
Methods as Action Knowledge:
Exploring the Concept of Method Rationale in Method

Construction, Tailoring and Use

Pär J Ågerfalk and Brian Fitzgerald

Dept of Computer Science and Information Systems
University of Limerick, Limerick, Ireland

{par.agerfalk, bf}@ul.ie

Abstract. Systems development methods are used to express and communicate
knowledge about systems and software development processes; i.e. methods
encapsulate knowledge. Since methods encapsulate knowledge, they also
encapsulate rationale. Rationale can in this context be understood as the reasons
and arguments for particular method prescriptions. In this paper we show how
the combination of two different aspects of method rationale can be used to
shed some light on the communication and apprehension of methods in systems
development. This is done by way of clarifying how method rationale is present
at three different levels of method existence. By mapping existing research on
methods onto this model, we conclude the paper by pointing at some research
areas that deserve attention and where method rationale could be used as an
important analytic tool.

1 Introduction

Systems development methods are used in systems development as a means to
express and communicate knowledge about the systems/software development
process. The idea is that methods encapsulate knowledge of good design practice so
that developers, presumably less experienced than the method developer, can be more
effective, efficient and confident in their work. Despite this, it is a well known fact
that many software organizations do not use methods at all [1, 2], and when methods
are used they are not used literally, ‘out of the box’, but adapted to suit the particular
development situation [3]. This tension between the method ‘as documented’ (or as
inter-subjectively agreed upon) and the method ‘in use’ has been described as a
‘method usage tension’ between ‘method-in-concept’ and ‘method-in-action’ [4]. This
tension has given rise to an array of different approaches, ranging from contingency
factor driven method engineering [5] through method tailoring and configuration [3,
6, 7] to the various agile methods, such as XP [8] and SCRUM [9].

A basic condition for a method to be accepted and used is that method users
perceive it to be useful in their development practice [10]. For someone to regard a
piece of knowledge as valid and useful the knowledge must be possible to rationalize,
i.e. the person needs to be able to make sense of it and incorporate it into their view of

the world. Ethnomethodologists refer to this property of human behaviour as
‘accountability’ [11-13]; people require an account of the truth or usefulness of
something in order to accept it as valid1. This is probably particularly true in the case
of method prescriptions since method users are supposed to use these as a basis for
future actions, and thus use the method description as a partial account of their own
actions. Hence, we use the term ‘action knowledge’ to refer to the type of knowledge
that is codified as method descriptions.

In order to understand better the rationalization of system development methods,
the concept of method rationale has been suggested [14-17]. Method rationale
concerns the reasons and arguments behind method prescriptions, and why method
users (e.g. systems developers) choose to follow or adapt a method in a particular
way. This argumentative dimension is an important but often neglected aspect of
systems development methods [15-17]. One way of approaching method rationale is
to think of it as an instance of ‘design rationale’ [18] that concerns the design of
methods, rather than the design of computer systems [17]. This aspect of method
rationale captures how a method evolved and what options were considered during
the design process, together with the argumentation leading to the final design [17],
and provides insights into the process dimension of method development. A
complementary view on method rationale is based on the notion of purposeful-
rational action. This aspect of method rationale focuses the underlying goals and
values that make people chose options rationally [15, 16] and provides an
understanding of the overarching conceptual structure of a method’s underlying
philosophy.

In this paper we show how the combination of these two aspects of method
rationale can be used to shed some light on the communication, apprehension and
rationalization of methods in software and systems development. This will be done by
clarifying how method rationale is present at three different levels of method
existence. By mapping existing research on methods onto this three-level model, we
conclude the paper by pointing at some areas that deserve attention and where method
rationale could be an important analytic tool.

The paper proceeds as follows. Section 2 elaborates the concept of action
knowledge and how methods represent an important instance of such knowledge.
Section 3 looks at how methods as action knowledge exist at different levels of
abstraction in systems/software development. It also relates these levels to the
corresponding actor roles taking part in the communication, interpretation, and
refinement of this knowledge. Sections 4 and 5 elaborate the concept of method
rationale as a way of representing the rationality dimension of methods as action
knowledge. Sections 6 and 7 reflect upon the existing research in systems/software
development methodology and discuss how method rationale can be used as a tool in
creating a more integrated understanding of methods, method configuration/tailoring
and agile development practices.

1 According to ethnomethodologist Harold Garfinkel, actions that are accountable are ‘visibly-

rational-and-reportable-for-all-practical-purposes’ [11].

2 Methods as Action Knowledge

When we think of software and systems development methods, what usually spring to
mind are descriptions of ideal typical software processes. Such descriptions are used
by developers in practical situations to form what can be referred to as methods-in-
action [19]. A method description is a linguistic entity and an instance of what can be
referred to as action knowledge [20, 21]. The term ‘action knowledge’ refers to
theories, strategies and methods that govern people’s action in social practices [20].
The method description is a result of a social action2 performed by the method creator
directed towards intended users of the method. A method description should thus be
understood as a suggestion by the method creator for how to perform a particular
development task. This ‘message’ is received and interpreted by the method user, and
acted upon by following or not following the suggestion (see Fig. 1); i.e. by
transforming the method description (or ‘formalized method’ [19] or ‘method-in-
concept’ [4]) into a method-in-action. The ‘method as message’ is formulated based
on the method creator’s understanding of the development domain and on their
fundamental values and beliefs. Similarly, the interpretation of a method by a method
user is based on their understanding, beliefs and values.

Method Creator Method User
Method

Description

Values,
Beliefs and

Understanding

Values,
Beliefs and

Understanding

InterpretationSuggestion Method-in-Action

Fig. 1. Method descriptions in a communication context.

It is possible to distinguish between five different aspects of action knowledge: a
subjective, an inter-subjective, a linguistic, an action and a consequence [20, 21].
Subjective knowledge is part of a human’s ‘subjective world’ and is related to the
notion of ‘tacit knowledge’ [23]. This would correspond to the two ‘clouds’ in Fig. 1.
This would also correspond to someone’s personal interpretation and understanding
of a method. Inter-subjective knowledge is ‘shared’ by several people in the sense that
they attach the same meaning to it. This could imply that some of the elements of the
‘clouds’ in Fig. 1 are agreed upon by the communicator (method creator) and
interpreter (method user), and that they thus attach the same meaning to, at least parts
of, a particular method. Linguistic knowledge is expressed as communicative signs,

2 According to sociologist Max Weber, a social action is that human behaviour to which the

actor attaches meaning and which takes into account the behaviour of others, and thereby is
oriented in its course [22].

for example, as the written method description in Fig. 1. As the name suggests, action
knowledge is expressed, or manifested, in action. This is the action aspect of
knowledge, or ‘method-in-action’. Finally, traces of the action knowledge might be
found in materialized artefacts, which constitute a consequence aspect of the
knowledge. This would correspond to, for example, produced models and
documentation as well as the actual software.

3 Abstraction Levels of Methods

As stated above, it is a well-known fact that a method-in-action usually deviates
significantly from the ideal typical process described in method handbooks and
manuals [1-3]. Such adaptations of methods can be made more or less explicit and be
based on more or less well-grounded decisions.

Methods need to be adapted to particular development situations since a method, as
described in a method handbook, is a general description of an ideal process. Such an
ideal type3 needs to be aligned with a number of situation-specific characteristics or
‘contingency factors’ [5, 7]. The process of adapting a method to suit a particular
development situation has been referred to as method configuration4 [7]. Method
configuration can be understood as a particular form of situational method
engineering taking one specific method as a base for configuration. This is in contrast
to most method engineering approaches, which assume that a situational method is to
be arrived at by assembling a (usually quite large) number of ‘atomic’ method
fragments [24, 25]. This latter form of method engineering allows for construction of
situational methods based on a coherent integration of fragments from different
methods. In many situations, a more relevant question to ask is: ‘what parts of the
method can be omitted?’ [3], bearing in mind that omitting a particular part of a
method may lead to undesired consequences later in the process. A typical example
would be if a particular artefact is not produced when it is needed to proceed
successfully with a subsequent activity.

When a situational method has been ‘configured’ or ‘engineered’ and is used by
developers in a practical situation, it is likely that different developers disagree with
the method description and adapt the method further to suit their particular hands-on
situational needs (as indicated above, it is actually impossible that a method-following
action is identical to the action prescribed and linguistically expressed by the method
– they represent different aspects of the same knowledge). As a consequence, the
method-in-action will deviate not only from the ideal typical method but also from the
situational method.

3 Max Weber introduced the notion of an ‘ideal type’ as an analytic abstraction. Ideal types do

not exist as such in real life, but are created to facilitate discussion. We use the term here to
emphasize that a formalized method, expressed in a method description, never exists as such
as a method-in-action. Rather, the method-in-action is derived from an ideal typical
formalized method. At the same time, a formalized method is usually an ideal type created as
an abstraction of existing ‘good practice’ [15].

4 Process configuration [6] and method tailoring [3] are other terms used to describe this.

Altogether this gives us three ‘abstraction levels’ of method: (a) the ideal typical
method that abstracts details and addresses a generic problem space, (b) the
situational method that takes project specifics into account and thus addresses a more
concrete problem space, and (c) the method-in-action, which is the ‘physical’
manifestation of developers’ actual behaviour ‘following’ the method in a concrete
situation. It follows from this that both the ideal typical method (a) and the situational
method (b) exist as linguistic expressions of knowledge about the software
development process. On the contrary, the method-in-action represents an action
aspect of that knowledge, which may of course be reconstructed and documented post
facto (in addition to the way it is manifested in different developed artefacts along the
way).

Fig. 2 depicts these three abstraction levels of method and corresponding actions
and communication between the actors involved. In Fig. 2, the Method User of Fig. 1
has been specialized into the Method Configurator (or process engineer) and the
Developer. Method configurators use the externalized knowledge expressed by the
method creator in the ideal typical method as one basis for method configuration and
subsequently communicates a situational method to developers. What is not shown in
Fig. 2 is that method construction, method configuration and method-in-action rely on
the actors’ interpretation of and assumptions about the development context. The
developer ‘lives’ directly with this context and thus focuses their tailoring efforts on a
specific problem space. The method creator, on the other hand, has to rely on an
abstraction of an assumed development context and thus focuses on a generic problem
space. Finally the method configurator supposedly has some interaction with the
actual development context, which provides a more concrete basis for configuring a
situational method.

Method
Creator

Developer
Ideal Typical

Method

InterpretationSuggestion Method-in-Action

Situational
Method Method

Configurator

InterpretationSuggestion

Problem Space
Generic Specific

Method
Construction

Method
Configuration

Fig. 2. Levels of method abstraction in methods as action knowledge.

In both method construction and method configuration, the method communicated
is a result of social action aimed towards other actors as a basis for their subsequent
actions. This means that method adaptation, both in construction and in-action, relies
on the values, beliefs and understanding of the different actors involved – and this is
where method rationale comes into play.

4 The Concept of Method Rationale

Since methods represent knowledge they also represent rationale. Therefore, a method
user ‘inherits’ both the knowledge expressed by the method and the rationale of the
method constructor [15]. It can be argued that regardless of the grounds, method
tailoring (both during configuration and in-action) are rational from the point-of-view
of the method user [26]; they are based on some sort of argument for whether to
follow, adapt or omit a certain method, or part thereof. Such adaptations are driven by
the possibility of reaching ‘rationality resonance’ between the method constructor and
method user [27]. That is, they are based on method users’ efforts to understand and
ultimately internalize the rationale expressed by a method description.

From a process perspective, method rationale can be though of as having to do
with the choices one makes in a process of design [17]. Thus, we can capture this kind
of method rationale by paying attention to the questions or problematic situations that
arise during method construction. For each question, we may find one or more
options, i.e. ‘solutions’ to that question.

As an example, consider the construction of a method for analysing business
processes. In order to graphically represent flows of activities in business processes,
we may consider the option of modelling flows as links between activities, as in UML
Activity Diagrams [28]. Another option would be to use a modelling language that
allows for explicitly showing results of each action and how those results are used as
a basis for subsequent actions, as in VIBA5 Action Diagrams [29]. To help us arguing
for and against each option we may specify a number of criteria as guiding principles.
Then, for each of the options, we can asses whether it contributes positively or
negatively with respect to each criterion. Let us, for example, assume that one
criterion (a) is that we want to create a visual modelling language (notation) with as
few elements as possible in order to simplify models (a minimalist language). Another
criterion (b) might be that we want a process model that is explicit on the difference
between material actions and communicative actions6 in order to focus developers’
attention on social aspects and material/instrumental aspects respectively (thus a more
expressive language). Finally, a third criterion (c) might be that we would favour a
well-known modelling formalism. The UML Activity Diagram option would have a
positive impact on criteria a and c, and a negative impact on criterion b, while the
VIBA Activity Diagram option would have a positive impact on criterion b, and a
negative impact on criteria a and c. Thus, given that we do not regard any of the
criteria more important than any other, we would likely choose the UML Activity
Diagram option.

Fig. 3 depicts this notion of method rationale as based on explicating the choices
made throughout method construction. The specific example shown is the choice
between VIBA Action Digram versus UML Activity Diagram. This model of method
rationale is explicitly based on the Question, Option, Criteria Model of Design Space

5 Versatile Information and Business Analysis is a requirements analysis method based on

language/action theory [29].
6 Material actions are actions that produce material results, such as painting a wall, while

communicative actions result in social obligations, such as a promise to paint a wall in the
future. The latter thus corresponds to what Searle [30] termed ‘speech acts’.

Analysis [18]. Other approaches to capture method rationale in terms of design
decisions are, for example, IBIS/gIBIS [31, 32] and REMAP [33]. The process-
oriented view of method rationale captured by these approaches is important,
especially when acknowledging method engineering as a continuous evolutionary
process [17]. However, another, and as we shall see below, complementary approach
to method rationale, primarily based on Max Webers’ notion of practical rationality,
has been put forth as means to understand why methods prescribe the things they do
[15, 16].

How to represent
flows of activities?

UML
Activity

Diagrams

VIBA
Action

Diagrams

Minimalist Language

Differentiate between
material and

communicative actions

Well-known formalism

Option CriteriaQuestion
(Situation)

Fig. 3. Method rationale as choosing between options VIBA Action Diagrams and UML
Activity Diagrams for modelling activity flows (based on the Question, Option, Criteria Model
of Design Space Analysis [18]). The solid arrow between ‘situation’ and ‘option’ indicates the
preferred choice; a solid line between an option and a criterion indicates a positive impact,
while a dashed line indicates a negative impact.

According to Weber [22], rationality can be understood as a combination of means
in relation to ends, ends in relation to values, and ethical principles in relation to
action. This means that rational social action is always possible to relate to the means
(instruments) used to achieve goals, and to values and ethical principles to which the
action conforms. Weber’s message is that we cannot judge whether or not an end is
instrumentally optimal without considering the value-base upon which we judge the
possibilities.

In this view of method rationale, all fragments of a method (prescribed concepts,
notations and actions) are related to one or more goals. This means that if a fragment
is proposed as part of a method, it should have at least one reason to be there. This
idea, which is based on Weber’s concept of ‘instrumental rationality’, is referred to as
goal rationale. Each goal is, in turn, related to one or more values. This means that if a
goal is proposed as the argument for a method fragment, it should have at least one
reason to be there. The reason in this latter case is the goal’s connection to a ‘value
base’ underpinning the method. This idea, which is based on Weber’s concept of
‘rationality of choice’, is referred to as value rationale.

Fig. 4 depicts this notion of method rationale, which also includes the idea that
goals and values are related to other goals and values in networks of achievements
and contradictions.

To illustrate how these two concepts of method rationale fit together, we will
return to the example introduced above. Assume we have a model following Fig. 4
populated as follows (assuming that the classes in the model can be represented as

sets and associations as relations between sets, i.e. as sets of pairs with elements from
the two related sets):

A set of method fragments F = {f1: Representation of the class concept; f2:
Representation of the activity link concept; f3: Representation of the action result
concept}; A set of goals G = {g1: Classes are represented in the model; g2: Activity
links are represented in the model; g3: Activity results are represented in the model};
A set of values V = {v1: Model only information aspects; v2: Minimalist design of
modelling language; v3: Focus on instrumental v. communicative; v4: Use well-known
formalisms}; Goal rationale RG = {(f1, g1), (f2, g2), (f3, g3)}; Value rationale RV = {(g1,
v2), (g1, v3), (g1, v4), (g2, v1), (g2, v2), (g2, v4), (g3, v3)}; Goal achievement GA = {(g3,
g2)}; Value contradiction VC = {(v1, v3)}; VA = GC = Ø.

Goal Value

Method
Fragment

Value
Rationale

Goal
Rationale

1..*

*

* 1..*
*

*

*
*

Goal
Achievement

Goal
Contradiction

*
*

*
*

Value
Achievement

Value
Contradiction

Fig. 4. Method rationale as consisting of interrelated goals and values as arguments for method
fragments [16].

A perhaps more illustrative graphical representation of the model is shown in Fig.
5. If we view each method fragment in the model as possible options to consider, then
the goals and values can be used to compare with the criteria in a structured way.
Given that we know that what we want to describe in our notation is a flow of
activities (or more precisely the link between activities) we can disregard f1 outright,
since its only goal is not related to what we are trying to achieve. When considering f2
and f3 we notice that each is related to a separate goal. However, since there is a goal
achievement link from g3 to g2, we understand that both f2 and f3 would help satisfy
the goal of representing visually a link between two activities (if we model results as
output from one activity and input to another, we also model a link between the two).
Since these two goals are based on different underlying and contradictory values.
Since g2 is related to v1, and g3 to v3, we must choose the goal that best matches or
own value base. This could, and should be expressed by the criteria we use. If we, for
example, believe that it is important to direct attention to instrumental versus
communicative aspects (v3), then we should choose g3 and consequently f3. If, on the
other hand, we are only concerned with modelling information flows, then g2 and
consequently f2 would be the option to choose.

The concept of method rationale described above applies to both construction of
methods and refinement of methods-in-action [17]. Since method descriptions are

means of communicating knowledge between method creators and method users, it
could be used as a bridge between the two and thus as an important tool in achieving
rationality resonance, as discussed above.

f2

f1f3

g2 g1

g3 v1

v3

VCGA
v4

v2

Fig. 5. Graphical representation of the method rationale mode showing the tree method
fragments, the three goals, the three values, and their relationships. The goal achievement
relation is represented by an arrow to indicate the direction of the ‘goal contribution’. All other
relationships are represented by non-directed edges since the direction of reading is arbitrary.

5 Using Method Rationale

From the example in the previous section we can see that method rationale is related
to both the choices we make during method construction and to the goals and values
that underpin the method constructs we choose among. In the theory of method
fragments [24, 25], method fragments are thought of as existing on different layers of
granularity, from the atomic ‘concept level’, through ‘diagram’, ‘model’ and ‘stage’,
to the complete ‘method’. The example used above was at a very detailed level,
focusing on rationale in relation to method fragments at the concept layer of
granularity. The same kind of analysis could be performed at any layer of granularity,
and may consider both process and product fragments (i.e. both activities and
deliverables).

In order to clarify, let us use a brief example from an ongoing case study. In this
project we consider leveraging the use of agile methods for globally-distributed
software development. This may seem counter-intuitive in many ways. One example
is that agile methods usually stress the importance of having the development team
co-located, even with an always present on-site customer [8]. This would obviously
be impossible were the team geographically distributed across the globe. However, by
analysing the reasons behind this method prescription (i.e. the suggestion by the
method creator) we may find that we can operationalize the intended goals of co-
location (such as increased informal communication) into other method prescriptions,
say utilizing more advanced communication technologies. This way we could make
sure that the method rationale of this particular aspect of an agile method is
transferred into the rationale of a method tailored for globally-distributed

development. Thus we may be able to adhere to agile values even if the final method
does look quite different from the original method.

It is important to see that method rationale is present at all three levels of method
abstraction: ideal typical, situational, and in-action. At the ideal typical level, method
rationale can be used to express the method creator’s intentions, goals, values, and
choices made. This would serve as a basis for method configurators (i.e. those who
perform method configuration) and developers in understanding the method and
tailoring it properly. In the communication between configurator and developer,
method rationale would also express why certain adaptations were made when
configuring the situational method. Finally, if we understand different developers’
personal rationale, we might be able to better configure or assemble situational
methods.

Combining the two aspects of method rationale gives us a structured approach to
using method rationale both as a tool to express and document a method’s rationale,
and as a tool to analyse method rationale as basis for method construction, assembly,
configuration and use.

6 Method Rationale Research

Method rationale has not received much attention in the literature so far, except for a
few studies on why methods-in-action deviate from ideal typical and situational
methods (although the latter distinction is not maintained). Obvious exceptions are the
sources cited above, but the uptake by other researchers has so far been limited. It is
interesting to note that there seems to be two strands of method research that largely
pursue their own agendas without many cross-references. (Note that we intentionally
construct two ideal types here.)

On the one hand we have the method engineering research which, as stated above,
has to a large extent concentrated on the engineering of situational methods from
‘atomic’ method fragments forming larger ‘method chunks’ [24, 25, 34-38]. This
strand of method research has not paid much attention to what actually happens in
systems and software development projects where the situational method is used.

On the other hand, we have the method-in-action research that focuses on the
relationship between linguistically expressed methods and methods-in-action [2, 39-
41]. This research, while having contributed extensively to our understanding of
method use and rationality resonance, seems to neglect the intricate task of defining
and validating consistent method constructs.

Another way to put it is that there has been a lot of research on (a) the construction
of situational methods out of existing method parts, and (b) the relationship between
linguistically expressed methods (ideal typical methods and situational methods) on
the one hand and methods-in-action on the other. The basic flaw in the research of
type (a) is that it does not pay sufficient attention to actual method use. The focus is
perhaps too much on what people should do, rather than on what they actually do. The
basic flaw in research of type (b) is that it does not pay sufficient attention to the
formality (rigour) required to ensure method consistency. That is, too little focus on
how to codify successful practice into useful methods. Another flaw is that (b) does

not acknowledge the two different forms of linguistically expressed method
abstraction levels.

There seems to be much to be gained from a systematic effort of integrating these
research interests, and method rationale could be an important link between the two. It
is not enough simply to state that a purported objectivistic and instrumental
perspective inherent in the Method Engineering approach (sometimes somewhat
incisively referred to as method-ism [39]) is fundamentally flawed if we are to
understand methods-in-action properly. Methods are linguistic expressions as result of
and basis for social action. Therefore we need to understand the complex social
reality that shapes methods-in-action. Equally important, though, is to find ways to
use that understanding as a basis for being able to cope better with the formal
construction, verification and validation of methods at all three levels of method
abstraction. The concept of method rationale can be used as an important tool in such
a research effort. The reason is that it gives us one construct that can be used to
understand method construction and use as social activity. At the same time it can be
used to create a frame of reference for method engineering in terms of analysing,
validating and communicating methods.

7 Conclusion

In this paper we have presented a communicative view on systems/software
development methods. From this perspective, method descriptions are conceived of as
linguistic expressions. As such, they are not just descriptions of ideal typical
development processes, but expressions of method creators’ suggestions as to how
system development should be performed. Such descriptions are subsequently
interpreted and (possibly) rationalized by method users. This is also a way of
clarifying the distinction between method-in-concept and method-in-action [4] by
highlighting that there are in fact several methods-in-concept (at least one per actor)
involved in method formulation, communication and use. A method description is
here seen as the linguistic expression of the method creator’s method-in-concept. This
description is then interpreted by method users when forming their own method-in-
concept, which is a basis for their method-in-action.

With this foundation, we have also presented a comprehensive concept of method
rationale by integrating two different method rationale aspects. Our conclusion is that
method rationale exists as the goals and values upon which we choose what method
fragments should belong to a particular method, method configuration or method
assembly. Method rationale exists as an expression of the method creator’s values,
beliefs and understanding of the development context. This ‘intrinsic’ method
rationale is then compared with method user’s values, beliefs and understanding in
method configuration and systems development.

This method rationale existence maps directly to three abstraction levels of
methods: the ideal typical method (as expressed by the method creator), the
situational method (as adapted by a process engineer/method configurator), and the
method-in-action (as manifested by actual method-following actions). The first two
levels constitute a linguistic aspect of method, and the last an action aspect.

A method, at any of the three levels, represents knowledge about software and
systems development processes. Therefore, method rationale is present at all three
levels. Method rationale can be made explicit, which may aid in communication
between method creators and method users; a communication that is usually
performed through method handbooks and modelling tools.

Finally, we have discussed how method rationale may be an important tool in
understanding better the relationships between the three method levels, and in
synthesising important (past, current and future) research on method engineering and
method-in-action.

Acknowledgements

This work has been financially supported by the Science Foundation Ireland
Investigator Programme, B4-STEP (Building a Bi-Directional Bridge Between
Software ThEory and Practice).

References

1. Iivari, J., Maansaari, J.: The Usage of Systems Development Methods: Are We
Stuck to Old Practice? Information and Software Technology 40 (1998) 501–510

2. Nandhakumar, J., Avison, D. E.: The Fiction of Methodological Development: A
Field Study of Information Systems Development. Information Technology &
People 12 (1999) 176–191

3. Fitzgerald, B., Russo, N. L., O'Kane, T.: Software Development Method
Tailoring at Motorola. Communications of the ACM 46 (2003) 65–70

4. Lings, B., Lundell, B.: Method-in-Action and Method-in-Tool: Some
Implications for CASE. In: Proc. 6th International Conference on Enterprise
Information Systems (ICEIS 2004) (2004)

5. van Slooten, K., Hodes, B.: Characterizing IS Development Projects. In: S.
Brinkkemper, K. Lyytinen, and R. Welke, (eds.): Method Engineering: Principles
of Method Construction and Tool Support. Chapman & Hall, London (1996) 29–
44

6. Cameron, J.: Configurable Development Processes: Keeping the Focus on What
Is Being Produced. Communications of the ACM 45 (2002) 72–77

7. Karlsson, F., Ågerfalk, P. J.: Method Configuration: Adapting to Situational
Characteristics While Creating Reusable Assets. Information and Software
Technology 46 (2004) 619–633

8. Beck, K.: Extreme Programming Explained: Embrace Change. Addison-Wesley,
Reading, MA (2000)

9. Schwaber, K., Beedle, M.: Agile Software Development with Scrum. Prentice-
Hall, Upper Saddle River, NJ (2002)

10. Riemenschneider, C. K., Hardgrave, B. C., Davis, F. D.: Explaining Software
Developer Acceptance of Methodologies: A Comparison of Five Theoretical
Models. IEEE Transactions on Software Engineering 28 (2002) 1135–1145

11. Garfinkel, H.: Studies in Ethnomethodology. Polity Press, Cambridge, UK (1967)
12. Dourish, P.: Where the Action Is: The Foundations of Embodied Interaction. MIT

Press (2001)
13. Eriksén, S.: Designing for Accountability. In: Proceedings of the Second Nordic

Conference on Human-Computer Interaction (NordiCHI 2002). ACM Press
(2002) 177–186

14. Oinas-Kukkonen, H.: Method Rationale in Method Engineering and Use. In: S.
Brinkkemper, K. Lyytinen, and R. Welke, (eds.): Method Engineering: Principles
of Method Construction and Support. Chapman & Hall, London (1996) 87–93

15. Ågerfalk, P. J., Åhlgren, K.: Modelling the Rationale of Methods. In: M.
Khosrowpour, (ed.) Managing Information Technology Resources in
Organizations in the Next Millennium. Proceedings of the 10th Information
Resources Management Association International Conference. IDEA Group
Publishing (1999) 184–190

16. Ågerfalk, P. J., Wistrand, K.: Systems Development Method Rationale: A
Conceptual Framework for Analysis. In: Proc. 5th International Conference on
Enterprise Information Systems (ICEIS 2003) (2003) 185–190

17. Rossi, M., Ramesh, B., Lyytinen, K., Tolvanen, J.-P.: Managing Evolutionary
Method Engineering by Method Rationale. Journal of the Association for
Information Systems 5 (2004) 356–391

18. MacLean, A., Young, R. M., Bellotti, V. M. E., Moran, T. P.: Questions, Options,
and Criteria: Elements of Design Space Analysis. Human-Computer Interaction 6
(1991) 201–250

19. Fitzgerald, B., Russo, N. L., Stolterman, E.: Information Systems Development:
Methods in Action. McGraw-Hill, Berkshire, UK (2002)

20. Goldkuhl, G.: The Grounding of Usable Knowledge: An Inquiry in the
Epistemology of Action Knowledge. Linköping University, CMTO Research
Papers 1999:03, Linköping, Sweden (1999)

21. Ågerfalk, P. J.: Grounding through Operationalization: Constructing Tangible
Theory in IS Research. In: Proc. 12th European Conference on Information
Systems (ECIS 2004) (2004)

22. Weber, M.: Economy and Society. University of California Press, Berkeley, CA
(1978)

23. Polanyi, M.: Personal Knowledge: Towards a Post-Critical Philosophy.
Routledge & K. Paul, Chicago (1958)

24. Harmsen, A. F.: Situational Method Engineering. Moret Ernst & Young
Management Consultants (1997)

25. Brinkkemper, S., Saeki, M., Harmsen, F.: Meta-Modelling Based Assembly
Techniques for Situational Method Engineering. Information Systems 24 (1999)
209–228

26. Parnas, D. L., Clements, P. C.: A Rational Design Process: How and Why to Fake
It. IEEE Transactions on Software Engineering 12 (1986) 251–257

27. Stolterman, E.: The Paradox of Information Systems Methods: Public and Private
Rationality. In: Proc. British Computer Society 5th Annual Conference on
Methodologies (1997)

28. Booch, G., Rumbaugh, J., Jacobson, I.: The Unified Modeling Language User
Guide. Addison-Wesley, Harlow, UK (1999)

29. Ågerfalk, P. J., Goldkuhl, G.: Business Action and Information Modelling: The
Task of the New Millennium. In: M. Rossi and K. Siau, (eds.): Information
Modeling in the New Millennium. Idea Group Publishing (2001) 110–136

30. Searle, J. R.: Speech Acts: An Essay in the Philosophy of Language. Cambridge
University Press, Cambridge (1969)

31. Conklin, J., Begeman, M. L.: gIBIS: A Hypertext Tool for Exploratory Policy
Discussion. ACM Transactions on Office Information Systems 6 (1988) 303–331

32. Conklin, J., Selvin, A., Shum, S. B., Sierhuis, M.: Facilitated Hypertext for
Collective Sensemaking: 15 Years on from gIBIS. In: H. Weigand, G. Goldkuhl,
and A. de Moor, (eds.): Proceedings of the 8th International Working Conference
on the Language-Action Perspective on Communication Modelling (LAP 2003).
Tilburg University (2003) 1–22

33. Ramesh, B., Dhar, V.: Supporting Systems Development by Capturing
Deliberations During Requirements Engineering. IEEE Transactions on Software
Engineering 18 (1992) 498-510

34. Brinkkemper, S.: Method Engineering: Engineering of Information Systems
Development Methods and Tools. Information and Software Technology 38
(1996) 275–280

35. Rolland, C., Prakash, N.: A Proposal for Context-Specific Method Engineering.
In: S. Brinkkemper, K. Lyytinen, and R. Welke, (eds.): Method Engineering:
Principles of Method Construction and Tool Support. Chapman & Hall (1996)

36. Ralyté, J., Deneckère, R., Rolland, C.: Towards a Generic Model for Situational
Method Engineering. In: J. Eder, n. nn, and n. nn, (eds.): Proceedings of 15th
International Conference on Advanced Information Systems Engineering (CAiSE
2003), Klagenfurt, Austria, June 16–18, 2003. Springer-Verlag (2003) 95–110

37. ter Hofstede, A. H. M., Verhoef, T. F.: On the Feasibility of Situational Method
Engineering. Information Systems 22 (1997) 401–422

38. Rolland, C., Prakash, N., Benjamen, A.: A Multi-Model View of Process
Modelling. Requirements Engineering 4 (1999) 169–187

39. Introna, L. D., Whitley, E. A.: Against Method-Ism: Exploring the Limits of
Method. Information Technology & People 10 (1997) 31–45

40. Russo, N. L., Stolterman, E.: Exploring the Assumptions Underlying Information
Systems Methodologies: Their Impact on Past, Present and Future Ism Research.
Information Technology & People 13 (2000) 313–327

41. Avison, D. E., Fitzgerald, G.: Where Now for Development Methodologies.
Communications of the ACM 46 (2003) 79–82

