧 ( ̄𝑝) , − 𝜕𝑔

𝜕𝑦 ( ̄𝑝)) , �⃗� ( ̄𝑝) =

( 𝜕𝑔𝜕𝑧 ( ̄𝑝) , 0, − 𝜕𝑔
𝜕𝑥 ( ̄𝑝)) .

It should be understood that if the hypothesis fails in any of the items then any of the other two
can be used.

Proof. According to [1] since the other two proofs are similar. Let 𝑣 ∈ 𝑇𝑝 (𝑀), according to
Lemma 3.8 [6] (∇𝑔) ( ̄𝑝) .𝑣 = 0.This is

(
𝜕𝑔
𝜕𝑥

( ̄𝑝) ,
𝜕𝑔
𝜕𝑦

( ̄𝑝) ,
𝜕𝑔
𝜕𝑧

( ̄𝑝)) ⋅ (𝑣1, 𝑣2, 𝑣3) = 0 .

or in equivalent form
𝜕𝑔
𝜕𝑥

( ̄𝑝) 𝑣1 +
𝜕𝑔
𝜕𝑦

( ̄𝑝) 𝑣2 +
𝜕𝑔
𝜕𝑧

( ̄𝑝) 𝑣3 = 0

and since 𝜕𝑔
𝜕𝑥 ( ̄𝑝) ≠ 0, it is possible to write

𝑣1 =
1

𝜕𝑔
𝜕𝑥 ( ̄𝑝)

(−
𝜕𝑔
𝜕𝑧

( ̄𝑝) 𝑣3 −
𝜕𝑔
𝜕𝑦

( ̄𝑝) 𝑣2) .

Whereby

𝑣 = ( 1
𝜕𝑔
𝜕𝑥 ( ̄𝑝)

(−
𝜕𝑔
𝜕𝑧

( ̄𝑝) 𝑣3 −
𝜕𝑔
𝜕𝑦

( ̄𝑝) 𝑣2) , 𝑣2, 𝑣3)

𝑣 = 1
𝜕𝑔
𝜕𝑥 ( ̄𝑝)

(−
𝜕𝑔
𝜕𝑧

( ̄𝑝) 𝑣3 −
𝜕𝑔
𝜕𝑦

( ̄𝑝) 𝑣2,
𝜕𝑔
𝜕𝑥

( ̄𝑝) 𝑣2,
𝜕𝑔
𝜕𝑥

( ̄𝑝) 𝑣3) .



even more

𝑣 =
𝑣3

𝜕𝑔
𝜕𝑥 ( ̄𝑝)

(−
𝜕𝑔
𝜕𝑧

( ̄𝑝) , 0,
𝜕𝑔
𝜕𝑥

( ̄𝑝)) +
𝑣2

𝜕𝑔
𝜕𝑥 ( ̄𝑝)

(−
𝜕𝑔
𝜕𝑦

( ̄𝑝) ,
𝜕𝑔
𝜕𝑥

( ̄𝑝) , 0) .

Which indicates that 𝑣 can be written as a linear combination of

𝑉 ( ̄𝑝) = (−
𝜕𝑔
𝜕𝑧

( ̄𝑝) , 0,
𝜕𝑔
𝜕𝑥

( ̄𝑝)) , �⃗� ( ̄𝑝) = (−
𝜕𝑔
𝜕𝑦

( ̄𝑝) ,
𝜕𝑔
𝜕𝑥

( ̄𝑝) , 0) .

Therefore, 𝑉 ( ̄𝑝) and 𝑊( ̄𝑝) generate 𝑇𝑝 (𝑀) .

2.2. Calculation of the shape operator at all points of the hyperbolic
paraboloid given implicitly

The shape operator of a surface

According to [6], if 𝑝 is a point of 𝑀, then for every tangent vector 𝑣 to 𝑀 in 𝑝, let

𝑆𝑝 (𝑣) = −∇𝑣𝑈

where 𝑈 is a unit normal vector field in a neighborhood of 𝑝 of 𝑀. 𝑆𝑝 is called the form operator
of 𝑀 on 𝑝. At each point 𝑝 of 𝑀 ⊂ ℝ3, the shape operator is a linear operator

𝑆𝑝 ∶ 𝑇𝑝 (𝑀) → 𝑇𝑝 (𝑀)

in the tangent plane of 𝑀 at 𝑝.

Normal curvature

According to [6], let ⃖⃗𝑢 be a unit vector tangent to 𝑀 ⊂ ℝ3 at a point 𝑝. Then, the number

𝑘 (𝑢) = 𝑆 (𝑢) ⋅ 𝑢

is called the normal curvature of 𝑀 in the direction of 𝑢.
To calculate the shape operator at all points of the hyperbolic paraboloid given implicitly, it

will be taken into account that if 𝑣 is a nonzero vector (not necessarily of unit length) then a
unit vector in the direction of 𝑣 will be ⃖⃗𝑢 = 𝑣

‖𝑣‖
so that

𝑘 (𝑣) = 𝑆 ( 𝑣
‖𝑣‖

) . 𝑣
‖𝑣‖

= 1

‖𝑣‖2
𝑆 (𝑣) .𝑣

then

𝑘 (𝑣) =
𝑆 (𝑣) .𝑣
𝑣 .𝑣



Theorem 2. Given the hyperbolic paraboliode 𝑀 ∶ 𝑧 = 𝑥𝑦 and a point 𝑝 = (𝑝1, 𝑝2, 𝑝3) ∈ 𝑀 then
the direction in which maximum curvature occurs is

⃖⃖ ⃗𝑣1 = (
√

𝑝21 + 1
𝑝21 + 𝑝22 + 2

,
√

𝑝22 + 1
𝑝21 + 𝑝22 + 2

, 𝑝1
√

𝑝22 + 1
𝑝21 + 𝑝22 + 2

+ 𝑝2
√

𝑝21 + 1
𝑝21 + 𝑝22 + 2

)

and the direction in which the minimum curvature occurs is

⃖⃖ ⃗𝑣2 = (
√

𝑝21 + 1
𝑝21 + 𝑝22 + 2

, −
√

𝑝22 + 1
𝑝21 + 𝑝22 + 2

, −𝑝1
√

𝑝22 + 1
𝑝21 + 𝑝22 + 2

+ 𝑝2
√

𝑝21 + 1
𝑝21 + 𝑝22 + 2

)

the main curvatures are given by

𝑘1 =
√𝑝

2
1 + 1√𝑝

2
2 + 1

√𝑝
2
1 + 𝑝22 + 1 (1 + 𝑝21 + 𝑝22 + 𝑝21𝑝22 + 𝑝1𝑝2√1 + 𝑝21√1 + 𝑝22)

𝑘2 = − √𝑝
2
1 + 1√𝑝

2
2 + 1

√𝑝
2
1 + 𝑝22 + 1 (1 + 𝑝21 + 𝑝22 + 𝑝21𝑝22 − 𝑝1𝑝2√1 + 𝑝21√1 + 𝑝22)

The Gaussian and mean curvature are given by

𝐾 = 𝑘1𝑘2 = − 1

(1 + 𝑝21 + 𝑝22)
2

𝐻 =
𝑘1 + 𝑘2

2
= −

𝑝1𝑝2

(1 + 𝑝21 + 𝑝22)
3
2

3. Calculation and visualization of the shape operator at all
points of the implicitly given hyperbolic paraboloid with
GeoGebra

Learning geometry using technological tools improves meaningful learning in students, that is,
in the search for knowledge about the object of study, the connections between its elements,
and also activates and motivates students towards the study and understanding of the topic
in question [7], this stimulates students’ interest in learning geometry, leading them to ask
questions about the behavior of mathematical objects in conditions other than those presented
in the classroom, thus creating autonomous learning. In this work, GeoGebra will be used
for all its advantages since it has an intuitive user interface that facilitates the creation and
manipulation of mathematical objects. It is free mathematical software designed for use at all
educational levels, created in 2001 at the University of Salzburg by Markus Hohenwarter later
used at Atlantis University. Its open source (GNU GPL) uses the Java platform, guaranteeing
its portability to Windows, Linux, Solaris or Mac OS spreadsheets [8]. In this sense, GeoGebra



Figure 1: Hyperbolic paraboliode graph in GeoGebra.

is a very attractive tool for teaching and learning geometry. Stimulate and develop students’
creativity by discovering, recognizing, identifying, seeking new relationships and generating
new knowledge. Although there are also other tools such as Derive, Maple, Winplot for free
use that can be presented as an alternative to using Geogebra.

Below we will show the steps to follow in the calculation and visualization of the shape
operator at all points of the hyperbolic paraboloid given implicitly using the GeoGebra graphing
calculator.

1 Start the GeoGebra software and enter the expression 𝑧 = 𝑥𝑦 in the command line, the
graph of the surface will immediately appear in the graphic view window, this can be
seen in Figure1

2 Next we generate 2 sliders 𝑢 and 𝑣 with minimum and maximum values of −5 and 5
respectively. To define a point that moves on the surface we write 𝑃 = (𝑢, 𝑣 , 𝑢𝑣) on the
command line. GeoGebra will immediately show us in its graphic view a point on the
surface that will move on it as we move the sliders that define the variables 𝑢 and 𝑣. Which
can be seen in Figure 2.

3 Then in 𝑃 we calculate the vectors 𝑣1 and 𝑣2, using the formulas shown in Theorem 2, in
whose directions are the maximum and minimum curvatures respectively, which can be
seen in Figure 3.

4 Next in 𝑃, the planes 𝑝1 and 𝑝2 that cut the hyperbolic paraboloid in the directions where
its curvature is minimum and maximum are calculated, as well as their intersection curves
and 𝑘1 and 𝑘2. which are the values of the minimum and maximum curvature respectively.
Which can be seen in Figure 4 and Figure 5.



Figure 2: Graph of a point on the hyperbolic paraboliode the use of sliders allows the point to
move on the surface.

Figure 3: Graph of vectors 𝑣1 and 𝑣2 in whose directions are the maximum and minimum
curvatures respectively at a point 𝑃 of the hyperbolic paraboliode.

4. Conclusion

Through the use of the GeoGebra tool, it is demonstrated that the student is not only capable
of understanding the geometric characteristics of mathematical objects, which often require a
higher level of abstraction to be able to generate a mental representation that in many cases
is very difficult for them. , but graphic visualization goes further since they begin to wonder
if these characteristics are the same in other environments or conditions, thus generating
autonomous knowledge. This is how students’ concern arises about the study of the normal
curvature at all points of the hyperbolic paraboloid given implicitly by the shape operator



Figure 4: Graph of the planes 𝑝1 and 𝑝2 that cut the hyperbolic paraboloid in the directions
where its curvature is minimum and maximum, as well as their intersection curves.

Figure 5: Calculation of the planes 𝑝1 and 𝑝2 that cut the hyperbolic paraboloid in the directions
where its curvature is minimum 𝑘1 andmaximum 𝑘2 respectively, as well as the Gaussian curvature
𝐾 and average 𝐻 in GeoGebra.

of the hyperbolic paraboloid and not only at the origin of coordinates as is usual. Through
this experience the students implicitly deduced two vector fields tangent to the hyperbolic
paraboloid given that when evaluated at any point belonging to said surface they generate the
respective tangent space at said point, the shape operator was calculated at all points of the
given hyperbolic paraboloid implicitly the shape and normal curvature were calculated at all
points of the hyperbolic paraboloid given implicitly by the shape operator and the principal



curvatures; as well as the mean and Gaussian curvatures, presenting a graphic visualization of
this with the help of the GeoGebra tool.
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