CEUR-WS.org/Vol-3624/Paper_30.pdf

C

CEUR
Workshop
Proceedings

Optimizing and Improvement a Web Application Using Open
Source Tools

Yuri Kravchenko, Olga Leshchenko, Oleksandr Trush, Nataliia Dakhno and Pavlo Krasnopyorov
Taras Shevchenko National University of Kyiv, Volodymyrs 'ka str. 60, Kyiv, 01033, Ukraine

Abstract

This paper analyzes the optimization of a web application using modern open source tools such
as Lighthouse and K6. The main goal was to improve the quality and productivity of the
additive. The study finally analyzed important metrics such as number of HTTP requests,
duration of HTTP requests, HTTP request waits, HTTP requests per second, as well as key
indicators such as First Contentful Paint, Largest Contentful Paint, Total Blocking Time,
cumulative layout shift and speed index.

The results of this analysis show significant improvements in all the specified metrics, which
undoubtedly emphasizes the effectiveness of the optimization methods and tools used. The
number of HTTP requests has increased and their duration has decreased, which degrades the
overall speed of processing requests. It is important to note that the page load time has become
significantly faster, with a significant reduction in First Contentful Paint and Largest
Contentful Paint. These improvements not only enhanced the user experience, but also
positioned the app as more competitive in the market.

Keywords !

WEB APP, optimization, NEXTJS, Lighthouse, K6, YpeScript, JavaScript HTML, CSS

1. Introduction

In today's digital world, web applications remain essential tools for businesses and consumers [1,2].
The speed, performance and user experience of web applications have become key factors in their
success. Optimization web applications is an important task for developers to ensure speed of service
provision, efficient operation and user satisfaction. The purpose of the work is the research of
optimization methods for web application development and the application of effective optimization
methods aimed at improving the speed and reactivity of web applications. Web application optimization
includes various aspects, from architectural designs to database query optimization and loading page
optimization. The results of research and development can be used to improve web applications, ensure
fast loading of pages, efficient work with the database and optimal use of resources.

To achieve the goal, the following tasks are solved:

e overview of web application optimization methods;

e web application development;

e evaluation of the effectiveness of the web application;

e an experimental research of web application optimization.

This work is important because the performance and user experience of web applications are critical
factors in meeting the needs of today's user. The development of effective methods of optimizing web
applications will contribute to the development of the Internet space and the improvement of the quality
of web services for users.

2. Overview of web application optimization methods

There are many options for how to optimize a web application, but to group and systematize them,
you can use the OSI (Open Systems Interconnection) model [3]. By looking at the OSI model, we can

Information Technology and Implementation (1T &I-2023), November 20-21, 2023, Kyiv, Ukraine

EMAIL: kr34@ukr.net (A.1); olga.leshchenko@knu.ua (A.2); oleksandr.trush@knu.ua (A.3); nataly.dakhno@ukr.net (A.4);
pavlokrasnopyorov@knu.ua (A.5)

ORCID: 0000-0002-0281-4396 (A.1); 0000-0002-3997-2785 (A.2); 0000-0002-4188-2850 (A.3); 0000-0003-3892-4543 (A.4)

@ ® © 2023 Copyright for this paper by its authors.
- Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR Workshop Proceedings (CEUR-WS.org)

368

identify at which network layer optimization techniques can be applied to improve the performance of
a web application. Application layer, which is the upper level of the OSI model and plays the most
important role in the use of optimization methods. This level includes applications and services that
provide users with multi-functional capabilities. Applying optimization techniques at the application
layer level has great potential to improve performance, efficiency, and user experience.

Analyzing web application optimization methods involves using a variety of tools to evaluate and
analyze the effectiveness of different optimization approaches. This includes both mathematical
methods of optimization [4 - 6] and instrumental methods. These tools help you understand which
optimization techniques are best to use to improve the performance and speed of your web application.

One of the main analysis tools is application performance analysis. It includes collecting and
analyzing server load data, user feedback, page load speed, and other performance metrics [7].
Information obtained from monitoring helps to identify problem areas and potential optimization areas
[8, 9]. App performance analysis involves evaluating various metrics that help determine how well the
app is performing and how its performance affects the user experience [10, 11].

1. Response Time: The average response time can be determined using the mathematical

expectation (average) response time for all requests. The equation can look like this:

ResponseTime = NXT, (1)
where T - is the response time of each individual request, and N - is the quantity of requests.
2. Page Load Time: This metric can be calculated as the sum of the loading time of individual
resources (images, CSS, JavaScript, etc.) that are included on the page.
PagelLoadTime = XResourceLoadTime, (2)

where ResourcelL.oadTime - is the loading time of each resource.
3. Resource Usage: CPU time and memory usage can be measured as the percentage of resources
used relative to the maximum available resources.

CPUUsage = UsedCPUTime - 100%
TotalCPUTime ’
MemoryUsage = W * 100% 2
TotalMemory ’

4. Reliability: It is possible to use the quantity of errors to determine reliability.

NumberofErrors (4)
* 100%,

Reliability =

Y Totalinteractions
5. User Interaction Response Time: Response time to user interaction can be determined by
measuring the time between sending a user request and receiving a response.

UserInteractionResponseTime = EndTime — StartTime, (5)

where EndTime - is the time of receiving a response, and StartTime - is the time of sending a request.

These equations represent general approaches to measuring various performance metrics. Specific
equations and measurement metrics can be adapted depending on the application and measurement
methodology.

2.1. Tools for web application performance analysis

Paragraph text. Paragraph text. Analysis tools play an important role in the process of optimizing
web applications. They provide us with the opportunity to get detailed information about the
performance and efficiency of our application, identify problem areas and find ways to solve them.

First of all, analysis tools allow you to monitor the performance of a web application in real time
[12]. They provide collection and visualization of key metrics such as server recall time, page load time,
memory usage, and more. This allows you to identify speed issues that may affect the user experience.

Next, analysis tools provide the ability to perform detailed audits of web applications in terms of
loading speed, resource size, caching, and other factors. They help identify problem areas that can be
optimized, such as reducing file size, using caching to reduce server requests, etc.

369

In addition, the analysis tools provide the ability to conduct load tests that allow you to simulate
heavy loads on a web application and evaluate its performance and stability. This allows you to identify
problems of scalability, insufficient optimization or instability of the system.

Popular web application analysis and optimization tools include:

1. k6 - is a high-performance tool for load testing and performance verification [13]. It allows
developers and engineers to test the scaling of web applications and network services and evaluate their
performance under different loads. Benefits: An easy-to-use tool for load testing and performance
verification. Supports JavaScript scripting and provides detailed reports. Disadvantages: Some
advanced features may only be available in the commercial version. Figure 1 shows an example of use.

2. GTmetrix: It is an online tool that provides a detailed report on the performance of web pages.
GTmetrix evaluates page load speed, file size, quantity of server requests and other metrics. It also
provides optimization recommendations to improve performance [14]. Benefits: Provides in-depth
performance analysis, including download speed estimates, image optimization, caching, and other tips.
It has a user-friendly interface and supports many test locations. Disadvantages: Some features are only
available in the paid version. Reports can be a bit complicated for beginners. Figure 2 shows an example
of use.

Archived Performance Report for:
https:/example.com/

=
o i

Test Server Loczuon: B+l Varcouver, Canada
Usng: @ Chrome (Deskiop) 90 04430

GTmetrix Grade ? Web Vitals ?
Performance ? Stucture * P 2 18T ? s
LJ 53% 83% 45s 60ms 0.04
Summery Performance Structure Waterfall Video History
Speed Visualization
o 1 165 22 3
First Consantiul Point: 1.7 Time o keecactve: 31s

Figure 1: An example of the use of k6

1. WebPageTest: It is a tool that allows you to test the loading speed of web pages from different
locations around the world. It provides detailed information on load hours, page size, server requests,
and other metrics [15]. WebPageTest also allows you to run repeated tests to monitor hourly
performance. Benefits: Provides detailed performance reports including load speed, page load analysis,
query waterfall and other metrics. Allows you to choose the test location and different configurations.
Disadvantages: The interface may seem difficult for beginners. There are a limited quantity of free
requests. Figure 3 shows an example of use.

2. Pingdom: It is a performance monitoring tool that provides information on page load hours, file
sizes, quantity of requests, and other metrics [16]. He has too the ability to monitor site performance on
an ongoing basis and send notifications about any problems. Pros

3. An easy-to-use tool that provides information about website loading speed and availability. It has
a user-friendly interface and supports many test locations. Disadvantages: Limited functionality
compared to other tools. Some advanced features are only available in the paid version. Figure 4 shows
an example of use.

4. YSlow: This is a browser extension that provides web page performance scores based on Yahoo's
recommendations [17]. YSlow analyzes various aspects, including caching, file compression, CDN
usage, and more, and provides recommendations for improving performance. Benefits: Analyzes web
page performance, offers optimization tips such as resource compression, caching, and other

370

improvements. Integrated with Firebug browser extension. Disadvantages: The development of the tool
has been frozen, so it may be less relevant compared to newer tools. Figure 5 shows an example of use.

5. Apache JMeter: It is a tool for testing server performance and load. It allows simulation of a
large volume of requests to a web application, which helps to evaluate its performance and identify
problem areas [18]. Pros: Powerful performance and load testing tool. Supports many protocols and can
simulate different load scenarios. Disadvantages: Requires study and experience to use effectively.
Does not provide a visual report, requires analysis of results. Figure 6 shows an example of use.

kb-tests: kb run script.js

VAN =/,

execution: local
output: -
script: script.js

duration: 1m@s, iterations:
wvus: 100, max: 100

done [] imds / 1mds

data_received
data_sent -
http_req blocked..0 ovgel.92ns minelps medeSps max=288. 73ms p(90)=11ps p(95)=17ys
http_req_connecting........: avgel.0lns mineds medw=ds max=166.44ms p(9@)=ds p(95)=0s
http_reg.duration..........: avg=143.14ms min=112.87ms med=136.03ms max=1.18s p(90)=164.2ms p(95)=177.75as
http_req_receiving : avgs5.5325 mine4dus meds2,11ms max=1,01s p(90)=0.25as p(95)=11.8ms
http_req_sending......... .: avge30.01ps mine7ps mede24ys maxs1,89ms p(90)=48yus p(95)=63ys
http_req_tls_handshaking...: avgeds minwds medwds max=0s p(90)wds p(95)=0s
http_req_maiting avg=137.57ms min=111,44ms med=132.59ms max=589.4ms p(90)=159.95ms p(95)=169.41ns
- 13491
: avge445,.48ms mine413,05ms med=436.36ms max=1,485 p(90)=464.94ms p(95)=479.66ns

Figure 2: Example of using GTmetrix

< plngdom 0 My Website - http//www.mywebsite.com

Manitoring

Last 7 da v 50 i Y T

Compared to ('l'\‘yfs'ﬂ perod (10 Ape-17 Api Uorbier o L, Sl o m
Reports

Performance grade Load time Page size Requests

i 70100 3.05s 1.74ws 163
PWOSDOM +3(4.48%) 317ms {8.4%) 1.02M8 (36.9%) 11 (6.32%)
Transaction
Heal User Monitoring

Page load time

= Sharing
Integrations
Users and teams

e . f\/\j\jw/\ﬂw\j \,u’\/\/ﬁ /\/\N\/\/W\J\/\,,‘Mﬂvwb

Support

Changelog

18 A 19Ap 20 Aot U An 2 Apr 23 Ape MApw
Latest tests
DATE & TME LOAD T'WE PAGE SQE REQUESTS FERF, GRALE :’
‘ Dano 8
2007-04-24 105736 .21 189 1 6an > '
‘f, SRR G 20070424 105735 a21s M8 6 0 conc o

Figure 3: Using WebPageTest

371

Test History

WebPageTest
by Catchpoint

My Account | Logout

—
Web page performance test result for B A] l A I A J l A C v
hilpscss-tricks .com) !
Besucty sooee Fuat Byte Tome Keopralies Crevpress. Conpress Gl stasa ENeohes it of
Fram: Dullss, ¥ - Chrome - Cable Erabioa Tranvsder Inages pont e
402102021, 102716 Ak
Summary Datails Parformanca Contant Domans Procassing Scraanshat Image Analysis C7 FRegquast Map 7
Firsl View onky Expon HTTE Archiva {har)
Test runs: 3 Custom Mairics
Winh i Pacumant Complete Falty Laaded
Firsg Start e Spead Lorocat Cumulatye Yol
Biin | Ronger SONSEM SUCCC Resultferror code] | Confenthd Layow? | Blocking | Tima Aoquesis Byiesin | Tims Asquesis Bytssin
Paing _Blllﬂ Enitt Tme:
Forst View {fim 1) ©1718 | 14008 | 14188 3082 o 80558 o 200008 | 6.0013 2 EL T CE-H 57 557 WB
Colordapth dominteractive domConteniloaded load Evnnt
24 108te STE18 - 5.776s 10.0155] E.008E - 5.008: [0.0005]
Chrome Fleld Parformance - ¥ This lost, First View
First Contenzhal Eark (FOP) Largosi Contantiul Paim (LEP) Cumulativa Layaut Shift (SLS) First Input Ceday (FIC)

075 (1638 &

||smnam«||xmc¢rruwvu-l = Larges Comtersur Paint | * Layowt Shiti | | DOM nieacts | [0O Contert Loases

%W

[e

PT5 {2057 & oTE 00} A pTE (3

Waterfall View

oniosd | || Gocumant Corpiee

Azt sns corre st] as cns Amage Flmen Font videa ckher 15 Ceecution
[a— —_— e [e— N —
Step_1 1.9 2.0 z.a 3o 3.8 4.0 .5 5.0 =9

& 1. cretrichs.com = J/

B 2. CEs-tricEs.0om — ST doun s
& 3. car-tricks.oom - style.crs

Figure 4: Pingdom usage

0.3 1.0
PETR
Ll e
PEL

6.|u.

These tools help you analyze and optimize the performance of your web applications to provide a
better user experience and faster page load times. Thanks to the analysis tools, there is confidence that
the web application is running at optimal performance and provides a fast and convenient user
experience. Considering these factors, Lighthouse [18, 19] and k6 were chosen as effective tools for
query testing in a commercial web application. These tools provide ease of use, flexibility in test setup,
analysis of results, and extensibility. Help identify problems, analyze test results, and make informed
decisions about app optimization.

ene
D@ ad &

M build-adv-web-test-plan
2% HTTP Request Defaults
2% User Defined Variables
2. HTTP Cookie Manager
25 HTTP Header Manager
2% loginData
¥ ‘" IMeter Users
#. HTTP Request Defaults
I. » #" Home Page
b 2 ThinkTime
» * Changes
¥ " ThinkTime
b " BugDetail Page

5 B+

Logir

{ View Results Tree

Apache JMeter (5.3)
> DO 9 e

HTTP Request

¢
= Ny

Name: Home Page

Comments:

Basic Advanced

Web Server

Protocol [httpl: Server Name or IP:

HTTP Request

GET ¥ Path: |

["] Redirect Automatically Follow Redirects

Parameters Body Data Files Upload

Send Parameters With the Request:

Name: Value URL Encode? Content-Type

Add Add from Clipboard Delete Up Down

00:00:00

Ao oo @

Port Number:

Caontent encoding:

Use KeepAlive \: Use multipart/form-data |:\ Browser-compatible headers

Include Equals?

Figure 5:

An example of using Apache JMeter

372

3. Development of a web application

Web application development includes two main components: client-side and server-side
development. Each of these components has its own unique requirements and tasks that are necessary
for the successful implementation of the project.

The client part of the web application corresponds to the interaction with the user and the display of
information on his devices. Technologies such as HTML, CSS and JavaScript programming language,
as well as modern frameworks and libraries that simplify the work of creating an interactive interface
are used to develop the client part.

The server part of the web application is responsible for processing user requests, saving and
retrieving data from databases, as well as for the application's business process logic.

When developing an optimized web application, the Next.js framework will be used, which is one
of the popular and powerful frameworks for developing React-based web applications. One of the main
advantages of Next.js is that it works both on the client side and on the server side, which makes it an
ideal choice for optimizing applications.

A commercial web application was chosen for the optimization study. Here are some reasons that
explain the choice: increased conversions, large volumes of data, SEO and search ranking [20].

Choosing a commercial web application allows you to uncover the most possible optimization
methods, after which it requires attention to speed, performance, security, user experience and other
factors that are crucial.

4. Evaluation of the effectiveness of the web application

Web application development includes two main components: client-side and server-side
development. Each of these components has its own unique requirements and tasks that are necessary
for the successful implementation of the project.

To evaluate the performance of the web application, we will use Lighthouse, which is an open tool
for analyzing the performance and quality of web applications, as well as K6 to create a stress test.
Lighthouse was developed by the Chrome DevTools team and provides tools for evaluating
performance, accessibility, SEO optimization, and other aspects of a web application [21, 22]. The main
function of Lighthouse is to automatically audit a web page using a set of rules and recommendations.
The Lighthouse performance score is a weighted average of metrics, with more weighted metrics having
a greater impact on the overall performance score. Scores of indicators are not displayed in the report,
but are calculated according to the formula shown in Figure 6.

Audit Weight
First Contentful Paint 10%
Speed Index 10%
Largest Contentful Paint 25%
Total Blocking Time 30%
Cumulative Layout Shift 25%

Figure 6: Indicator and its weight in efficiency calculation

Key performance metrics that can be measured include:

373

1. First Contentful Paint (FCP): This is the time it takes to display the first content on the page.
It can be text, images or other elements. The smaller the FCP value, the faster the web page will
display the first content. Figure 7 shows how the metric value is interpreted for loading.
The FCP is calculated as the difference between the FCP time and the initial page load time:
FCP = tFCP — tstart, (6)

2. Cumulative Layout Shift (CLS): This is a metric that measures how unstable the elements on
the page are when loading. It measures how much the page layout changes on load, which can lead
to an unpleasant user experience, such as when they try to click on an element but it suddenly shifts.
CLS is calculated as the sum of the cumulative displacements of objects on the page during loading.
Each change in the position of the object is taken into account with a weighting factor depending on
the visibility of the object and the size of the page. Mathematically, this can be expressed as:

CLS = X (impact fraction * distance fraction * distance), (7)
where:
e Impact fraction - fraction of displacement caused by a change in the object's position.
o Distance fraction - the fraction of the visible area of the page that was affected by the change
in the object's position.
o Distance - the actual distance the object moved.

FCP r= (= CLS m=mu=m=m

10 e il avesst Shif
Eirst Contentiul Pasnt 18 5o L Cumulative Layout Shift

Figure 7: Metric FCP Figure 8: Metric CLS

3. Largest Contentful Paint (LCP): This is the time it takes to display the largest piece of content
on the page. It can be a large image, video or other important element that attracts the user's attention.
Figure 8 shows how the metric value is interpreted for loading.

The LCP is calculated as the difference between the LCP time and the initial page load time:

LCP = tLCP — tstart, (8)

e t start - the time the page started to load,
e t LCP - the time when the largest content becomes visible.

4. Total Blocking Time (TBT): This is the time when the page is blocked and unavailable for user
interaction due to the execution of JavaScript code. Figure 9 shows how the metric value is
interpreted for loading.

The mathematical model for TBT can be expressed as follows:

e Blocking Time for each task (such as JavaScript or rendering): The amount of time the page is
blocked during a specific task. Let's denote this time as BT _i, where i is the index of a separate task.
e Quantity of tasks (N): Quantity of all tasks that blocked the page.

e Total Blocking Time, TBT: This is the total block time for all tasks:

TBT = XBTi,neiBig 1 go N, (9)
LCP = e TBT r= ==
Largest Contentful Paint 28 sec 40sec Total Blocking Time 200ms 600 ms
Figure 9: Metric LCP Figure 10: Metric TBT

5. Speed Index: This is the time that shows how quickly the content is displayed visually when the
page loads. First, Lighthouse captures a video of the page loading in the browser and calculates the
visual transition between frames, then uses the Speedline Node.js module to calculate the speed index.
Figure 11 shows how the metric value is interpreted for loading.

374

Taking into account these optimization metrics helps to make an objective assessment of the
performance of the web application. Comparing these metrics to set goals and standards will help
identify issues and make optimizations to improve performance and user experience.

Speed Index .
. Color-coding
(in seconds)

0-34 Green (fast)

3.4-58 Orange (moderate)

Over 5.8 Red (slow)

Figure 11: Interpretation of the Speed Index by time

5. Experimental study of optimization methods using Lighthouse and K6 tools

An experimental study of the optimization of a web application can include several stages, and the
main emphasis will be on using the Lighthouse tool for local testing [23] and conducting tests in
different regions for hosting on the domain where the web application is located, as well as stress testing
using tools K6 [24, 25]. The results of testing in different regions on the main page are in Figure 12 and
Figure 13, respectively.

Performance testing for different regions is an important part of the web application optimization
process. It helps ensure global availability, improve user experience and determine the optimal hosting
settings for the application.

B2 US West EE yUSEast <= Finland
us-westl 9 6 us-eastd 97 europe-north1 1 OO
/100 /100 /100

FCP: 11s LCP 2.6s TBT: 72ms FCP: 958ms LCP: 2.4s TBT: 106ms FCP: 925ms LCP: 1.5s TBT: 41ms

®= Germany ® Japan &8 Australia

europe-west3 9 8 asia-northeast1 9 1 australia-southeastl 9 3
/100 /100 /100

FCP: 11s LCP: 19s TBT: N7ms FCP: 2s LCP: 2.6s TBT: 74ms FCP: 1.6s LCP: 2.7s TBT: 6ms

Figure 12: Lighthouse test results in different regions of the main page [7]

FCP LcP TTI TBT CLS
e EE USEast 912ms 2.3s 2.1s 68ms o]
e EE US West 927ms 2.3s 2s 41ms [¢]
e BB Germany 911ms 2.4s 2.2s 107ms 0 @
® e Japan 920ms 1.6s 2.1s 76ms 0

Figure 13: Lighthouse test results in different regions of the main page [7]

375

The K6 tool was chosen for the stress test - it is a very powerful tool for stress testing and loading
web applications and APIs. It is designed to help developers and engineers test the speed and stability
of their systems under heavy load.

One of the advantages of the K6 is its ease of use. It has a simple syntax that allows you to quickly
create and configure tests. K6 is written in the Go programming language, which makes it fast and
efficient. It also has built-in support for JavaScript, allowing you to use your own code to create
complex test scenarios. The configuration of the script with comments is presented in Figure 14.

export const options = {
stages: [
{ duration: "1@s", target: 100 }, // HaBaHTaxeHHA 100 BipTyanbHUX KOpUCTyBa4iB npotsaroM 10 ceKyHA
{ duration: m", target: 100 }, // YTpumMaHHA HaBaHTaxeHHs 100 BipTyanbHUX KOPUCTYyBa4yiB MPOTArOM HAacCTYMHY XBUIIUHY
{ duration: "10s", target: @ }, // 3HuxeHHa HaBaHTaxeHHA [0 O nNpoTAroM 10 ceKkyHA

1

’
thresholds: {
| http_req_duration: ["p(95)<500"1, // YcraHoBneHHs nopory, o 95% 3anuTiB MalTh TPUBaNicTb MeHwe 500 Mc
}I
b

Figure 14: Script configuration for testing requests

Uses the http module from K6 to make a GET request to a web application URL.

The Options object contains the K6 configuration parameters. We define different stages (stages)
for the load, increasing it to 100 virtual users for 10 seconds, maintaining it at this level for the next
minute, and then reducing it to O for another 10 seconds. The Thresholds object allows you to set
threshold values for metrics. We use http_req_duration (duration of requests) and set the threshold that
95% of requests have a duration of less than 500 ms. The results of the k6 web application before and
after the application of optimization methods are shown in Figures 16 and 17, respectively.

When using the K6 tool, the following results were obtained:

1. Quantity of HTTP requests. Includes all successful and failed requests. 2603 queries were
executed before optimization, and 20222 queries were received after using the K6 tool. The increase
indicates that the optimization of the application contributed to more efficient processing of requests
and resources, which helps to reduce the load on the server.

2. HTTP request duration. Before optimization, it was 2.72 seconds, and after using the K6 tool,
312.17ms was obtained. The duration of requests decreased by 88.43% after optimization. The
reduction indicates that the app has become more responsive and responds quickly to user requests,
which improves the overall user experience.

3. Waiting for HTTP requests. Before optimization, it was 2.72 s, and after using the K6 tool, 312.92
ms was obtained. Expectation decreased by 88.29%. The reduction indicates optimization of the
application's network interaction, which contributes to higher performance and responsiveness.

4. Quantity of HTTP requests per second. Before optimization, it was 32.46 requests/s, and after
using the K6 tool, 252.76 requests/s were obtained. The 678.6% increase shows the app's ability to
serve more users simultaneously and improves its scalability.

execution
script
output

scenarios

00.0¢ CCRfaY 100 max VUs 50 x durat gracef 5t
* default: Up to 100 looping VUs for 1m20s over 3 stages (gracefulRampDown: 30s, gracefulStop: 30s)

data_received

data_sent

http eq_blocked A min= med=404} a lms p(90)=760./ p(95)=975
http_req g 5.+:3 5 min= L 301 E 3 p(90)= 1 p(95)
http_req_;) min=5 47 med=2.84 D p(90)=2 p(95)

A min=532 med=2 1 p(90)=2 3 p(95)=2
min=28u med 1 5 p(90)=309} p(95)=4
min=8y med=36 p(90)=69u p(95)=
min=0 med= p(90) 5 p(95)
min=532.2r med=2.84s E) p(90)=2 3 p(95)=

min=533.23r med=2 A ax=6) p(90)=2 p(95)=

vus_max

running (1m20.2s), 000/100 VUs, omp and @ interrupted iterations
default v [==================== == ==] 000/100 VUs 1m20s

376

Figure 15: Output of K6 tool information to main page queries before optimization

After carrying out two stress tests for the web application - before optimization and after
optimization, we can draw the following conclusions: performance has improved, loading time has
decreased, resource consumption has decreased, and scalability has improved.

At the next stage, the Image component and Content Delivery Network (CDN) were used to improve
the speed and performance of web applications. Figure 17 shows the Lighthouse results for a web
application without adding optimization methods, and Figure 18 shows the values of these metrics.

Figure 19 shows the Lighthouse results for the web application after adding optimization methods,
and Figure 21 shows the values of these metrics

execution: local

script: script.js
output: -

scenarios: (100.00%) 1 scenario, 100 max VUs, 1m50s max duration (incl. graceful stop):
* default: Up to 100 looping VUs for 1m20s over 3 stages (gracefulRampDown: 30s, gracefulStop: 30s)

data_received : 473 MB 5
data_sent siEsse. L0, MB 2
http_req_blocked. c....t avg=33.82ms min=55ps med=255ps max=6.71s p(90)=748us p(95)=1.37ms
http_req_connectioavg=33.76ms min=44ps med=209us max=6.71s p(90)=646.9us p(95)=1.2ms
X http_req_duration. .. © avg=313.17ms min=6.11ms med=300.18ms max=7.15s p(90)=498.43ms p(95)=572.3ms
{ expected_response: ...0 avg=313.17ms min=6.11ms med=300.18ms max=7.15s p(90)=498.43ms p(95)=572.3ms

http_req_failed : 0.00% X 20222
http_req_receiving c....: avg=186.08pus min=19yus med=91ps max=32.77ms p(90)=245us p(95)=460ps
http_req_sending.... c.o...i avg=55.39us min=4pus med=22ps max=17.88ms p(90)=56us p(95)=138us
http_req_tls_handshat avg=0s min=0s med=0s max=0s p(90)=0s p(95)=0s
http_req_waiting. .ioavg=312. 92ms m1n=5.98ms med=299.94ms max=7.15s p(90)=498.36ms p(95)=572.1ms
http_reqgs 120222 2 6 5
iteration_durat avg=347.09ms m1n=6.63ms med=302.34ms max=7.15s p(90)=511.63ms p(95)=600.97ms
iterations 20222 2 16567/s

1

running (1m20.0s), 000/100 VUs, 20222 complete and O interrupted iterations
default v [===] 000/100 VUs 1m20s

Figure 16: Output of K6 tool information to main page queries after optimization

! METRICS ~
42 8 8 86 @ First Contentful Paint A Largest Contentful Paint
1.2s 126s
I } @ Total Blocking Time @ Cumulative Layout Shift
Performance Accessibility Best SEO 570 ms 0
Practices
A Speed Index
63s
Figure 17: Results of the basic web application Figure 18: Web application metrics values
First Contentful Paint Largest Contentful Paint
03s 1.0s
Total Blocking Time Cumulative Layout Shift
Oms 0.004
Performance Accessibility Best
Speed Index
Practices 0.3s
Figurel9: Results of the web application after Figure 20: Values of web application metrics after
adding optimization elements adding optimization methods

Running the Lighthouse tool produced the following results:

e First Contentful Paint (FCP) reduced by 75%, from 1.2 seconds to 0.3 seconds.

e Largest Contentful Paint (LCP) decreased by 92%, from 12.6 seconds to 1.0 seconds.
e Total Blocking Time (TBT) reduced from 570 milliseconds to 0 milliseconds.

377

e Cumulative Layout Shift (CLS) changed slightly, from 0 seconds to 0.004 seconds.
e Speed Index decreased by 95,2%, from 6.3 seconds to 0.3 seconds.

1. First Contentful Paint (FCP): A decrease of 75% indicates a significant increase in the speed of
displaying the first content on the page, which makes the application more attractive to users.

2. Largest Contentful Paint (LCP): The 92% reduction shows a dramatic improvement in the load
time of the largest content on the page, which is immediately noticed by users.

3. Total Blocking Time (TBT): The reduction from 570 milliseconds to O milliseconds emphasizes
the absence of blocking operations that can interfere with user interaction.

4. Cumulative Layout Shift (CLS): A slight change from 0 seconds to 0.004 seconds indicates a
stable page display during loading.

5. Speed Index: A reduction of 95,2% indicates a significant acceleration of page rendering and
contributes to an excellent user experience.

After analyzing a baseline web application and an application with recommendations implemented
using Lighthouse, you can compare the resulting metrics and understand how the optimization
techniques improved the performance, availability, compliance with best practices, and SEO of the web
application. The results of the comparison will help identify the strengths and weaknesses of the
application and direct efforts to further optimization and performance improvement.

6. Conclusions

As a result of the work carried out, which used modern open-source tools such as Lighthouse and
K6 to optimize the web application based on Next.js, TypeScript, TRPC, Prisma, Postgres and Vercel,
significant improvements in quality and application performance.

Analysis of the test results with K6 indicates a significant improvement in important metrics such
as the quantity of HTTP requests, the duration of HTTP requests, the waiting time of HTTP requests,
and the quantity of HTTP requests per second. This indicates an effective optimization that reduced the
load on the server and made the application more responsive.

The results of the Lighthouse analysis are also impressive: reductions in First Contentful Paint,
Largest Contentful Paint, Total Blocking Time, Cumulative Layout Shift and Speed Index indicate a
significant acceleration of loading and displaying page content. This makes the app more attractive to
users and improves their overall experience.

In summary, the use of optimization methods and performance measurement tools allowed to
improve the quality and speed of the web application, ensuring user satisfaction and increasing its
competitiveness in the market.

7. References

[1] Dudnik, Y. Kravchenko, O. Trush, O. Leshchenko, N. Dakhno and V. Rakytskyi, "Study of the
Features of Ensuring Quality Indicators in Multiservice Networks of the Wi-Fi Standard," 2021
IEEE 3rd International Conference on Advanced Trends in Information Theory (ATIT), 2021, pp.
93-98, doi: 10.1109/ATIT54053.2021.9678691.

[2] Kravchenko, Y., Leshchenko, O., Dakhno, N., & Radko, M. (2022). Comparative evaluation of a
universities’ websites quality. development, 6, 7.

[3] Zimmermann, H. (1980). OSI reference model-the ISO model of architecture for open systems
interconnection. IEEE Transactions on communications, 28(4), 425-432.

[4] N. Dakhno, O. Barabash, H. Shevchenko, O. Leshchenko and A. Musienko, "Modified Gradient
Method for K-positive Operator Models for Unmanned Aerial Vehicle Control," 2020 IEEE 6th
International Conference on Methods and Systems of Navigation and Motion Control (MSNMC),
KY1V, Ukraine, 2020, pp. 81-84, doi: 10.1109/MSNMC50359.2020.9255516.

[5] Dakhno N., Barabash O., Shevchenko H., Leshchenko O., Dudnik A. Integro-differential Models
with a K-symmetric Operator for Controlling Unmanned Aerial Vehicles Using a Improved
Gradient Method. 2021 IEEE 6th International Conference “Actual Problems of Unmanned Aerial

378

Vehicles Development (APUAVD). Proceedings. October 19 — 21, 2021, Kyiv, Ukraine. P. 61 —
65. DOI: 10.1109/APUAVD53804.2021.9615431.

[6] Trush, O., Dudnik, A., Trush, M., Leshchenko, O., Shmat, K., & Mykolaichuk, R. (2022,
December). Mask Mode Monitoring Systems Using IT Technologies. In 2022 IEEE 4th
International Conference on Advanced Trends in Information Theory (ATIT) (pp. 219-224). IEEE.
DOI: 10.1109/ATIT58178.2022.10024216

[7] https://lighthouse-metrics.com/lighthouse/checks/be00382f-301e-47e4-84c8-d0142b4ff870

[8] Butkiewicz, M., Madhyastha, H. V., & Sekar, V. (2013). Characterizing web page complexity and
its impact. IEEE/Acm Transactions On Networking, 22(3), 943-956.

[9] Smith, P. G. (2012). Professional website performance: optimizing the front-end and back-end.
John Wiley & Sons.

[10] Grigorik, 1. (2013). High Performance Browser Networking: What every web developer should
know about networking and web performance. " O'Reilly Media, Inc.".

[11] Kleppmann, M. (2017). Designing data-intensive applications: The big ideas behind reliable,
scalable, and maintainable systems. " O'Reilly Media, Inc.".

[12] Barker, T. (2014). High performance responsive design: Building faster sites across devices. "
O'Reilly Media, Inc.".

[13] Z. Qian, H. Miao and H. Zeng, "A Practical Web Testing Model for Web Application Testing,"
2007 Third International IEEE Conference on Signal-Image Technologies and Internet-Based
System, Shanghai, China, 2007, pp. 434-441, doi: 10.1109/SIT1S.2007.16.

[14] Saputro, P. H. (2023). Application of GTMetrix and K6 in Performance Testing and Stress Levels
on POS (Point Of Sale) Websites (Case Study on waroeng99 Website). Jurnal Sistem Informasi
dan Teknologi Informasi, 2(1), 1-11.

[15] Wang, P., Varvello, M., & Kuzmanovic, A. (2019, July). Kaleidoscope: A crowdsourcing testing
tool for web quality of experience. In 2019 IEEE 39th International Conference on Distributed
Computing Systems (ICDCS) (pp. 1971-1982). IEEE.

[16] Kaur, S., Kaur, K., & Kaur, P. (2016). An empirical performance evaluation of universities
website. International Journal of Computer Applications, 146(15), 10-16.

[17] URL.: https://yslow.org/

[18] Matam, S., & Jain, J. (2017). Pro Apache JMeter: web application performance testing. Apress.

[19] Heri¢ko, T., Sumak, B., & Brdnik, S. (2021, September). Towards Representative Web
Performance Measurements with Google Lighthouse. In Proceedings of the 2021 7th Student
Computer Science Research Conference (p. 39).

[20] James, I. (2019). Webwaves: Web page auditing using Lighthouse. Preview, 2019(203), 50-51.

[21] Patil, S. A. (2020). Comparative SEO Techniques Analysis on core WebPages and its
Effectiveness in Context of Google Search Engine, International Journal of Scientific
Development and Research, Vol 5, 1s.3 (pp. 420-428)

[22] Rosenfeld, L. & Morville, P. & Arango, J. (2015). Information Architecture: For the Web and
Beyond, O'Reilly Media

[23] Vasilijevi¢, V., Koji¢, N., & Vugdelija, N. (2020, October). A new approach in quantifying user
experience in web-oriented applications. In 4th International Scientific Conference on Recent
Advances in Information Technology, Tourism, Economics, Management and Agriculture—
ITEMA (pp. 9-16).

[24] Z. Qian, H. Miao and H. Zeng, "A Practical Web Testing Model for Web Application Testing,"
2007 Third International IEEE Conference on Signal-Image Technologies and Internet-Based
System, Shanghai, China, 2007, pp. 434-441, doi: 10.1109/SIT1S.2007.16.

[25] Akpinar, P., Aktas, M. S., Keles, A. B., Balaman, Y., Guler, Z. O., & Kalipsiz, O. (2020, June).
Web application testing with model based testing method: case study. In 2020 International
Conference on Electrical, Communication, and Computer Engineering (ICECCE) (pp. 1-6). IEEE.

379

	1. Introduction
	2. Overview of web application optimization methods
	2.1. Tools for web application performance analysis

	3. Development of a web application
	4. Evaluation of the effectiveness of the web application
	5. Experimental study of optimization methods using Lighthouse and K6 tools
	6. Conclusions
	7. References

