
Searching Semantic Web Objects Based on
Class Hierarchies

Gong Cheng
gcheng@seu.edu.cn

Weiyi Ge
wyge@seu.edu.cn

Honghan Wu
hhwu@seu.edu.cn

Yuzhong Qu
yzqu@seu.edu.cn

Institute of Web Science, School of Computer Science and Engineering
Southeast University, Nanjing 210096, P.R. China

ABSTRACT
On the Semantic Web, objects can be identified by URIs and
described by using RDF. With more and more RDF data
published, object search on the Semantic Web is in demand
for browsing, reuse, and integration. We developed the Fal-
cons system, a keyword-based search engine for the Semantic
Web. In this paper, we present the object search service pro-
vided by Falcons. For building an inverted index from query
terms to Semantic Web objects (SW objects), we present
a method to construct comprehensive textual description of
SW objects. Furthermore, SW objects are also indexed from
their classes and ancestor classes to support the class-based
query restriction. Especially, class subsumption reasoning
on multiple vocabularies on the Semantic Web is performed,
and a class recommendation technique is proposed to enable
hierarchically navigating classes. In addition, a summariza-
tion method for SW objects is devised to enable users to
browse the summaries of objects.

Categories and Subject Descriptors
H.3.1 [Information Storage and Retrieval]: Content
Analysis and Indexing; H.3.3 [Information Storage and
Retrieval]: Information Search and Retrieval

General Terms
Algorithms, Design, Experimentation

Keywords
Class Hierarchy, Indexing, Navigation, Search Engine, Sum-
marization

1. INTRODUCTION
A Web of data indicates a large amount of interlinked data.
Linked data encourages to use HTTP URIs as names for
things, and link them with other URIs so that data con-
sumers can discover more information. People may create
new URIs for all the things to be described, despite the
possible high maintenance cost. Such style of writing can
produce a large amount of data, but the data may be not
interlinked. Actually, the Linking Open Data community1

1http://esw.w3.org/topic/SweoIG/TaskForces/
CommunityProjects/LinkingOpenData.

Copyright is held by the author/owner(s).
LDOW2008, April 22, 2008, Beijing, China.

have put much effect into setting links between data items
from different data sources. However, it is too difficult to
interlink all the existing data after they born. Instead, peo-
ple could reuse existing URIs to identify the things to be
described in their RDF documents. For example, we can
find the URIs that identify geographical names on GeoN-
ames2, and can find the URIs that identify authors and pa-
pers on DBLP Berlin3. But, apparently, not everyone knows
all these open data sources, and not everyone would like to
switch frequently between various data sources to search for
URIs when writing data.

Nowadays, on the Web of documents, search engines help
people find documents quickly, and promote the develop-
ment of the Web itself. Analogously, on the Web of data,
we believe that a well-designed search engine can also help
people find Semantic Web entities (URIs that are used on
the Semantic Web to denote concepts and objects) for the
information needs as well as the purpose of reusing. There-
fore, we developed Falcons4, a keyword-based search engine
for Semantic Web entities. In this paper, we present the ob-
ject search service in Falcons. Different from other keyword-
based Semantic Web search engines [6, 7, 11, 14], we expand
the textual description of SW objects from their associated
literals to also include the textual description of their neigh-
boring SW objects in RDF graphs, so that desired SW ob-
jects will be less likely to be missing for keyword queries,
and we also develop a weighting scheme for preserving the
precision. In order to help users quickly find SW objects, we
index the classes of SW objects and provide a user-friendly
navigation hierarchy of classes for users to refine the search
results. In addition, for each SW object, a set of RDF state-
ments about it is extracted from various data sources and
organized into a summary to show its meaning (denotation)
for users to decide whether it is the one needed.

The remainder of the paper is structured as follows. Section
2 demonstrates the approach with the Falcons system and
presents its architecture. Section 3 introduces a method to
expand the textual description of SW objects for building
the inverted index. Section 4 describes a way to enable nav-
igating class hierarchies for query restriction. Problems and

2http://www.geonames.org/.
3http://www4.wiwiss.fu-berlin.de/dblp/.
4http://iws.seu.edu.cn/services/falcons/.

Figure 1: A screenshot of Falcons Object Search.

challenges in integrating class hierarchies on the Semantic
Web are discussed in Section 5. A preliminary implemen-
tation of SW object summarization is described in Section
6. Related work is presented in Section 7. Conclusion and
future work are given in Section 8.

2. SYSTEM OVERVIEW
2.1 Demo
In Falcons Object Search, after being fed by keywords, say
“Tim Berners-Lee”, Falcons will match these terms with the
textual description of SW objects and serve a list of ranked
results. Each SW object is associated with its types and
labels to help the user quickly understand its denotation. If
such information is insufficient, users can click on the read-
ing glass beside each SW object to obtain a more detailed
summary. We also present the number of RDF documents
where it is used, to show its popularity, linked to the page
listing these documents. Besides, at the top of the search
results page, several tags are dynamically generated and rec-
ommended, indicating the types of SW objects that the user
is probably searching for. After clicking on a tag, say “Per-
son” here, the results will be refined to only include the
SW objects of the type “Person” (including foaf:Person,
swrc:Person, etc.). Meanwhile, more specific types, e.g.,
“Engineer” and“Scientist”, will be recommended to the user,
as depicted in Fig. 1. The user can proceed to more specific
types to refine the search results further, or return to more
general ones using the track bar.

2.2 Architecture
Fig. 2 depicts the architecture of the Falcons system. In Fal-
cons, an RDF crawler is set up to download RDF documents.
General keywords are enumerated and combined as queries,
sent to Google5 and Swoogle6 to obtain seeds. The crawler
is also customized to download RDF documents from DB-
pedia7, Hannover DBLP Bibliography8, Ping the Semantic

5http://www.google.com/.
6http://swoogle.umbc.edu/.
7http://dbpedia.org/.
8http://dblp.l3s.de/d2r/.

RDF

Crawler

Seeds

Document

Cache

User Interface

Document-level Analysis

Typing Analysis

Textual Description

Analysis

Global Analysis

Vocabulary

Identification

Summarization

Indexing

Web

Reasoning

Jena Parser

Analytical Data
Triple Store

Summary

Cache

Index

Figure 2: The architecture of Falcons Object Search.

Web.com9, SchemaWeb10, etc. At the time of writing, more
than 7 million well-formed RDF documents, containing 250
million RDF statements, have been successfully downloaded.

RDF documents are parsed by Jena 11. RDF statements
and the intermediate results of document-level analysis are
stored in MySQL12 database. All the URIs discovered in
the documents are sent to the seeds database for crawling.
The global analysis distinguishes between concepts and ob-
jects, identifies valid vocabularies, and performs the index-
ing periodically. At the time of writing, about 30 million
SW objects have been indexed. Finally, the summarization
module computes and caches summaries of SW objects.

3. MAPPING TERMS TO SW OBJECTS
On the Web of documents, keyword-based search engines
extract terms from documents and map query terms to doc-
uments based on an inverted index. On the Web of data,
SW objects are identified by URIs, from which only limited
useful terms (maybe just local names) can be extracted. So
a widely used method is to use both local names and associ-
ated literals of SW objects to form their textual description
and then build the inverted index.

Actually, in RDF, semantic links can be established from SW
objects to either SW objects (by using object properties) or
literals (by using datatype properties). They are just two
styles of describing SW objects, so only indexing the terms
in the literals may cause that some potentially matched SW
objects are missing for some queries, considering that query
terms may indicate anything. For example, Fig. 3 depicts
that the SW object wiki:WWW2008 identifies the WWW2008
conference held in Beijing. If just the terms extracted from
the literals are indexed, namely “Conference”, “17th Inter-
national World Wide Web Conference”, and “WWW2008”
here, this SW object will not be retrieved when the user
states “conference” and “Beijing” to indicate the conferences
held in Beijing because “Beijing” is not indexed. Such ob-

9http://pingthesemanticweb.com/.
10http://www.schemaweb.info/.
11http://jena.sourceforge.net/.
12http://www.mysql.com/.

wiki:Beijing

wiki:WWW2008

WWW2008

rdfs:label

http://ontoworld.org/wiki/Special:ExportRDF/WWW2008

17th International World Wide Web Conference

property:Title

property:Has_location_city

wiki:Category-3AConference

rdf:type

Conference

rdfs:label

Figure 3: A fragment of the RDF statements about
wiki:WWW2008.

servation motivates us to expand the textual description of
SW objects from their associated literals to also include the
textual description of their neighboring SW objects in RDF
graphs.

3.1 Expanding Textual Description of SW Ob-
jects

In graph theory, the neighbors of a vertex is defined to be
the vertices adjacent to it (excluding itself), i.e., an edge
exists between a vertex and its neighbor. However, such
definition is not suitable for RDF graphs owing to the use
of blank nodes. In RDF, blank nodes indicate the existence
of things without being assigned global identifiers, and we
cannot extract any terms from blank nodes. Actually, blank
nodes are created for connecting other SW entities or literals.
So in a traversing view, starting from some SW object, we
traverse links to collect vertices as its neighbors and stop
until reaching URIs or literals (but not blank nodes).

To formalize, we use a notion of RDF sentence [17]. In
brief, an RDF sentence is a set of RDF statements that con-
tain common blank nodes. Fig. 4 gives an example. For
an RDF sentence s, let Subj(s) and Obj(s) be the set of
URIs placed at the subject, and the set of URIs or liter-
als placed at the object of any RDF statement in s, re-
spectively. For example, for the RDF sentence s in Fig.
4, Subj(s) = {http://kmi.open.ac.uk/people/tom/} and
Obj(s) = {“UK Centre for Materials Education”,
foaf:Project, http://www.materials.ac.uk/}. An equiv-
alent definition of RDF sentence is the Minimum Self-Contained

Graph [16]. Following the theorems in [16], an RDF graph g
can be decomposed into a unique set of RDF sentences, de-
noted by Sent(g). Then, in g, the neighbors of a SW object
o, denoted by Neib(o, g), can be formulated as follows:

Neib(o, g) =
⋃

s∈Sent(g)
o∈Subj(s)

Obj(s). (1)

Readers will notice that we collect neighbors by traversing
only forward links. Actually, on the Web of data, forward
and backward links should be treated equivalently. But we
find that only traversing forward links works well enough
in practice, while traversing backward links may bring too
many neighbors for “popular” SW objects, which is difficult
to process.

http://www.materials.ac.uk/

http://kmi.open.ac.uk/people/tom/

UK Centre for Materials Education

foaf:name

foaf:pastProject

rdf:type

foaf:Project

foaf:homepage

http://kmi.open.ac.uk/people/tom/rdf

Figure 4: An RDF sentence.

We use the well-known Vector Space Model (VSM) to rep-
resent terms, that is, either the textual description of a SW
object or the textual description of a keyword query is rep-
resented as a word vector in the word vector space.

We first consider a single RDF document, and we use g to
denote the RDF graph serialized by the document. For a
URI r, let LN(r) denote the word vector representing its
local name, and let Lab(r, g) and Comm(r, g) denote the
word vectors representing its labels (values of rdfs:label)
and comments (values of rdfs:comment) in g, respectively.
For a literal r, let LexForm(r) denote the word vector rep-
resenting its lexical form. Then, for a URI or literal r, we
define LocText(r, g) as the word vector representing its local
textual description, or “name”, as follows:

LocText(r, g) =











Lab(r, g), for a URI r, Lab(r, g) 6= 0

LN(r), for a URI r, Lab(r, g) = 0

LexForm(r), for a literal r.

(2)

Then, as mentioned, for each SW object o, we index not
only its basic textual description such as its local name and
labels but also the textual description from its neighbors in
g:

Text(o, g) =α · LN(o) + β · Lab(o, g) + γ · Comm(o, g)

+
∑

r∈Neib(o,g)

LocText(r, g), (3)

where α, β, and γ are the weighting coefficients to be tuned,
and are set to 10, 5, and 2 in Falcons, respectively.

Consequently, for wiki:WWW2008 in Fig. 3, besides the terms
in its associated literals, the terms “Beijing” (from wiki:

Beijing) and“Conference”(from wiki:Category-3AConference)
are also indexed to it so that users can find it with any of
these terms. Apparently, compared to traditional methods,
more SW objects are indexed from each term owing to the
introduction of terms from neighboring SW objects. So we
use the weighting scheme in (3) to ensure that well matched
SW objects, e.g., whose labels match the query terms, can
be ranked higher.

SW Object 1
 Labels
 Comments

Text from

Neighbors

Labels
 Comments

Text from

Neighbors

SW Object 2
 Labels
 Comments

Text from

Neighbors

Document

URL 2

Document

URL 1

Figure 5: Recording the textual description of SW
objects from different documents on database.

Finally, notice that on the Web of data, a SW object may
be described by many documents. To enable cross-document
search, for each SW object o, we aggregate its textual de-
scription from all these documents:

Text(o) =
∑

g

Text(o, g). (4)

3.2 Implementation
There are two major steps in computing the textual descrip-
tion of SW objects. Firstly, it requires an algorithm to find
all the neighbors for each SW object. The key point is to
decompose an RDF graph into a set of RDF sentences. To
achieve this, we transform an RDF graph into an undirected
statement graph, where vertices represent RDF statements
in the original RDF graph, and an edge exists between two
statements iff they contain common blank nodes. Then each
connected component in the statement graph corresponds to
an RDF sentence. Alternatively, we can also use depth-first
search to traverse the original RDF graph to find all the
neighbors for each SW object.

Secondly, when computing the global textual description of
each SW object according to (4), it is inefficient to parse all
the documents on the fly. Instead, we parse each document
just for once. As depicted in Fig. 5, for each document,
we extract for each SW object (described by this document)
its labels, comments and the terms from its neighbors, and
record them on database. Indexes are created on both SW
objects and document URLs. The index on SW objects is
used to collect all the terms from different documents for
each SW object; the index on document URLs is used for
document updating. Finally, we compute the global textual
description of SW objects and update the inverted index
periodically. The inverted index is implemented based on
Apache Lucene13.

4. NAVIGATING CLASS HIERARCHIES FOR
QUERY RESTRICTION

We use information retrieval (IR) techniques to implement
the index and provide search. However, such plain term-
matching method often returns a large amount of results,
most of which are not interesting to users. It is because users
lack ways to precisely restrict the queries. The same problem
is encountered in Web document search. To help users find
more relevant information in a shorter time, Web documents
can be classified into predefined categories so that users can
restrict the queries and find more accurate documents by
specifying the desired category [5].

13http://lucene.apache.org/.

On the Semantic Web, we can also classify SW objects into
predefined categories such as the Open Directory Project14.
But actually, most SW objects were born and classified pre-
cisely into one or more classes by using rdf:type. We can
utilize such information to provide interfaces for users to
restrict the queries. Some Semantic Web search engines
such as SWSE [11] and an old version of our Falcons Ob-
ject Search have implemented this method. Nevertheless,
after two-month running, we have learnt two major lessons.
Firstly, indexing only explicitly stated types is insufficient.
For example, in Fig. 3, wiki:WWW2008 is explicitly stated
to be an instance of wiki:Category-3AConference (confer-
ence); we also know that wiki:Category-3AConference is
a subclass of wiki:Category-3AResearch_event (research
event)15. However, when wiki:Category-3AResearch_event

is selected to restrict the query, wiki:WWW2008 will not be
returned because no reasoning is performed. Secondly, in
many cases, a lot of classes are recommended to users as
candidate restrictions but these classes present low diver-
sify, e.g., wiki:Category-3AResearch_event and its sub-
class wiki:Category-3AConference may be recommended
simultaneously.

To solve these problems, we perform reasoning to discover
implicitly stated classes for SW objects. Besides, it is com-
mon to manage complexity by using hierarchy [4], so we
provide users with a navigation hierarchy of classes instead
of a simple list to restrict the queries. Techniques that make
possible such capabilities will be presented in detail in the
following subsections.

4.1 Vocabularies on the Semantic Web
Before we perform reasoning on the collected class hierar-
chies from the Semantic Web, we must solve several funda-
mental problems, e.g., which URIs identify classes and which
RDF statements (axioms) will be accepted by the reasoning
engine, because, on the Semantic Web, anyone can say any-
thing.

Here we formulate a vocabulary v as a quadruple < uri, C, P, D >,
where uri is the URI identifying this vocabulary, C is the
set of classes in this vocabulary, P is the set of properties
in this vocabulary, and D is a set of RDF documents that
“define” this vocabulary. Details about these components
are given in the following.

Most vocabularies on the Semantic Web use a “hash names-
pace” or a “slash namespace” [12]. For example, the SKOS
Core Vocabulary uses a “hash namespace” http://www.w3.

org/2004/02/skos/core. The URIs of the classes and prop-
erties in such vocabularies are constructed by appending a
hash character (‘#’) and a local name to the vocabulary URI,
e.g., http://www.w3.org/2004/02/skos/core#Concept. The
FOAF vocabulary uses a “slash namespace”. In this case,
the vocabulary URI ends with a forward slash character
(‘/’), and the URIs of the classes and properties in such
vocabularies are constructed by directly appending a lo-
cal name to the vocabulary URI, e.g., http://xmlns.com/
foaf/0.1/Person. We use these rules to find out candidate

14http://www.dmoz.org/.
15See http://ontoworld.org/wiki/Special:ExportRDF/
Category:Conference.

foaf:Person

foaf:Agent

foo:Agent

foo:Person

foaf:Group

(a)

foaf:Person

foaf:Agent

foo:Agent

foo:Person

foaf:Group

(b)

Figure 6: Transforming cross-vocabulary (a) class equivalence axioms into (b) class inclusion axioms.

classes (properties) for each vocabulary. Next, some classes
(properties) will be cleaned from corresponding vocabular-
ies. For example, we find that a class foaf:#Person (NOT
foaf:Person) is used in many RDF documents (actually it
is a mistake in writing). Apparently this class is not in the
current FOAF vocabulary and should be cleaned out. The-
oretically, people or organizations who declare URIs should
own or be delegated to own these URIs in the real world. So
for simplicity, we accept that a class (property) belongs to
its corresponding vocabulary if we find that the URI of the
class (property) is used to identify a class (property) in (at
least) one RDF document satisfying that the host compo-
nent [3] of the document URL coincides with the host com-
ponent of the vocabulary’s URI. By combining this rule and
the previous string manipulation technique, all the classes
(properties) of a vocabulary can be determined.

There are at least two ways for developers to define a vo-
cabulary. A convenient way for small vocabularies such as
FOAF is to encode all the axioms about a vocabulary in
one RDF document and serve it when the vocabulary URI
is dereferenced16. Alternatively, for large vocabularies such
as the YAGO Classification (used by DBpedia), only a sub-
set of axioms about a class is served when the URI of the
class is dereferenced. So for a vocabulary v, v.D includes
a possible RDF document obtained by dereferencing v.uri,
and at most |v.C| RDF documents obtained by dereferenc-
ing the URIs of the classes in v.C17.

4.2 Class Subsumption Reasoning on Multi-
ple Vocabularies

For simplicity, only the class inclusion axioms on simple
classes (identified by URIs) are considered in this paper.
However, it is not appropriate to perform reasoning on all
such axioms decoded from all the discovered documents be-
cause, e.g., one can easily mess up the system by encoding
rdfs:Resource ⊑ foaf:Person in some document.

Therefore, as a preliminary step, we perform reasoning on
a conservative set of axioms. Formally, for each vocabulary
v, only those axioms decoded from v.D are allowed to con-
strain the meaning of the classes in v.C. It is inspired by
the ontology modularization work in [9]. In other words,

16In this paper, the ‘Accept’ field in the header of the HTTP
request is set to ‘application/rdf+xml’ when we say “deref-
erence”.

17Properties are not considered in class-based query restric-
tion.

Column 1

Class 1

Class 2

Class 3

Class 4

Class 1

Column 2

Row 1

Row 2

Row 3

Figure 7: Recording the class inclusion axioms on
database.

each vocabulary is allowed to reuse the classes from other
vocabularies but cannot further constrain their meaning. As
an example, for the axiom rdfs:Resource ⊑ foaf:Person,
it will be accepted by the reasoning engine iff it comes from
some document in RDFS.D.

Specifically, class equivalence axioms are widely used on the
Semantic Web. A synthetic vocabulary FOO is depicted in
Fig. 6(a), in which two class equivalence axioms are used
to characterize the classes in the vocabulary. If these ax-
ioms are simply accepted by the reasoning engine, it can
be inferred that foaf:Agent and foaf:Person are equiva-
lent, which is unexpected. Actually, these axioms violate
the previous principle because they constrain the meaning
of some classes (foaf:Agent and foaf:Person) out of the
FOO vocabulary. However, in order to preserve the vocabu-
lary authors’ original intention, we do not simply reject these
axioms, but instead, we transform them into class inclusion
axioms, as depicted in Fig. 6(b). Then the meaning of the
classes in the FOO vocabulary is more or less constrained
while the meaning of the classes in the FOAF vocabulary is
not further constrained.

By applying these principles, we can determine which ax-
ioms will be accepted by the reasoning engine, and then we
can perform reasoning. Actually, the reasoning can be per-
formed either at search time or at indexing time. In the
former case, when one class is selected to restrict the query,
all its subclasses can be inferred on the fly and used to ex-
pand the restriction. However, it will definitely reduce the
search efficiency as well as the user experience. So we choose
the latter one.

Axioms are recorded on a two-column table R in database, as
depicted in Fig. 7. Three basic functions, LoadSupsOf(c, R),

Table 1: The algorithm to compute the transitive
closure of the class subsumption relation

1. procedure(R)
2. Set C := LoadAllClasses(R);
3. while C 6= ∅
4. choose c from C;
5. Set axioms := ∅;
6. Set traversed := ∅;
7. Set untraversed := {c};
8. while untraversed 6= ∅
9. choose s from untraversed;
10. remove s from untraversed;
11. remove s from C;
12. if s /∈ traversed
13. add s to traversed;
14. for each s′ in LoadSupsOf(s, R)
15. add s ⊑ s′ to axioms;
16. if s′ /∈ untraversed AND s′ /∈ traversed
17. add s′ to untraversed;
18. end if;
19. end for;
20. end if;
21. end while;
22. Set axioms+ := TransitiveClosure(axioms);
23. for each a in axioms+

24. Write(a, R);
25. end for;
26. end while;
27. end procedure;

LoadAllClasses(R), and Write(a, R) are defined on R:
LoadSupsOf(c, R) returns all the superclasses of the class
c in the current R; LoadAllClasses(R) returns all the dis-
tinct classes in column 1 of R; Write(a,R) inserts a class
inclusion axiom a into R if a does not exist in R. These
functions can be implemented using SQL statements easily.
Based on these functions and TransitiveClosure, the tran-
sitive reasoner provided by Jena, we implement a simple
algorithm to compute all the superclasses of each class (in-
cluding explicitly stated and inferred) and write them back
to R. In other words, we will compute the transitive closure
of the class subsumption relation.

The algorithm is presented in Table 1. In brief, for each
class, all its superclasses as well as the class inclusion axioms
are collected in a breadth-first-search way (lines 4 to 21).
Next, the transitive reasoner in Jena is called to compute
the transitive closure of this set of collected axioms, and
then they are written back to R (lines 22 to 25).

The algorithm can be significantly optimized. Firstly, it can
be easily converted into a parallel version. Secondly, if the
class chosen at line 4 has never been instantiated, it is not
necessary to continue this run of the loop because, either
all its superclasses will be computed when the algorithm
processes one of its subclass (been instantiated), or it is not
necessary at all to compute them since they will never be
used in the next indexing step.

Term 1

SW Object 1
 Class 1, Class 2
 ...

Class 1

SW Object 2
 Class 1
 ...

SW Object 3
 Class 2
 ...

Class 2
Term 2

Figure 8: Indexing the types of SW objects.

Readers will note that the proposed method cannot deal
with vocabulary updating. It is too complicated to support
updating because we will have to keep track of where each
axiom originates from. Nevertheless, we find that, based on
more than 4,000 vocabularies our system has discovered, it
takes no more than 3 hours to accomplish the computation of
the transitive closure (including parsing documents), which
is tolerable compared to the update period of the system.

4.3 Indexing Classes of SW Objects
In the system, there are two ways to use the transitive clo-
sure of the class subsumption relation. When one class is
selected to restrict the query, we can look up all its sub-
classes in R to expand the restriction. In this way, each of
these subclasses is represented as a clause in the constructed
boolean query. However, the search efficiency will greatly
decrease and the search may even fail to proceed when the
query contains too many clauses. Thus, alternatively, for
each SW object, we directly index all its classes (including
the inferred ones). In this way, more disk space is required
to store the index but the search efficiency is not affected.

The indexing scheme is depicted in Fig. 8. On one hand,
based on the inverted index (from terms to SW objects),
each term in the query is mapped to a set of SW objects.
On the other hand, based on the index from classes to SW
objects, each class is mapped to its instances, which is also
a set of SW objects. Then for a keyword query with class
restrictions, the intersection of such sets are served as the
results and returned to the user. All these capabilities can
be easily implemented based on Apache Lucene.

The SW objects in the results are ranked by a combina-
tion of their relevance to the query and their popularity.
The relevance score is calculated by using the TF/IDF tech-
nique, which is natively supported by Apache Lucene. The
popularity score is calculated based on the number of RDF
documents that the SW object is used in.

4.4 Navigating Class Hierarchies
The class hierarchy in this case is different from the category
hierarchy used by many E-Commerce sites. On E-Commerce
sites, the category hierarchy is single, carefully designed,
and relatively small-scale (generally including hundreds of
categories). But the class hierarchy on the Semantic Web
comprises a large amount of class hierarchies from different
vocabularies of various qualities. At the time of writing, Fal-
cons has discovered more than 2 million classes, and more
than 200 thousand of them (or their subclasses) have been

instantiated. Owing to the large scale, many general index-
ing methods cannot be directly applied.

In Section 2, we have shown that we provide user-friendly
tags, instead of the URIs of the classes, as candidate restric-
tions. Each tag may correspond to more than one classes.
So we formulate a user query q as a two-tuple < T, C >,
where T is a set of query terms and C is a set of classes
for query restriction. A SW object is an answer to q iff its
textual description contains all the terms in q.T and it is an
instance of at least one class in q.C. Initially, the user does
not select any class restrictions, and C is implicitly set to
{rdfs:Resource}. Then, navigating the hierarchy can be
viewed as issuing a sequence of queries with the same set of
query terms but different sets of class restrictions. Moving
down (up) the hierarchy is to replace the class restrictions
with more specific (general) ones.

So the search engine needs to determine which tags should
be provided as candidate further restrictions at the next
level. To achieve this, we devise a method composed of the
following steps:

1. Find out all the answers to a given query < T, C >;

2. Collect the classes of the answers and rank them;

3. Select top K classes from the ranked list that satisfy
the following constraints: (a) each selected class must
be a strict subclass of some class in C, and (b) the class
subsumption relation does not hold between any pair
of the selected classes;

4. Map the selected classes to tags and present them to
the user.

We have presented the first step in Section 4.3. Next, for
each SW object, all its classes are not only indexed but also
stored in the index, as depicted in Fig. 8. So we can simply
iterate over the answers to collect their classes. However,
for some queries, there may be a large amount of answers
so that iterating over all of them takes too much time and
is intolerable in terms of user experience. To make trade off
between the coverage and the efficiency, we only iterate over
the first 1,000 answers. It is because, in most cases, users
never browse that many answers. Actually some traditional
Web search engines, such as Google, also just serve limited
results.

Let C̃ be the set of classes collected from the first 1,000 an-
swers. We consider that, for each query, if one class covers
more answers, it will be more likely to be recommended to
the user as candidate further restrictions. When we con-
struct C̃, we also associate each class in C̃ with the size of
its instances in the answer set. Then, we rank the classes
in C̃ by the associated size in the descending order, and
scan downwards the ranked list to accept at most K classes,
denoted by C̃K . Each accepted class must satisfy two condi-
tions. Firstly, it must be a strict subclass of some class in C,
i.e., c̃ will be accepted only if ∃c ∈ C, c̃ < c. Secondly, it is
required that all the accepted classes can provide good cov-
erage. So one accepted class is not allowed to be a subclass of
any other accepted classes, i.e., ∄c̃1, c̃2 ∈ C̃K , c̃1 ⊑ c̃2. When

swrc:Person

swrc:Student
swrc:Employee

swrc:AcademicStaff

3

4

6

2

swrc:Graduate

2
swrc:Manager
 1

Figure 9: An example for navigation.

scanning a class c̃, if accepting it violates this condition ow-
ing to an accepted class c̃0, we will either reject c̃ or replace
c̃0 with c̃: if c̃ is associated with a smaller size than c̃0, c̃
will be rejected; if they are associated with the same size,
we will accept the more specific one between them. All the
subsumption checks are supported by the transitive closure
of the class subsumption relation stored in R, as depicted in
Fig. 7.

Finally, each class in C̃K is mapped to a user-friendly tag.
We just use its label, or, if cannot find any labels, use its
local name. So it is possible that many classes are mapped
to one tag.

As an example, Fig. 9 depicts a class hierarchy extracted
from the SWRC vocabulary18, and each class is associated
with a number indicating the size of its instances in the an-
swer set for a previous query. Suppose that the user has
selected swrc:Person in the previous query. The following
illustrates how to recommend tags at the next level. Here
the ranked list of classes is: swrc:Person, swrc:Employee,
swrc:AcademicStaff, swrc:Student/swrc:Graduate, and swrc:

Manager, and let K = 2. Firstly, swrc:Person will not
be accepted because it is not a strict subclass of the only
class in the previous class restriction (itself). Next, its strict
subclass swrc:Employee will be accepted, but then swrc:

AcademicStaff will not be accepted because it is a sub-
class of swrc:Employee and is associated with a smaller
size. Next, swrc:Student and swrc:Graduate are associ-
ated with the same size, but only swrc:Graduate will be
accepted because it is more specific. So finally, the accepted
classes will be swrc:Employee and swrc:Graduate, and the
recommended tags at the next level will be “Employee” and
“Graduate”.

5. DISCUSSIONS ON INTEGRATING CLASS
HIERARCHIES

There are many class hierarchies on the Semantic Web and
some of them model overlapped domains. So it is necessary
and also possible to integrate these hierarchies.

Integrating hierarchies is not a new topic. Recent ontol-
ogy integration approaches and Web taxonomy integration
approaches can be found in [1] and [18], respectively. Gen-
erally, there are at least two ways to integrate hierarchies.
Firstly, we can insert [13] or map [2] classes from all the
hierarchies into a selected master hierarchy. It is feasible to

18http://swrc.ontoware.org/ontology.

apply this approach to class hierarchies from the same do-
main. But in our case, vocabularies on the Semantic Web
model various domains and it is difficult to find such a vo-
cabulary that can cover all the domains. Actually if such
a vocabulary exists, we even do not need any other ones.
Secondly, we can integrate all the existing hierarchies into a
new one [15]. However, this approach often requires a large
amount of instances that simultaneously instantiate multiple
classes from different hierarchies, but the current Semantic
Web cannot provide.

In this paper, actually all the class hierarchies are integrated
in a very preliminary way, i.e., only a conservative set of class
inclusion axioms are used to connect different hierarchies, as
described in Section 4.2. In this way, the “precision” of the
integration can be guaranteed. However, inevitably, there
are still a large amount of classes that can be but have not
been merged, i.e., the “recall” is low.

One way to find such classes is to use ontology matching ap-
proaches [8]. But, two points restrict their use in this case.
On one hand, ontology matching approaches are often de-
signed to match a pair of ontologies. Then, we have to apply
these approaches to all pairs of class hierarchies (numbered
in the thousands). It will take much time to accomplish
the task. On the other hand, most ontology matching ap-
proaches provide mappings as suggestions to human beings.
So the resulting mappings are not stably reliable. In other
words, the precision is not always 100%. And apparently, it
is impractical to manually check all the resulting mappings,
but even one error may mess up the whole hierarchy after
the reasoning is performed.

Therefore, we do not use any matching approaches to pro-
vide third-party axioms. But in future work, we will still
try to find appropriate ways to further integrate class hier-
archies because it is necessary and useful in search engines.

6. SUMMARIZING SW OBJECTS
In the search results page, for each SW object, we present its
types and labels for users to understand its denotation. But
in some cases, types and labels may be ambiguous or even
not available. Alternatively, users can directly dereference
the URIs to view the content served by their owners. How-
ever, not all the URIs are dereferenceable, and the served
Web pages or RDF data are limited. So some methods are
still needed to help users understand what a SW object de-
notes and how to use it appropriately in RDF data.

To achieve this, for each SW object, we extract a set of RDF
statements about it on the Semantic Web and organize them
into a summary. A high-quality summary should be:

• Informative: the extracted statements should provide
sufficient information about a SW object to help users
understand.

• Scalable: the size of the extracted statements should
be adaptable to serve different users.

• Authoritative: the extracted statements should derive
from reliable data sources.

Figure 10: An example summary.

• Comprehensive: it is expected that the extracted state-
ments describe many different aspects and derive from
many different data sources.

• Readable: the extracted statements should be well or-
ganized and friendly presented.

So actually, the key point is to devise a method to evalu-
ate and rank all the RDF statements for each SW object.
However, we have not found any efficient algorithms that
can work on hundreds of millions of dynamically updated
statements.

At the time of writing, the SW object summarization in Fal-
cons is still a preliminary work. Summaries are computed
on the fly and then cached for future requests. For each SW
object, all the RDF documents describing it are classified
into three categories. The first category includes a possible
RDF document served by dereferencing its URI. The RDF
statements about the SW object in this document, often
describing in a defining way, are more reliable than all the
others. Besides, a SW object is often described by many
other documents on its owner’s host, and they comprise the
second category. Generally, these RDF statements are also
reliable. Some of them supplement its definitions (maybe in-
accurate), while some others establish links from other SW
objects to this one. So they often provide representative
examples about how to use this SW object correctly. At
last, all the others RDF documents belong to the third cat-
egory. The RDF statements about a SW object from such
documents are not quite reliable.

When constructing the summary of a SW object, we extract
more RDF statements from the RDF documents in the first
and second categories, and still extract a few ones from the
third category. Because it is lacking of efficient ranking algo-
rithms, the selection in each category is performed randomly.
Nevertheless, it is observed that for most SW objects, all the
RDF statements about them that can be extracted from the
first and second categories are limited, so the summaries can
cover sufficient critical RDF statements in most cases.

Finally, extracted RDF statements are clustered and then
presented. Statements are put into the same cluster iff
their predicates come from the same vocabulary. An exam-

ple summary of http://www.w3.org/People/Berners-Lee/
card#i is depicted in Fig. 10. Each tab corresponds to a
cluster, in which the statements often characterize a specific
aspect of the SW object, e.g., about the contact information
(FOAF) or about the project information (DOAP). Each
RDF statement is also associated with its source.

7. RELATED WORK
TAP [10] is one of the earliest keyword-based Semantic Web
search systems. It maps keywords to the labels of SW ob-
jects and selects a SW object based on the popularity, user
profile, and search context. TAP extracts a subgraph from
data and serializes it in the results. Swoogle [7], as one of
the most popular Semantic Web search engines, provides ser-
vices for searching terms (classes and properties) and ontolo-
gies. Terms and ontologies are ranked based on Swoogle’s
rational surfer model. Swoogle also provides their statisti-
cal metadata. SWSE [11] provides keyword-based search for
SW objects. Similar to Falcons, SWSE enables users to fil-
ter the search results by specifying the classes collected from
the results. To show a SW object, SWSE presents a list of
RDF statements as well as their sources, and enables users
to navigate related SW objects. Semantic Web Search [14]
focuses on searching for specific types of SW objects, such
as FOAF Person and RSS Item. The search results of this
system are organized by documents so it cannot provide an
integrated view of SW objects. Similarly, Watson [6] also
organizes results by documents. Watson enables users to
specify the scope that keywords should be mapped to, such
as local names, labels, or any literals.

For keyword queries, most of these systems match query
terms with the local names and associated literals of SW ob-
jects. Falcons expands the scope to also include the descrip-
tion of neighboring SW objects, so that it is more adaptable
to keyword queries. Both SWSE and Falcons dynamically
recommend classes for refining the search results. The dis-
tinguished features of Falcons Object Search is that it per-
forms reasoning to obtain implicit types of SW objects, and
uses hierarchy instead of list to manage the complexity of
presenting tremendous classes.

8. CONCLUSION
To promote the development of a Web of data, developers
are suggested to reuse existing URIs to identify things. To
serve it, the Falcons system provides a keyword-based ob-
ject search service for the purpose of reuse as well as the
information needs. In Falcons Object Search, queries can
be refined by navigating class hierarchies, integrated from
distributed vocabularies on the Semantic Web.

The technical contributions of this paper are: a method to
construct comprehensive textual description of SW objects;
an approach to indexing SW objects from their classes and
ancestor classes, including class subsumption reasoning on
multiple vocabularies; a class recommendation technique to
enable navigating class hierarchies; a preliminary summa-
rization method for SW objects.

In future work, we aim to find or devise reliable ways to
match the classes from different vocabularies. We are also
working on an improved SW object summarization.

9. ACKNOWLEDGMENTS
This work is supported in part by the NSFC under Grant
60773106, and in part by the 973 Program of China under
Grant 2003CB317004.

10. REFERENCES
[1] S. Abels, L. Haak and A. Hahn. Identification of

common methods used for ontology integration tasks.
In Proc. IHIS, pages 75–78, 2005.

[2] Z. Aleksovski, W. ten Kate and F. van Harmelen.
Exploiting the structure of background knowledge
used in ontology matching. In Proc. OM, pages 13–24,
2006.

[3] T. Berners-Lee, R. Fielding and L. Masinter. Uniform
resource identifier (URI): generic syntax. RFC 3986,
2005.

[4] S. Chakrabarti, B. Dom, R. Agrawal and P.
Raghavan. Using taxonomy, discriminants, and
signatures for navigating in text databases. In Proc.

VLDB, pages 446–455, 1997.

[5] S. Chakrabarti, B. Dom and P. Indyk. Enhanced
hypertext categorization using hyperlinks. In Proc.

SIGMOD, pages 307–318, 1998.

[6] M. d’Aquin, M. Sabou, M. Dzbor, C. Baldassarre, L.
Gridinoc, S. Angeletou and E. Motta. WATSON: a
gateway for the semantic Web. In Proc. ESWC

Posters, 2007.

[7] L. Ding, R. Pan, T. Finin, A. Joshi, Y. Peng and P.
Kolari. Finding and ranking knowledge on the
semantic Web. In Proc. ISWC, pages 156–170, 2005.

[8] J. Euzenat and P. Shvaiko. Ontology matching.
Springer-Verlag, Berlin Heidelberg, 2007.

[9] B.C. Grau, I. Horrocks, Y. Kazakov and U. Sattler. A
logical framework for modularity of ontologies. In
Proc. IJCAI, pages 298–303, 2007.

[10] R. Guha, R. McCool and E. Miller. Semantic search.
In Proc. WWW, pages 700–709, 2003.

[11] A. Harth, A. Hogan, R. Delbru, J. Umbrich, S.
O’Riain and S. Decker. SWSE: answers before links!
In Semantic Web Challenge, 2007.

[12] D. Berrueta and J. Phipps. Best practice recipes for
publishing RDF vocabularies. W3C Working Draft,
2008.

[13] S. Rajan, K. Punera and J. Ghosh. A maximum
likelihood framework for integrating taxonomies. In
Proc. AAAI, pages 856–861, 2005.

[14] Semantic Web Search.
http://www.semanticwebsearch.com/.

[15] G. Stumme and A. Maedche. FCA-MERGE:
bottom-up merging of ontologies. In Proc. IJCAI,
pages 225–230, 2001.

[16] G. Tummarello, C. Morbidoni, R. Bachmann-Gmür
and O. Erling. RDFSync: efficient remote
synchronization of RDF models. In Proc. ISWC, pages
537–551, 2007.

[17] X. Zhang, G. Cheng and Y. Qu. Ontology
summarization based on RDF sentence graph. In Proc.

WWW, pages 707–716, 2007.

[18] D. Zhang and W.S. Lee. Learning to integrate Web
taxonomies. J. Web Sem., 2(2):131–151, December
2004.

