
368

Optimizing and Improvement a Web Application Using Open
Source Tools

 Yuri Kravchenko, Olga Leshchenko, Oleksandr Trush, Nataliia Dakhno and Pavlo Krasnopyorov

Taras Shevchenko National University of Kyiv, Volodymyrs’ka str. 60, Kyiv, 01033, Ukraine

Abstract
This paper analyzes the optimization of a web application using modern open source tools such
as Lighthouse and K6. The main goal was to improve the quality and productivity of the
additive. The study finally analyzed important metrics such as number of HTTP requests,
duration of HTTP requests, HTTP request waits, HTTP requests per second, as well as key
indicators such as First Contentful Paint, Largest Contentful Paint, Total Blocking Time,
cumulative layout shift and speed index.
The results of this analysis show significant improvements in all the specified metrics, which
undoubtedly emphasizes the effectiveness of the optimization methods and tools used. The
number of HTTP requests has increased and their duration has decreased, which degrades the
overall speed of processing requests. It is important to note that the page load time has become
significantly faster, with a significant reduction in First Contentful Paint and Largest
Contentful Paint. These improvements not only enhanced the user experience, but also
positioned the app as more competitive in the market.

Keywords 1
WEB APP, optimization, NEXTJS, Lighthouse, K6, YpeScript, JavaScript HTML, CSS

1. Introduction

In today's digital world, web applications remain essential tools for businesses and consumers [1,2].
The speed, performance and user experience of web applications have become key factors in their
success. Optimization web applications is an important task for developers to ensure speed of service
provision, efficient operation and user satisfaction. The purpose of the work is the research of
optimization methods for web application development and the application of effective optimization
methods aimed at improving the speed and reactivity of web applications. Web application optimization
includes various aspects, from architectural designs to database query optimization and loading page
optimization. The results of research and development can be used to improve web applications, ensure
fast loading of pages, efficient work with the database and optimal use of resources.

To achieve the goal, the following tasks are solved:
● overview of web application optimization methods;
● web application development;
● evaluation of the effectiveness of the web application;
● an experimental research of web application optimization.

This work is important because the performance and user experience of web applications are critical
factors in meeting the needs of today's user. The development of effective methods of optimizing web
applications will contribute to the development of the Internet space and the improvement of the quality
of web services for users.

2. Overview of web application optimization methods

There are many options for how to optimize a web application, but to group and systematize them,
you can use the OSI (Open Systems Interconnection) model [3]. By looking at the OSI model, we can

Information Technology and Implementation (IT&I-2023), November 20-21, 2023, Kyiv, Ukraine

EMAIL: kr34@ukr.net (A.1); olga.leshchenko@knu.ua (A.2); oleksandr.trush@knu.ua (A.3); nataly.dakhno@ukr.net (A.4);
pavlokrasnopyorov@knu.ua (A.5)

ORCID: 0000-0002-0281-4396 (A.1); 0000-0002-3997-2785 (A.2); 0000-0002-4188-2850 (A.3); 0000-0003-3892-4543 (A.4)

©️ 2023 Copyright for this paper by its authors.

Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

 CEUR Workshop Proceedings (CEUR-WS.org)

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

369

identify at which network layer optimization techniques can be applied to improve the performance of
a web application. Application layer, which is the upper level of the OSI model and plays the most
important role in the use of optimization methods. This level includes applications and services that
provide users with multi-functional capabilities. Applying optimization techniques at the application
layer level has great potential to improve performance, efficiency, and user experience.

Analyzing web application optimization methods involves using a variety of tools to evaluate and
analyze the effectiveness of different optimization approaches. This includes both mathematical
methods of optimization [4 - 6] and instrumental methods. These tools help you understand which
optimization techniques are best to use to improve the performance and speed of your web application.

One of the main analysis tools is application performance analysis. It includes collecting and
analyzing server load data, user feedback, page load speed, and other performance metrics [7].
Information obtained from monitoring helps to identify problem areas and potential optimization areas
[8, 9]. App performance analysis involves evaluating various metrics that help determine how well the
app is performing and how its performance affects the user experience [10, 11].

1. Response Time: The average response time can be determined using the mathematical
expectation (average) response time for all requests. The equation can look like this:

𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝑇𝑖𝑚𝑒 = 𝑁Σ𝑇, (1)

where T - is the response time of each individual request, and N - is the quantity of requests.

2. Page Load Time: This metric can be calculated as the sum of the loading time of individual
resources (images, CSS, JavaScript, etc.) that are included on the page.

PageLoadTime = ΣResourceLoadTime, (2)

where ResourceLoadTime - is the loading time of each resource.
3. Resource Usage: CPU time and memory usage can be measured as the percentage of resources

used relative to the maximum available resources.

𝐶𝑃𝑈𝑈𝑠𝑎𝑔𝑒 =
𝑈𝑠𝑒𝑑𝐶𝑃𝑈𝑇𝑖𝑚𝑒

𝑇𝑜𝑡𝑎𝑙𝐶𝑃𝑈𝑇𝑖𝑚𝑒
∗ 100%,

𝑀𝑒𝑚𝑜𝑟𝑦𝑈𝑠𝑎𝑔𝑒 =
𝑈𝑠𝑒𝑑𝑀𝑒𝑚𝑜𝑟𝑦

𝑇𝑜𝑡𝑎𝑙𝑀𝑒𝑚𝑜𝑟𝑦
∗ 100%,

(3)

4. Reliability: It is possible to use the quantity of errors to determine reliability.

𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =
𝑁𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝐸𝑟𝑟𝑜𝑟𝑠

𝑇𝑜𝑡𝑎𝑙𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑠
∗ 100%,

(4)

5. User Interaction Response Time: Response time to user interaction can be determined by
measuring the time between sending a user request and receiving a response.

𝑈𝑠𝑒𝑟𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝑇𝑖𝑚𝑒 = 𝐸𝑛𝑑𝑇𝑖𝑚𝑒 − 𝑆𝑡𝑎𝑟𝑡𝑇𝑖𝑚𝑒, (5)

where EndTime - is the time of receiving a response, and StartTime - is the time of sending a request.
These equations represent general approaches to measuring various performance metrics. Specific

equations and measurement metrics can be adapted depending on the application and measurement

methodology.

2.1. Tools for web application performance analysis

Paragraph text. Paragraph text. Analysis tools play an important role in the process of optimizing

web applications. They provide us with the opportunity to get detailed information about the

performance and efficiency of our application, identify problem areas and find ways to solve them.

First of all, analysis tools allow you to monitor the performance of a web application in real time
[12]. They provide collection and visualization of key metrics such as server recall time, page load time,

memory usage, and more. This allows you to identify speed issues that may affect the user experience.

Next, analysis tools provide the ability to perform detailed audits of web applications in terms of
loading speed, resource size, caching, and other factors. They help identify problem areas that can be

optimized, such as reducing file size, using caching to reduce server requests, etc.

370

In addition, the analysis tools provide the ability to conduct load tests that allow you to simulate
heavy loads on a web application and evaluate its performance and stability. This allows you to identify

problems of scalability, insufficient optimization or instability of the system.

Popular web application analysis and optimization tools include:

1. k6 - is a high-performance tool for load testing and performance verification [13]. It allows
developers and engineers to test the scaling of web applications and network services and evaluate their

performance under different loads. Benefits: An easy-to-use tool for load testing and performance

verification. Supports JavaScript scripting and provides detailed reports. Disadvantages: Some
advanced features may only be available in the commercial version. Figure 1 shows an example of use.

2. GTmetrix: It is an online tool that provides a detailed report on the performance of web pages.

GTmetrix evaluates page load speed, file size, quantity of server requests and other metrics. It also
provides optimization recommendations to improve performance [14]. Benefits: Provides in-depth

performance analysis, including download speed estimates, image optimization, caching, and other tips.

It has a user-friendly interface and supports many test locations. Disadvantages: Some features are only

available in the paid version. Reports can be a bit complicated for beginners. Figure 2 shows an example

of use.

Figure 1: An example of the use of k6

1. WebPageTest: It is a tool that allows you to test the loading speed of web pages from different
locations around the world. It provides detailed information on load hours, page size, server requests,

and other metrics [15]. WebPageTest also allows you to run repeated tests to monitor hourly

performance. Benefits: Provides detailed performance reports including load speed, page load analysis,
query waterfall and other metrics. Allows you to choose the test location and different configurations.

Disadvantages: The interface may seem difficult for beginners. There are a limited quantity of free

requests. Figure 3 shows an example of use.
2. Pingdom: It is a performance monitoring tool that provides information on page load hours, file

sizes, quantity of requests, and other metrics [16]. He has too the ability to monitor site performance on

an ongoing basis and send notifications about any problems. Pros

3. An easy-to-use tool that provides information about website loading speed and availability. It has
a user-friendly interface and supports many test locations. Disadvantages: Limited functionality

compared to other tools. Some advanced features are only available in the paid version. Figure 4 shows

an example of use.
4. YSlow: This is a browser extension that provides web page performance scores based on Yahoo's

recommendations [17]. YSlow analyzes various aspects, including caching, file compression, CDN

usage, and more, and provides recommendations for improving performance. Benefits: Analyzes web

page performance, offers optimization tips such as resource compression, caching, and other

371

improvements. Integrated with Firebug browser extension. Disadvantages: The development of the tool
has been frozen, so it may be less relevant compared to newer tools. Figure 5 shows an example of use.

5. Apache JMeter: It is a tool for testing server performance and load. It allows simulation of a

large volume of requests to a web application, which helps to evaluate its performance and identify

problem areas [18]. Pros: Powerful performance and load testing tool. Supports many protocols and can
simulate different load scenarios. Disadvantages: Requires study and experience to use effectively.

Does not provide a visual report, requires analysis of results. Figure 6 shows an example of use.

Figure 2: Example of using GTmetrix

Figure 3: Using WebPageTest

372

Figure 4: Pingdom usage

These tools help you analyze and optimize the performance of your web applications to provide a

better user experience and faster page load times. Thanks to the analysis tools, there is confidence that
the web application is running at optimal performance and provides a fast and convenient user

experience. Considering these factors, Lighthouse [18, 19] and k6 were chosen as effective tools for

query testing in a commercial web application. These tools provide ease of use, flexibility in test setup,

analysis of results, and extensibility. Help identify problems, analyze test results, and make informed
decisions about app optimization.

Figure 5: An example of using Apache JMeter

373

3. Development of a web application

Web application development includes two main components: client-side and server-side

development. Each of these components has its own unique requirements and tasks that are necessary

for the successful implementation of the project.
The client part of the web application corresponds to the interaction with the user and the display of

information on his devices. Technologies such as HTML, CSS and JavaScript programming language,

as well as modern frameworks and libraries that simplify the work of creating an interactive interface
are used to develop the client part.

The server part of the web application is responsible for processing user requests, saving and

retrieving data from databases, as well as for the application's business process logic.

When developing an optimized web application, the Next.js framework will be used, which is one
of the popular and powerful frameworks for developing React-based web applications. One of the main

advantages of Next.js is that it works both on the client side and on the server side, which makes it an

ideal choice for optimizing applications.
A commercial web application was chosen for the optimization study. Here are some reasons that

explain the choice: increased conversions, large volumes of data, SEO and search ranking [20].

Choosing a commercial web application allows you to uncover the most possible optimization

methods, after which it requires attention to speed, performance, security, user experience and other
factors that are crucial.

4. Evaluation of the effectiveness of the web application

Web application development includes two main components: client-side and server-side
development. Each of these components has its own unique requirements and tasks that are necessary

for the successful implementation of the project.

To evaluate the performance of the web application, we will use Lighthouse, which is an open tool

for analyzing the performance and quality of web applications, as well as K6 to create a stress test.
Lighthouse was developed by the Chrome DevTools team and provides tools for evaluating

performance, accessibility, SEO optimization, and other aspects of a web application [21, 22]. The main

function of Lighthouse is to automatically audit a web page using a set of rules and recommendations.
The Lighthouse performance score is a weighted average of metrics, with more weighted metrics having

a greater impact on the overall performance score. Scores of indicators are not displayed in the report,

but are calculated according to the formula shown in Figure 6.

Figure 6: Indicator and its weight in efficiency calculation

Key performance metrics that can be measured include:

374

1. First Contentful Paint (FCP): This is the time it takes to display the first content on the page.
It can be text, images or other elements. The smaller the FCP value, the faster the web page will

display the first content. Figure 7 shows how the metric value is interpreted for loading.

The FCP is calculated as the difference between the FCP time and the initial page load time:

𝐹𝐶𝑃 = tFCP − 𝑡𝑠𝑡𝑎𝑟𝑡, (6)
2. Cumulative Layout Shift (CLS): This is a metric that measures how unstable the elements on
the page are when loading. It measures how much the page layout changes on load, which can lead

to an unpleasant user experience, such as when they try to click on an element but it suddenly shifts.

CLS is calculated as the sum of the cumulative displacements of objects on the page during loading.
Each change in the position of the object is taken into account with a weighting factor depending on

the visibility of the object and the size of the page. Mathematically, this can be expressed as:

𝐶𝐿𝑆 = 𝛴 (𝑖𝑚𝑝𝑎𝑐𝑡 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 ∗ 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 ∗ 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒), (7)
where:

 Impact fraction - fraction of displacement caused by a change in the object's position.

 Distance fraction - the fraction of the visible area of the page that was affected by the change

in the object's position.

 Distance - the actual distance the object moved.

Figure 7: Metric FCP Figure 8: Metric CLS

3. Largest Contentful Paint (LCP): This is the time it takes to display the largest piece of content
on the page. It can be a large image, video or other important element that attracts the user's attention.

Figure 8 shows how the metric value is interpreted for loading.

The LCP is calculated as the difference between the LCP time and the initial page load time:

𝐿𝐶𝑃 = 𝑡𝐿𝐶𝑃 − 𝑡𝑠𝑡𝑎𝑟𝑡, (8)

 t_start - the time the page started to load,

 t_LCP - the time when the largest content becomes visible.

4. Total Blocking Time (TBT): This is the time when the page is blocked and unavailable for user
interaction due to the execution of JavaScript code. Figure 9 shows how the metric value is

interpreted for loading.

The mathematical model for TBT can be expressed as follows:

 Blocking Time for each task (such as JavaScript or rendering): The amount of time the page is

blocked during a specific task. Let's denote this time as BT_i, where i is the index of a separate task.

 Quantity of tasks (N): Quantity of all tasks that blocked the page.

 Total Blocking Time, TBT: This is the total block time for all tasks:

𝑇𝐵𝑇 = 𝛴𝐵𝑇𝑖, де 𝑖 від 1 до 𝑁, (9)

Figure 9: Metric LCP Figure 10: Metric TBT

5. Speed Index: This is the time that shows how quickly the content is displayed visually when the
page loads. First, Lighthouse captures a video of the page loading in the browser and calculates the

visual transition between frames, then uses the Speedline Node.js module to calculate the speed index.

Figure 11 shows how the metric value is interpreted for loading.

375

Taking into account these optimization metrics helps to make an objective assessment of the
performance of the web application. Comparing these metrics to set goals and standards will help

identify issues and make optimizations to improve performance and user experience.

Figure 11: Interpretation of the Speed Index by time

5. Experimental study of optimization methods using Lighthouse and K6 tools

An experimental study of the optimization of a web application can include several stages, and the

main emphasis will be on using the Lighthouse tool for local testing [23] and conducting tests in

different regions for hosting on the domain where the web application is located, as well as stress testing
using tools K6 [24, 25]. The results of testing in different regions on the main page are in Figure 12 and

Figure 13, respectively.

Performance testing for different regions is an important part of the web application optimization
process. It helps ensure global availability, improve user experience and determine the optimal hosting

settings for the application.

Figure 12: Lighthouse test results in different regions of the main page [7]

Figure 13: Lighthouse test results in different regions of the main page [7]

376

The K6 tool was chosen for the stress test - it is a very powerful tool for stress testing and loading

web applications and APIs. It is designed to help developers and engineers test the speed and stability

of their systems under heavy load.

One of the advantages of the K6 is its ease of use. It has a simple syntax that allows you to quickly
create and configure tests. K6 is written in the Go programming language, which makes it fast and

efficient. It also has built-in support for JavaScript, allowing you to use your own code to create

complex test scenarios. The configuration of the script with comments is presented in Figure 14.

Figure 14: Script configuration for testing requests

Uses the http module from K6 to make a GET request to a web application URL.
The Options object contains the K6 configuration parameters. We define different stages (stages)

for the load, increasing it to 100 virtual users for 10 seconds, maintaining it at this level for the next

minute, and then reducing it to 0 for another 10 seconds. The Thresholds object allows you to set
threshold values for metrics. We use http_req_duration (duration of requests) and set the threshold that

95% of requests have a duration of less than 500 ms. The results of the k6 web application before and

after the application of optimization methods are shown in Figures 16 and 17, respectively.

When using the K6 tool, the following results were obtained:
1. Quantity of HTTP requests. Includes all successful and failed requests. 2603 queries were

executed before optimization, and 20222 queries were received after using the K6 tool. The increase

indicates that the optimization of the application contributed to more efficient processing of requests
and resources, which helps to reduce the load on the server.

2. HTTP request duration. Before optimization, it was 2.72 seconds, and after using the K6 tool,

312.17ms was obtained. The duration of requests decreased by 88.43% after optimization. The

reduction indicates that the app has become more responsive and responds quickly to user requests,
which improves the overall user experience.

3. Waiting for HTTP requests. Before optimization, it was 2.72 s, and after using the K6 tool, 312.92

ms was obtained. Expectation decreased by 88.29%. The reduction indicates optimization of the
application's network interaction, which contributes to higher performance and responsiveness.

4. Quantity of HTTP requests per second. Before optimization, it was 32.46 requests/s, and after

using the K6 tool, 252.76 requests/s were obtained. The 678.6% increase shows the app's ability to
serve more users simultaneously and improves its scalability.

377

Figure 15: Output of K6 tool information to main page queries before optimization

After carrying out two stress tests for the web application - before optimization and after
optimization, we can draw the following conclusions: performance has improved, loading time has

decreased, resource consumption has decreased, and scalability has improved.

At the next stage, the Image component and Content Delivery Network (CDN) were used to improve
the speed and performance of web applications. Figure 17 shows the Lighthouse results for a web

application without adding optimization methods, and Figure 18 shows the values of these metrics.

Figure 19 shows the Lighthouse results for the web application after adding optimization methods,

and Figure 21 shows the values of these metrics

Figure 16: Output of K6 tool information to main page queries after optimization

Figure 17: Results of the basic web application Figure 18: Web application metrics values

Figure19: Results of the web application after Figure 20: Values of web application metrics after
adding optimization elements adding optimization methods

Running the Lighthouse tool produced the following results:

 First Contentful Paint (FCP) reduced by 75%, from 1.2 seconds to 0.3 seconds.

 Largest Contentful Paint (LCP) decreased by 92%, from 12.6 seconds to 1.0 seconds.

 Total Blocking Time (TBT) reduced from 570 milliseconds to 0 milliseconds.

378

 Cumulative Layout Shift (CLS) changed slightly, from 0 seconds to 0.004 seconds.

 Speed Index decreased by 95,2%, from 6.3 seconds to 0.3 seconds.

1. First Contentful Paint (FCP): A decrease of 75% indicates a significant increase in the speed of

displaying the first content on the page, which makes the application more attractive to users.

2. Largest Contentful Paint (LCP): The 92% reduction shows a dramatic improvement in the load

time of the largest content on the page, which is immediately noticed by users.
3. Total Blocking Time (TBT): The reduction from 570 milliseconds to 0 milliseconds emphasizes

the absence of blocking operations that can interfere with user interaction.

4. Cumulative Layout Shift (CLS): A slight change from 0 seconds to 0.004 seconds indicates a
stable page display during loading.

5. Speed Index: A reduction of 95,2% indicates a significant acceleration of page rendering and

contributes to an excellent user experience.
After analyzing a baseline web application and an application with recommendations implemented

using Lighthouse, you can compare the resulting metrics and understand how the optimization

techniques improved the performance, availability, compliance with best practices, and SEO of the web

application. The results of the comparison will help identify the strengths and weaknesses of the
application and direct efforts to further optimization and performance improvement.

6. Conclusions

As a result of the work carried out, which used modern open-source tools such as Lighthouse and

K6 to optimize the web application based on Next.js, TypeScript, TRPC, Prisma, Postgres and Vercel,
significant improvements in quality and application performance.

Analysis of the test results with K6 indicates a significant improvement in important metrics such

as the quantity of HTTP requests, the duration of HTTP requests, the waiting time of HTTP requests,
and the quantity of HTTP requests per second. This indicates an effective optimization that reduced the

load on the server and made the application more responsive.

The results of the Lighthouse analysis are also impressive: reductions in First Contentful Paint,
Largest Contentful Paint, Total Blocking Time, Cumulative Layout Shift and Speed Index indicate a

significant acceleration of loading and displaying page content. This makes the app more attractive to

users and improves their overall experience.

In summary, the use of optimization methods and performance measurement tools allowed to
improve the quality and speed of the web application, ensuring user satisfaction and increasing its

competitiveness in the market.

7. References

[1] Dudnik, Y. Kravchenko, O. Trush, O. Leshchenko, N. Dakhno and V. Rakytskyi, "Study of the
Features of Ensuring Quality Indicators in Multiservice Networks of the Wi-Fi Standard," 2021

IEEE 3rd International Conference on Advanced Trends in Information Theory (ATIT), 2021, pp.

93-98, doi: 10.1109/ATIT54053.2021.9678691.
[2] Kravchenko, Y., Leshchenko, O., Dakhno, N., & Radko, M. (2022). Comparative evaluation of a

universities’ websites quality. development, 6, 7.

[3] Zimmermann, H. (1980). OSI reference model-the ISO model of architecture for open systems
interconnection. IEEE Transactions on communications, 28(4), 425-432.

[4] N. Dakhno, O. Barabash, H. Shevchenko, O. Leshchenko and A. Musienko, "Modified Gradient

Method for K-positive Operator Models for Unmanned Aerial Vehicle Control," 2020 IEEE 6th

International Conference on Methods and Systems of Navigation and Motion Control (MSNMC),
KYIV, Ukraine, 2020, pp. 81-84, doi: 10.1109/MSNMC50359.2020.9255516.

[5] Dakhno N., Barabash O., Shevchenko H., Leshchenko O., Dudnik A. Integro-differential Models

with a K-symmetric Operator for Controlling Unmanned Aerial Vehicles Using a Improved
Gradient Method. 2021 IEEE 6th International Conference “Actual Problems of Unmanned Aerial

379

Vehicles Development (APUAVD). Proceedings. October 19 – 21, 2021, Kyiv, Ukraine. P. 61 –
65. DOI: 10.1109/APUAVD53804.2021.9615431.

[6] Trush, O., Dudnik, A., Trush, M., Leshchenko, O., Shmat, K., & Mykolaichuk, R. (2022,

December). Mask Mode Monitoring Systems Using IT Technologies. In 2022 IEEE 4th

International Conference on Advanced Trends in Information Theory (ATIT) (pp. 219-224). IEEE.
DOI: 10.1109/ATIT58178.2022.10024216

[7] https://lighthouse-metrics.com/lighthouse/checks/be00382f-301e-47e4-84c8-d0142b4ff870

[8] Butkiewicz, M., Madhyastha, H. V., & Sekar, V. (2013). Characterizing web page complexity and
its impact. IEEE/Acm Transactions On Networking, 22(3), 943-956.

[9] Smith, P. G. (2012). Professional website performance: optimizing the front-end and back-end.

John Wiley & Sons.
[10] Grigorik, I. (2013). High Performance Browser Networking: What every web developer should

know about networking and web performance. " O'Reilly Media, Inc.".

[11] Kleppmann, M. (2017). Designing data-intensive applications: The big ideas behind reliable,

scalable, and maintainable systems. " O'Reilly Media, Inc.".
[12] Barker, T. (2014). High performance responsive design: Building faster sites across devices. "

O'Reilly Media, Inc.".

[13] Z. Qian, H. Miao and H. Zeng, "A Practical Web Testing Model for Web Application Testing,"
2007 Third International IEEE Conference on Signal-Image Technologies and Internet-Based

System, Shanghai, China, 2007, pp. 434-441, doi: 10.1109/SITIS.2007.16.

[14] Saputro, P. H. (2023). Application of GTMetrix and K6 in Performance Testing and Stress Levels
on POS (Point Of Sale) Websites (Case Study on waroeng99 Website). Jurnal Sistem Informasi

dan Teknologi Informasi, 2(1), 1-11.

[15] Wang, P., Varvello, M., & Kuzmanovic, A. (2019, July). Kaleidoscope: A crowdsourcing testing

tool for web quality of experience. In 2019 IEEE 39th International Conference on Distributed
Computing Systems (ICDCS) (pp. 1971-1982). IEEE.

[16] Kaur, S., Kaur, K., & Kaur, P. (2016). An empirical performance evaluation of universities

website. International Journal of Computer Applications, 146(15), 10-16.
[17] URL: https://yslow.org/

[18] Matam, S., & Jain, J. (2017). Pro Apache JMeter: web application performance testing. Apress.

[19] Heričko, T., Šumak, B., & Brdnik, S. (2021, September). Towards Representative Web

Performance Measurements with Google Lighthouse. In Proceedings of the 2021 7th Student
Computer Science Research Conference (p. 39).

[20] James, I. (2019). Webwaves: Web page auditing using Lighthouse. Preview, 2019(203), 50-51.

[21] Patil, S. A. (2020). Comparative SEO Techniques Analysis on core WebPages and its
Effectiveness in Context of Google Search Engine, International Journal of Scientific

Development and Research, Vol 5, Is.3 (pp. 420-428)

[22] Rosenfeld, L. & Morville, P. & Arango, J. (2015). Information Architecture: For the Web and
Beyond, O'Reilly Media

[23] Vasilijević, V., Kojić, N., & Vugdelija, N. (2020, October). A new approach in quantifying user

experience in web-oriented applications. In 4th International Scientific Conference on Recent

Advances in Information Technology, Tourism, Economics, Management and Agriculture–
ITEMA (pp. 9-16).

[24] Z. Qian, H. Miao and H. Zeng, "A Practical Web Testing Model for Web Application Testing,"

2007 Third International IEEE Conference on Signal-Image Technologies and Internet-Based
System, Shanghai, China, 2007, pp. 434-441, doi: 10.1109/SITIS.2007.16.

[25] Akpinar, P., Aktas, M. S., Keles, A. B., Balaman, Y., Guler, Z. O., & Kalipsiz, O. (2020, June).

Web application testing with model based testing method: case study. In 2020 International
Conference on Electrical, Communication, and Computer Engineering (ICECCE) (pp. 1-6). IEEE.

	1. Introduction
	2. Overview of web application optimization methods
	2.1. Tools for web application performance analysis

	3. Development of a web application
	4. Evaluation of the effectiveness of the web application
	5. Experimental study of optimization methods using Lighthouse and K6 tools
	6. Conclusions
	7. References

