CEUR-WS.org/Vol-3599/paper_3.pdf

C

CEUR

Workshop
Proceedings

TotalBotWar: An Innovative Al Challenge and
Competition for Pseudo Real-time Multi-action games

Ratl Montoliu®*, Alejandro Estaben!, César Diaz’, Sergi Fuster’ and
Diego Pérez-Liebana?

!Institute of New Imaging Technologies. Jaume I University. Castellén. Spain
?Game Al group. Queen Mary University of London. London, UK.

Abstract

This paper introduces TotalBotWar, a novel pseudo-real-time multi-action challenge for game Al Addi-
tionally, it includes initial experiments that assess the framework’s performance with various agents.
TotalBotWar is inspired by the real-time battles found in the popular TotalWar game series, where
players command armies to defeat their opponents. In this game, each turn comprises a set of orders to
control one’s units. As the game progresses, the number and specific orders that can be executed in a
turn change. An intriguing aspect of TotalBotWar is that if a unit doesn’t receive an order in a turn, it
continues the action it performed in the previous turn. This characteristic results in a rapidly increasing
turn-wise branching factor, making it challenging for traditional algorithms. Furthermore, the game’s
partial observability of the game state makes it a valuable platform for testing modern Al algorithms.

Keywords

Game Al Multi-action games, Bots programming

1. Introduction

In recent years, games have proven to be important test-beds for Artificial Intelligence (AI).
For instance, deep reinforcement learning has enabled computers to learn how to play games
such as Chess [1], Go [1], Atari games [2], and many other games [3]. Despite these important
advances, there are still games that pose important challenges for state-of-the-art Al agents.
Some examples are Blood Bowl [4], Legend of Code and Magic [5], MicroRTS [6], FightingICE
[7], Hanabi [8], Splendor [9], StarCraft [10], and the General Video Game Al framework [11],
among others.

In this paper, we propose TotalBotWar, a new pseudo-real-time challenge for game Al The
game is inspired by the real-time battles of the popular TotalWar game series', where two
players control respective armies with the objective of defeating each other. On each turn, the
agent must decide where the unit must move to. When two opposite units collide, they will
start to fight. The result of the combat depends on the type of units and their attributes. If
during a turn a unit does not receive any order, it will continue its movement following the

CEV’23. II Congreso Espaniol de Videojuegos. Madrid, 9 y 10 de noviembre de 2023

*Corresponding author.

& montoliu@uji.es (R. Montoliu); diego.perez@qmul.ac.uk (D. Pérez-Liebana)

® 0000-0002-8467-391X (R. Montoliu)

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
=== CEUR Workshop Proceedings (CEUR-WS.org)

!Creative Assembly, https://www.totalwar.com/

mailto:montoliu@uji.es
mailto:diego.perez@qmul.ac.uk
https://orcid.org/0000-0002-8467-391X
https://creativecommons.org/licenses/by/4.0
https://ceur-ws.org
https://ceur-ws.org
https://www.totalwar.com/

previous one, or it will stand still if none was given. This introduces unknown information on
the state: it is possible to know that an enemy unit is moving, but not its destination. The game
has a high number of possible actions in a turn (= 6.7E7) and also a huge number of possible
states (= 3.3E29), which provides a significant challenge for Al agents. The game, implemented
using the CodinGame SDK?, has already been made available online at this platform?.

An initial set of experiments is also presented, where five different agents are benchmarked
to give a baseline to future researchers. Three of them are primary agents where a) units never
move (but can fight), b) always move forward, or c) move to a random localisation. The two
remaining are more sophisticated. The first one applies human knowledge by using a heuristic
function. The last one implements the Online Evolutionary planning (OEP) algorithm proposed
by Justesen et al. [12]. Preliminary results show that the heuristic-based and OEP overcome the
three primary agents, being the OEP preferable.

Summarising, this paper presents three main novelties:

» We present TotalBotWar a new pseudo-real-time multi-action challenge for game Al

+ As far as we know, this is the first work implementing real-time TotalWar-style battles as
a game Al challenge.

« We assess the performance of five agents, including the Online Evolutionary Planning
algorithm, in the proposed game Al challenge.

The rest of the paper has been organised as follows. Section 2 presents the main characteristics
of the game including how agents interact with the game engine. A set of baseline agents
and some preliminary experiments are shown in Sections 3 and 4. Finally, the most important
conclusions drawn from this work are summarised in Section 5.

2. The game

2.1. Game Overview

TotalBotWar is a 1 vs 1, pseudo-real-time, multi-action game, partially inspired by the real-time
battles of the Total War games series. In our game, both players start with the same number of
military units and their objective is to defeat the other player. The winner is the player who
first destroys all the opponent’s units or the one with more units alive on the battlefield when
the maximum number of turns is reached, which is set to 400. There are four different types of
units: Swordsmen, Spearmen, Archers and Knights (see Figure 1). The game uses a classical
rock-paper-scissors combat scheme, where swordsmen are good against spearmen, spearmen are
good versus knights and finally, knights are good against swordsmen. Archers are an exception:
they can attack from a distance but are very weak in face-to-face combat.

Each unit has an attribute vector modelling its behaviour. The attributes are Health Points,
Attacking Strength, Defence, Charge Power, Charge Resistance, Moving Speed and defence
against Arrows. Besides, archers also have Throwing Distance and Arrow Damage. Table 1
shows the values assigned to each attribute for each unit type.

*https://www.codingame.com/
*https://www.codingame.com/contribute/view/486222077fe22e3aa6bcdc0£729dd46223bb

Figure 1: The game units, from left to right: swordsmen, spearmen, archers and knights.

Table 1
Values of the attributes of each unit type.
’ Attribute Swordsmen | spearmen | Knights | Archers
Health Points 250 250 200 100
Attacking Strength 20 15 12 10
Defence 10 20 12 5
Charge Power 5 10 100 5
Charge resistance 25 125 15 0
Moving Speed 15 10 40 15
Defence against Arrows 10 30 30 10
Throwing Distance - - - 450
Arrow damage - - - 20

Units can move to any place on the battlefield. Two units from the same agent can’t overlap,
and they will fight if they belong to different armies. If a unit reaches the limits of the battlefield,
it stops. Archers always shoot arrows at enemy troops into the attacking range. Troops suffer
friendly fire if they are close to an opponent unit receiving arrows.

The game has three different leagues or levels. When using the CodinGame platform, the
player has to first implement a bot to defeat the system bot of the first league. After, he/she
must implement a new one to defeat the system bot of the second league before passing to
the third one. In the third league, the CodingGame platform allows testing the player’s bot
versus the bots implemented by many other players. Alternatively, the three leagues can be
used isolated from CodingGame platform to test Al algorithms and to rule Al competitions.

In the first league (see Figure 2), the army of each player consists of just one unit of each type
and units start in predefined initial locations on the battlefield. The second league introduces
the draft phase (see Figure 3) where, in the first 9 turns of the game, the agents must select how
many units of each type will be part of their armies and their initial positions on the battlefield.
Therefore, the total number of units is 9. There is no restriction on the number of units of each
type, i.e. the army can be composed of 9 archers if this is the decision of the agent. On each
turn, players select units simultaneously, knowing only the units selected by both players in all
previous turns. In the third league (see Figure 4), the army is composed of 30 units, therefore
the draft lasts until the 30" turn of the game. Additionally, the third league introduces the
General unit, which is a highly important unit that can be crucial in the game. All units within
a distance of 150 pixels from their general increase (multiplicatively) their attributes by 1.25.

Jandrit

Player O

Player 1

Figure 3: Screenshot of the second league of the game during the draft phase. In this league, the army
is composed of 9 different units. The composition of the army is defined at the draft phase.

However, if the general is dead, all units decrease their attributes by 0.75. The general is always
the first unit selected in the draft and can be of any type.

The size of the battlefield is 1920 x 1080 pixels. The battlefield is completely flat. The size of
the units is 150 x 150 pixels in leagues 1 and 2, and 75 x 75 pixels in the third league.

2.2. Main characteristics

The main characteristics of game Al are as follows:

« Itisa 1l vs 1 game.

« Itis (pseudo) real-time. Although the game engine performs actions in the order indicated
in the turn, the effect of this order is practically negligible. Similarly, the effect of which
player performs the actions is minimal.

Player 1

Figure 4: Screenshot of the third league of the game during the battle phase. The army is composed
of 30 units and includes a General. The General is the unit with ID 1 and its background colour is
highlighted.

Not all information is known in the state. The state contains information about the
actual position of the enemy units and if they are moving or not, but it does not provide
information about the final target where they are moving.

It is multi-action since in the same turn more than one action can be performed for each
different unit owned on the battlefield.

The agents have just 200ms to decide the actions to be executed on each turn. This is a
restriction of the core of CodingGame engine.

It has a very large number of possible actions in a turn (= 6.7E7) and possible states
(= 3.3E29).

2.3. Motivation

This work has two principal motivations. On the one hand, the game has been included in
CodinGame platform to be used as a tool to learn programming skills fascinatingly. CodinGame
platform allows the use of many programming languages, and it is possible to see the effect of
the source code used for the agent developed. That can help beginners to learn programming
languages faster than through a more traditional style of teaching. The first league of the game
is perfect for this purpose. On the other hand, the second and third leagues are dedicated to the
development of new game Al agents due to their complexity.

The development of a new game Al challenge using the CodinGame SDK has three main
advantages with respect to completely developing it from zero:

1.

Developers can take advantage of the framework which contains useful code that can
make it easier to develop a new game.

Users can program their agents in their preferred programming language instead of being
restricted, as usually happens, to use just the one used to develop the game.

3. Sometimes starting with a new game Al challenge is hard since, for instance, users do
not always have installed the correct libraries to run the game. The use of CodinGame
platform avoids this kind of problem.

However, some constraints must be accomplished as the maximum size of the battlefield, the
amount of thinking time per turn for the agents and the maximum number of turns, among
others.

The game is inspired by Total War games since they are very popular with the general public.
Similarly to other popular games Al challenges such as StarCraft Al competition [10], can
engage students to learn programming languages in general and Al in particular since they can
be highly motivated to develop agents to play popular games.

2.4. Action Space

On each turn, the current player can provide an action for each one of their units. An action
consists of moving a unit a particular number of pixels in both x and y directions and the
movement normally takes several turns to be completed. If in a turn the player does not
indicate an action for a particular unit, it continues the movement following the previous action
performed on this unit.

An action has the following format: “ID §, &,” where:

+ ID is the unique ID of the unit.
+ J, is the number of pixels we want to move the troop on the X axis.
« &) is the number of pixels we want to move the troop on the Y axis.

Note that 6, and J,, are not the global coordinates to move the unit to, but how many pixels
the unit must move with respect to its current coordinates. The coordinates are relative to the
unit location to be independent to the position of the agent (up or down) in the battlefield.

For instance, some actions that can be played are:

« “1 100 50”: Unit with ID 1 will move 100 pixels to its right (east in the display if the agent
plays in the bottom part of the battlefield or west, otherwise) and 50 to the front of the
battlefield (upwards or north in the display if the agent plays in the bottom part of the
battlefield or downwards or south, otherwise).

« “3-100 -10”: Unit with ID 3 will move 100 pixels to its left and 10 pixels backward.

« “500”: Unit with ID 5 will stop.

On each turn, a player can perform more than one action using a string separated by semi-
colons. For instance, to perform the three previously described actions in the same turn, the
player would provide the following multi-action string: “1 100 50; 3 -100 -10; 5 0 0”.

2.5. State representation

The system provides information about the player and the opponent’s units. First, the game
indicates the total number of units for each player’s army. Then, the system provides the
following information for each one of the player and opponent’s units:

Table 2
Number of possible actions in the draft phase depending on the battlefield size.

’ Battlefield size | # actions ‘

1920 x 1080 8.3E6
26 x 14 1.5E3
13x7 3.6E2

Table 3
Number of possible actions in the battle phase depending on the league and the battlefield size.

Battlefield size | 17 league | 2" league | 37 league ‘

1920 x 1080 8.3E6 1.9E7 6.2E7
26 x 14 1.5E3 3.3E3 1.1E4
13x7 3.6E2 8.2E2 2.7E3

« ID: Unique ID of the unit.

+ Location: x, y coordinates indicating the actual position of the unit on the battlefield.

« Direction: a number indicating where the unit is looking for. It can be Northwest (0),
North (1), Northeast (2), East (3), Southeast (4), South (5), Southwest (6) and West (7).

« Life: amount of health points (See Table 1). The unit is dead when its life reaches 0.

+ Type: unit type for swordsmen (0), spearmen (1), cavalry (2) and archers (3).

« Moving: Indicates if the unit is moving (1) or not (0).

« Target: x, y coordinates indicating where the unit is going to stop, only for friendly units
(for opponent units, no target information is provided).

Therefore, the state has 1+ 9n + 7n elements, where n is the number of units for each player’s
army.

2.6. Game complexity

The number of possible actions that can be played on each turn is huge in both the draft and
battle phases, due to the large battlefield size (1920 x 1080). It also depends on the league, 1 to
3, selected. One possibility to handle its complexity is to artificially reduce the places where
the units can be moved. According to the size of the units, we suggest defining two grids, the
first one of 13 x 7 (1920/150 = 13, 1080/150 = 7) and the second one of 26 x 14 (1920/75 = 26,
1080/75 = 14). Note that the units can always be moved to any place on the battlefield. The
use of the grid is just for reducing the complexity of the game and it must be handled by agent
programmers. It is suggested to be used in the first stages of the implementation of the agent,
or for beginners.

Tables 2 and 3 show the number of actions in both phases with respect to the size of the
battlefield in the three sizes proposed: 1920 x 1080, 26 x 14 and 13 x 7. The number of actions in
the draft phase depends on the size of the battlefield (H, W) and the existing number of unit
types (t = 4). This number can be calculated as:

HxWxt (1)

Table 4
Number of different army combinations that can be obtained in the draft phase depending on the league
and the battlefield size.

’ Battlefield size | 17 league | 2" league ‘ 37 league ‘

1920 x 1080 1 7.5E7 2.5E8
26 x 14 1 1.3E4 44F4
13x7 1 3.3E3 1.1E4

Table 5
Number of possible states in the battle phase.

’ Battlefield size \ 1% league | 2" league | 377 league

1920 x 1080 5.8E27 3.0E28 3.3E29
26 x 14 3.2E16 7.1E16 2.4E17
13x7 49E14 2.5E15 2.8E16

For instance, when the smallest grid is used (H = 13, W = 7), the number of actions in the
draft phase is 13 * 7 « 4 = 3.6E2.

The number of actions in the battle phase depends on the size of the battlefield (H, W) and
the number of units in each league (n). n is 4, 9 and 30 in leagues 1, 2 and 3, respectively. The
number of actions can be calculated as:

HxW xn (2)

For instance, when the smallest grid is used (H = 13, W = 7) and for the third league (n = 30),
the number of actions in the battle phase is 13 * 7 30 = 2.7E3.

Table 4 shows the number of existing army combinations that can be obtained in each league.
This number depends on the size of the battlefield (H, W), the existing number of unit types
(t = 4), and the number of units in each league (n). In this case, the formula is:

HxW xtxn 3)

For instance, when the complete battlefield is used (H = 1920, W = 1080) and for the second
league (n = 9), the number of actions in the battle phase is 1920 « 1080 * 4 * 9 = 7.5E7. Note
that in the first league, there is just one possible combination since there is no draft phase and
the initial configuration of the army is always the same.

Table 5 shows the number of states for the three leagues and proposed battlefield sizes. This
number depends on the size of the battlefield (H, W), the number of different directions (d = 8),
the number of health points (J) (for simplicity, we assume in these calculations that all units
have the same number of health points [= 100, see Table 1), the existing number of unit types
(t = 4), if the unit is moving or not (m = 2), and the number of units on each league (n). The
number of states can be calculated as:

HxWxdxIxtxmxHxW)xnx(HxW xdxIxtxm)xn (4)

%/; PR RVE BN %% %%%%

228428

Note that the second term, corresponding to the opponent units, does not have a second
element H x W since the final target of the opponent units is unknown. For instance, when the
complete battlefield is used (H = 1920, W = 1080) and for the first league (n = 4), the number
of actions in the battle phase is (1920 x 1080 x 8 x 100 x 4 x 2 x 1920 x 1080) x 4 x (1920 x 1080 x
8x 100 x4 x 2) x4 = 5.8E27.

Figure 5: Some animations used in the game.

2.7. Game Art

One of the more interesting features of CodinGame is that it is possible to replay the game.
Therefore, it is possible to study how some actions have affected the game at a particular
moment of the game. A set of assets has been designed for a better representation of the game.
The units are based on the middle age and have a cartoon style (see Figure 1). The game also
includes animations for each state in which each unit can be found. The states are: idle, running,
attacking and dead. Furthermore, there is an animation for when a unit is under an arrow attack.
As an example, Figure 5 shows the different sprites of some of the animations used in the game.

3. Baseline agents implemented

Several Al agents have been developed as baselines for the proposed game. They are briefly
explained as follows:

3.1. Simple Agents

« StayStatic (SS): All units stand still during the battle. A predefined army is always selected
in the draft. The knights are in the flanks, spearmen and swordsmen in the middle and
archers behind. The units never move but they can fight when colliding with an opponent.
Besides, the archers can shoot arrows at opponent troops into the attacking range.

« AlwaysForward (AF): All units always move forward. The predefined army is the same
asin SS.

« Random (RND): All units select random destinations. The predefined army is the same
as in SS.

3.2. Heuristic (A)

It uses human knowledge in both phases. In the draft, the agent tries to pick the unit to have an
advantage against the opponent. For instance, if the opponent selected in the previous turn a
Knight, it will pick a Spearman. The agent has some rules to avoid choosing too many units of
the same type. The agent selects the position in front of the troop that can be defeated by the
selected one.

For the battle, for each unit, a heuristic function A is used to estimate a value indicating
how good is to attack each enemy unit. The enemy unit with the biggest value is the one
selected as the target. The heuristic function A has been designed as the average of 5 factors ¢;
(¢ €[0,...,1],viand i € [1,...,5]) as follows:

_htbetdstdutds
5

A (5)

where:

+ ¢ provides higher values if the player’s unit belongs to a type with an advantage with
respect to the opponent one, taking into account the rock-paper-scissor combat system. It
can be 1.0, 0.5 or 0.0 when the opponent unit type is worse, the same or better, respectively.

+ ¢, is 1.0 if the player’s unit avoids getting into the opponent archer attacking range; 0.0
otherwise.

+ ¢3 benefits from having more health points than the opponent unit. It can be 1.0, 0.5 or
0.0 when the opponent unit has less, the same or more health points, respectively.

« ¢4 is 1.0 in case of a flank attack, i.e. the attacking direction is not frontal, and 0.0
otherwise.

+ ¢s will be higher the closer the player’s unit is to the enemy’s.

In the third league, a new factor ¢ is added with a value of 1.0 if the opponent unit is a
general and 0.0 otherwise.

3.3. Online Evolutionary Planning (OEP)

This algorithm, proposed by Justesen et al. [12], evolves a vector of N moves to be executed
by agents in multi-action games. In the original algorithm, an initial population of vectors
(individuals) is generated at random to then be evolved by the algorithm, executing actions
consecutively in the forward model. The state reached when all actions are executed is evaluated
to obtain fitness for the individual.

The OEP agent implemented for TotalBotWar uses the method described for the Heuristic
agent for the draft phase and for seeding the initial population in the battle. Each individual
contains N genes, where each gene corresponds to a unit owned by the agent and their values
are the IDs of the opponent’s unit to attack, i.e. the number of genes N is the number of units n
of the army in each league. For instance, in the first league (n = 4), a genome [2, 1,0, 1] indicates
that the first unit from the OEP agent will attack the opponent unit with ID 2, the second unit
will attack unit with ID 1, and so on. A mutation rate p = 0.1 is applied to each gene to change
the target to attack. The resultant states are evaluated using the same ¢; factors as in A, but
adding a new one that rewards individuals who target the same opponent unit more than once.

Table 6
Win-rate of agents tested in League 3.

y | SS|T AF [RND [A [OEP |

SS 0.0 0.2 0.0 | 0.0
AF | 1.0 0.5 0.0 | 0.05
RND | 0.8 | 0.5 0.2 | 0.1

A 1.0 | 1.0 0.8 0.5
OEP | 1.0 | 095 | 090 | 0.5

4. Experiments

Several games have been played using the agents developed and described in Section 3. These
experiments have been performed outside the CodinGame platform. Table 6 shows the win rate
of the agents playing as the first player. In all cases, results are reported using the third league,
the complete battlefield size (i.e. no grid is used) and 100 games. As expected, A and OEP agents
overcome the simplest baselines. Surprisingly there is a tie between A and OEP agents. This is
likely due to the OEP agent not having enough time (with the time limit constrain of CodingGame
platform) to evolve stronger action selections, being unable to find better recommendations
than the ones initially provided by the A agent.

We have also tested both algorithms (OEP vs A) in leagues 2 and 1, obtaining a win rate for
the OEP of 0.65 and 0.90, respectively. In these cases, the game is less complex than in the case
of the league 3. Therefore, the OEP agent performs more iterations in the allowed budget time
and it is able to find better move recommendations.

5. Conclusions

This paper presents a new game for game Al: TotalBotWar. The game introduces interesting
features and challenges for Al, as it presents a pseudo-real-time decision-making problem
in a large and continuous state and action space. It also provides an interesting challenge
for drafting policies, army composition and tactical planning. The paper suggests different
possibilities for discretizing the state space and also benchmarks a state-of-the-art algorithm,
Online Evolutionary Planning (OEP), which shows good results in the simpler scenarios but
can’t outperform domain-knowledge rule-based agents in the complex ones due to the time
limitation constrain in CodingGame platform.

Future work can span in multiple directions. Regarding the game, more complex units, rules
and terrain features could be added. In terms of agents, sophisticated agents and techniques
can be objects of research to outperform the proposed baselines. Finally, we plan to propose
this benchmark as a new competition in the future for game-playing Al research.

References

[1] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez, M. Lanctot, L. Sifre,
D. Kumaran, T. Graepel, T. Lillicrap, K. Simonyan, D. Hassabis, A general reinforcement

(3]
(4]

learning algorithm that masters chess, shogi, and go through self-play, Science 362 (2018)
1140-1144. doi:10.1126/science.aar6404.

V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves,
M. Riedmiller, A. K. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A. Sadik, I. Antonoglou,
H. King, D. Kumaran, D. Wierstra, S. Legg, D. Hassabis, Human-level control through
deep reinforcement learning, Nature 518 (2015) 529-533. doi:10.1038/nature14236.

N. Justesen, P. Bontrager, J. Togelius, S. Risi, Deep learning for video game playing, IEEE
Transactions on Games 12 (2017) 1-20. doi:10.1109/TG.2019.2896986.

N. Justesen, L. M. Uth, C. Jakobsen, P. D. Moore, J. Togelius, S. Risi, Blood bowl: A new
board game challenge and competition for ai, in: 2019 IEEE Conference on Games, 2019.

[5] J. Kowalski, R. Miernik, Legends of code and magic, https://jakubkowalski.tech/Projects/

(6]
(7]

LOCM/, 2019. [Online; accessed 8-April-2020].

S. Ontarfién, N. A. Barriga, C. R. Silva, R. O. Moraes, L. H. S. Lelis, The first microrts artificial
intelligence competition., Al Magazine 39 (2018) 75-83.

R. Ishii, S. Ito, R. Thawonmas, T. Harada, A fighting game ai using highlight cues for
generation of entertaining gameplay, in: 1st IEEE Conference on Games (CoG’19), 2019.
doi:10.1109/CIG.2019.8848069.

[8] J. Walton-Rivers, P. R. Williams, R. Bartle, The 2018 hanabi competition, in: 2019 IEEE

(9]

[10]

Conference on Games (CoG), IEEE, 2019, pp. 1-8.

L Bravi, D. Perez-Liebana, S. M. Lucas, J. Liu, Rinascimento: Optimising statistical forward
planning agents for playing splendor, in: 2019 IEEE Conference on Games (CoG), IEEE,
2019, pp. 1-8.

M. Certicky, D. Churchill, K. Kim, M. Certicky, R. Kelly, Starcraft ai competitions, bots,
and tournament manager software, IEEE Transactions on Games 11 (2019) 227-237.
d0i:10.1109/TG.2018.2883499.

D. Perez-Liebana, S. M. Lucas, R. D. Gaina, J. Togelius, A. Khalifa, J. Liu, General Video
Game Artificial Intelligence, Morgan & Claypool Publishers, 2019. https://gaigresearch.
github.io/gvgaibook/.

N. Justesen, T. Mahlmann, S. Risi, J. Togelius, Playing multi-action adversarial games:
Online evolutionary planning versus tree search, IEEE Transactions on Games 10 (2018)
281-291. doi:0.1109/TCIATG.2017.2738156.

http://dx.doi.org/10.1126/science.aar6404
http://dx.doi.org/10.1038/nature14236
http://dx.doi.org/10.1109/TG.2019.2896986
https://jakubkowalski.tech/Projects/LOCM/
https://jakubkowalski.tech/Projects/LOCM/
http://dx.doi.org/10.1109/CIG.2019.8848069
http://dx.doi.org/10.1109/TG.2018.2883499
https://gaigresearch.github.io/gvgaibook/
https://gaigresearch.github.io/gvgaibook/
http://dx.doi.org/0.1109/TCIAIG.2017.2738156

	1 Introduction
	2 The game
	2.1 Game Overview
	2.2 Main characteristics
	2.3 Motivation
	2.4 Action Space
	2.5 State representation
	2.6 Game complexity
	2.7 Game Art

	3 Baseline agents implemented
	3.1 Simple Agents
	3.2 Heuristic (Λ)
	3.3 Online Evolutionary Planning (OEP)

	4 Experiments
	5 Conclusions

