
157

Verkle Tree-based Post-Quantum Digital Signature
Scheme using Stateless Updatable Vector Commitment

Maksim Iavich1, Tamari Kuchukhidze2, and Tetiana Okhrimenko3

1 Caucasus University, 1 Paata Saakadze str., Tbilisi, 0102, Georgia
2 International Black Sea University, 2 David Agmashenebeli Alley 13th km, Tbilisi, 0131, Georgia
3 National Aviation University, 1 Liubomyra Huzara ave., Kyiv, 03058, Ukraine

Abstract
In recent years, work on quantum computers has made substantial progress. Many of the
current public key cryptosystems can be broken if humans ever develop a powerful
quantum computer. There are currently several commercial products that use these
cryptosystems. Though we have developed defenses against quantum attacks, they are
too risky and ineffective to be applied in daily life. The study analyzes hash-based digital
signature methods. The evaluation of a digital signature using a Merkle tree. The paper
investigates unique ideas using vector commitments and a Verkle tree. The authors of this
study describe a novel, Verkle tree technology-based method for creating a digital
signature system. This is accomplished using the Verkle tree, vector commitments, and
vector commitments based on lattices for post-quantum aspects. This work also provides
the theories behind post-quantum signature design using Verkle Tree.

Keywords 1
Post-quantum cryptography, quantum cryptography, Merkle tree, Verkle tree, vector
commitments, lattice-based vector commitments, cryptographical application.

1. Introduction

Quantum computing will eventually prevail
and spread more broadly. A cryptographic
scheme for classical computers that can fend
off attacks from quantum computers is known
as post-quantum cryptography, also known as
quantum encryption. Computers will be able to
carry out complex calculations much more
quickly than classical computers if they can
take advantage of the special capabilities of
quantum mechanics [1]. It should be obvious
that a quantum computer might be able to
perform some difficult tasks quickly. It is
interesting to observe that a normal computer
would need many years to accomplish these
calculations.

Quantum computing will take over and
become more prevalent when we get there.
Most, if not all, currently in use conventional
cryptosystems will likely be rendered useless
by quantum computers. Particularly, systems

CPITS-2023-II: Cybersecurity Providing in Information and Telecommunication Systems, October 26, 2023, Kyiv, Ukraine

EMAIL: miavich@cu.edu.ge (M. Iavich); tamari.kuchukhidze@gmail.com (T. Kuchukhidze); t.okhrimenko@npp.nau.edu.ua
(T. Okhrimenko)

ORCID: 0000-0002-3109-7971 (M. Iavich); 0000-0003-1997-465X (T. Kuchukhidze); 0000-0001-9036-6556 (T. Okhrimenko)

©️ 2023 Copyright for this paper by its authors.

Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

 CEUR Workshop Proceedings (CEUR-WS.org)

based on the integer factorization problem
(RSA). RSA-based cryptosystems are still
widely employed in real-world applications;
however, they are susceptible to assaults from
quantum computers. The RSA cryptosystem is
employed in a wide range of goods and
programs. This cryptosystem is now used in an
increasing number of commercial devices [2].
Because it is mostly utilized in encryption
technologies, the RSA algorithm can be
regarded as one of the most frequently used
public key cryptosystems that develop with
technology [3–7].

Many alternatives to RSA systems have
been proposed, but none of them can be used
in practice due to security or performance
issues. One of the many proposed signature
techniques is the hash-based one. Systems’
security depends on the hash function’s
resistance to collisions because random
integers are used as the initial random
sequence [8]. It requires a lot of effort to create

158

secure and efficient post-quantum
cryptosystems and put them into use.

Many alternatives to RSA systems have
been offered, but none of them can be utilized
in practice due to security or performance
difficulties. The hash-based signature method
is one of many that have been suggested. The
security of those systems depends on the hash
function’s ability to withstand collisions
because random numbers are utilized to
generate the initial random sequences of those
systems. Post-quantum cryptosystems need to
be developed and put to use securely and
effectively, which takes a lot of work [9–10].
Once quantum computing takes over, RSA and
other asymmetric algorithms won’t be able to
protect our personal information. We are
working to develop post-quantum systems as a
result.

In practice, quantum computer assaults can
jeopardize traditional digital signature
approaches. Our objective is to create RSA
substitutes that are impervious to assaults
from quantum computers. Digital signature
systems based on hashes are one option. These
apps employ the cryptographic hash function.
Due to the low collision rates of the hash
algorithms they use, these digital signature
techniques are safe. The hash-based digital
signature method is one RSA substitute. How
safe these systems are is dependent on the
cryptographic hash functions used.

We examined Merkle tree-based hash-
based one-time signature methods. These
post-quantum approaches can withstand
quantum attacks. Verkle trees, a powerful
update to Merkle trees that keep only the most
important data, are more effective and enable
more efficient verification methods. This
reduces the amount of necessary storage space
needed. We spoke about the implicit
commitments of Verkle trees and vectors.
Additionally, vector commitments based on
lattices are taken into consideration about
post-quantum features.

2. Literature Review

Quantum computers can easily break the
present encryption schemes. Therefore, it is
now conceivable for attacks made possible by
quantum computers to be successful. The
study [1] also covers one-way functions and

one-time signature methods. Digital signature
methods that can withstand assaults from
quantum computers are presented in this
article [2]. The work [8] includes information
on the current state of cryptanalysis as well as
the construction of the McEliece public-key
encryption system with algorithmic and
parameter options.

In [9], a variety of QRNG integration
techniques are offered. Scientists are
interested in quantum computers, according to
the article [10]. Cryptosystems based on the
integer factoring problem can be cracked by
quantum computers. It suggests that the RSA
system, one of the best-known public-key
cryptosystems, is vulnerable to attack by
quantum computers. The authors of
publications [11–15] discuss various quantum
number generators based on hash-based
digital signature techniques. The Merkle
scheme is fully explained in the article [16].
The application of vector commitment is
discussed in works [17–19]. Verkle trees are
described in this paper [20]. A Merkle tree-like
design based on the SIS lattice issue is used in
the study [21] to create a stateless updatable
VC method.

3. Hash-based One-Time Signature
Schemes

One-time signature schemes based on hashes
have a lot of potential for the post-quantum
era. Such is the operation of hash-based one-
time signature techniques. First, key
generation must be completed. The process of
signing is then followed by the process of
verifying the signature. The private key for the
signature scheme is created using a secret key
that is produced at random.

We concentrate on signature methods
whose security is solely derived from the
collision resistance of cryptographic hash
functions. The Lamport-Diffie One-Time
Signature (L-DOTS) scheme is an illustration of
such a system [11]. It is assumed that
computers have access to a constant supply of
really random bits, which are effectively a
series of impartial and independent coin tosses
when constructing randomized algorithms and
protocols. In actual applications, a sample that
produces this sequence is obtained via a
“source of randomness”.

159

The Lamport-Diffie one-time signature’s security
parameter n is an integer. A one-way function
called 𝑓 ∶ {0,1}𝑛 → {0,1}𝑛 and a cryptographic
hash function 𝑓 ∶ {0,1}𝑛 → {0,1}𝑛 are used by

L-DOTS to construct an L-DOTS key pair [12]. By
formula (1), the Lamport-Diffie one-time
signature key X is a string of 2n bits with n
length that is selected at random.

𝑋 = (𝑥𝑛−1[0], 𝑥𝑛−1[1], … , 𝑥1[0], 𝑥1[1], 𝑥0[0], 𝑥0[1])𝜖𝑅 {0,1}(𝑛,2𝑛) (1)

The L-DOTS verification key is Y:

𝑌 = (𝑦𝑛−1[0], 𝑦𝑛−1[1], … , 𝑦1[0], 𝑦1[1], 𝑦0[0], 𝑦0[1])𝜖 {0,1}(𝑛,2𝑛) (2)

The one-way function f, as defined by expression (3), is used to calculate the key:

 𝑦𝑖[𝑗] = 𝑓(𝑥𝑖[𝑗]), 0 ≤ 𝑖 ≤ 𝑛 − 1, 𝑗 = 0,1. (3)

To generate a Lamport-Diffie one-time
signature key, 2n evaluations of the f function
are required. The verification and signature
keys are n-length, 2n-bit strings. During L-
DOTS signature creation document
𝑀 𝜖 {0,1}∗ is signed using L-DOTS and
signature key X. 𝑔(𝑀) = 𝑑 = (𝑑𝑛−1, … , 𝑑0) is
the message digest for the message 𝑀. 𝑠𝑖𝑔𝑛 =

(𝑥𝑛−1[𝑑𝑛−1], … , 𝑥1[𝑑1], 𝑥0[𝑑0]) 𝜖 {0,1}(𝑛,𝑛) is
the L-DOTS signature.

The n-bit strings of length n are used to
create this signature. They are picked as
message digest function d. The number of

cryptographic functions that a processor can
perform at a given time is usually calculated in
hashes per second [13]. The ith bit string of this
signature is xi[0] if the ith bit in d is 0, xi[1]
otherwise. The signature does not require the
evaluation of f. The signature is not dependent
on the evaluation of f. The signature is n2 bytes
long.

In the case of L-DOTS verification, the verifier
generates the message digest 𝒅 =
 (𝒅𝒏−𝟏, … , 𝒅𝟎) if we want to verify 𝑴′𝒔
signature, 𝒔𝒊𝒈𝒏 = (𝒔𝒊𝒈𝒏𝒏−𝟏, … , 𝒔𝒊𝒈𝒏𝟎).
Consequently, whether it is or is not is decided:

(𝑓(𝑠𝑖𝑔𝑛𝑛−1), … , 𝑓(𝑠𝑖𝑔𝑛0)) = (𝑦𝑛−1[𝑑𝑛−1], … , 𝑦0[𝑑0]). (4)

Hash-based one-time signature schemes
involve key generation, signature creation, and
verification. A secret key is generated at
random to create the private key. The secret
key and hash function are applied repeatedly
to the message, resulting in the signature. The
recipient verifies the signature using the same
hash function and the received message. The
signature is considered valid if the result
matches the sent one.

Even though L-DOTS is big, it swiftly creates
keys and signatures. The Winternitz One-Time
Signature Scheme (W-OTS) is recommended
as a way to reduce the number of signatures.
W-OTS lowers the number of signatures by
signing many bits in a message digest with a
single string that serves as the one-time
signature key. Like L-DOTS, W-OTS employs a
cryptographic hashing method and a one-way
function.

Security and the integrity and authenticity
of digital signatures are ensured by hash-based
one-time signature structures, which require a
special secret key for each signature. By
guaranteeing the unique key, this strategy

stops attackers from producing extra
signatures if their system is breached. Due to
the restricted use of each key combination,
one-time signature schemes tend to be
ineffective. To solve this problem, Ralph
Merkle suggests a full binary hash tree that
limits the use of different one-time verification
keys to the root public key of the hash tree.

4. Merkle Tree Authentication
Scheme

One-time signature schemes are challenging
due to the need for storing n digests, making
them impractical for everyday use. The Merkle
Tree, a solution, uses a binary tree as the root
to replace multiple verification keys with a
single public key. This system uses a
cryptographic hash function and a one-time
Lamport or Winternitz signature scheme.

The customizable Merkle Signature Scheme
(MSS) supports any cryptographic hash
function and any one-time signature scheme.
Users are allowed to select the hash function

160

and signature scheme that best meets their
needs and security concerns thanks to this
flexibility. We assume that 𝑔 ∶ {0,1}∗ → {0,1}𝑛
is a cryptographic hash function. We also
assume that the one-time signature scheme
also completes the Merkle scheme by
providing the necessary mechanisms for
generating one-time signatures that give the
necessary security features.

When generating the Merkle signature
scheme key pair, the signer chooses 𝐻 ∈ ℕ,
where 𝐻 ≥ 2. As a result, a key pair is created.
It will be possible to sign and validate 2𝐻
papers as a result. It should be emphasized that
this is very different from signature schemes
like RSA, which allow the use of a single key
pair to sign or validate numerous documents
[14]. In actuality, however, this number is also
limited by the methods employed to create the
signature or by particular laws [15].

The signer will produce 2𝐻 different key

pairs (𝑋𝑗, 𝑌𝑗), 0 ≤ 𝑗 < 2𝐻 . The verification key

in this case is 𝑌𝑗, and the signature key is 𝑋𝑗.

Merkle tree has the following leaves: (𝑌𝑗), 0 ≤

𝑗 < 2𝐻. A parent node is the hash value of the
concatenation of its left and right offspring.
This is how a Merkle tree calculates its internal
nodes. The Merkle signature scheme public key
serves as the Merkle tree’s root. One-time
signature keys with a length of 2𝐻 make up the
MSS secret key [16].

This figure shows an example where the
height of the Merkle tree is H=3.

Figure 1: Merkle tree height H=3

Generating an MSS key pair requires
computing 2𝐻 unique key pairs and evaluating
a 2𝐻+1 − 1 hash function.

One-time signing keys are successfully used
by MSS to generate signatures. We must first
calculate the n-bit 𝑑 = 𝑔(𝑀) to sign a message
on M. Then, using the sth one-time signature
key 𝑋𝑠, 𝑠 ∈ {0, … , 2𝐻 − 1}, the signer creates a

one-time signature, 𝑠𝑖𝑔𝑛OTS . This one-time
signature and the matching one-time
verification key 𝑌𝑠 make up a Merkle signature.

The signer adds to the message the index s
and the authentication path to the verification
key 𝑌𝑠; to validate its authenticity. There are
two steps in Merkle’s signature verification
process. The one-time signature scheme
verification algorithm is used by the verifier in
the first stage to check the validity of d’s
signature 𝑠𝑖𝑔𝑛OTS , using the one-time
verification key 𝑌𝑠. The second stage of
verification involves the verifier determining
the validity of the one-time verification key 𝑌𝑠.

A Merkle Tree with n nodes can be built in
𝑂(𝑛) time because Merkle Trees are extremely
quick. Unfortunately, their 𝑂(log2 𝑛) proof
size is quite large and can be costly in terms of
width. When a Merkle tree has many nodes, the
resulting Merkle proofs may be extremely
massive. Our local storage may experience a
large and costly strain as a result of the Merkle
Proof itself.

5. Verkle Tree

Verkle trees are a powerful upgrade to Merkle
trees, enabling smaller verifications and
increased efficiency [17]. They are essential for
post-quantum cryptography due to their
ability to lower computing and storage costs
while maintaining high-security levels. Verkle
trees are more efficient than Merkle trees, as
they reduce redundant data and storage space
required by intermediate nodes. They provide
more effective verification processes by
keeping only the necessary data. Verkle trees
offer more flexibility than Merkle trees, as they
require additional hash calculations to verify
the integrity of specific data blocks. This
scalability advantage makes them better suited
for efficient handling of large datasets.

The Verkle Tree is a method to construct a
Merkle Tree using Vector Commitments
instead of cryptographic hash functions. To
construct a tree, choose k pieces and compute
a Verkle Tree using files f0, f1, ..., fn. Compute a
Vector Commitment (VC) for each subset of
files and determine if each membership proves
PRi with relation to VC. Compute Vector
Commitments across the tree until the root
commitment is calculated [18].

161

In Fig. 2, 9 files with a branching factor of 3 are
divided into subsets of size k = 3. Vector
Commitment and membership proofs are
computed over each subset, leaving
obligations VC1, VC2, and VC3. Membership
proofs PR9, PR10, and PR11 are computed for
commitments VC1, VC2, and VC3 concerning
commitment VC4. The Vector Commitment VC4

is computed over these commitments, with the
root commitment being the digest of the Verkle
Tree.

Figure 2: Verkle tree when 𝐾 = 3

The Merkle and Verkle trees have distinct
characteristics for proofs. In a Merkle tree, all
sister nodes must be considered, requiring
proof that contains all nodes. However, the
Verkle tree uses “batching nodes” to verify
multiple pathways simultaneously, reducing
the amount of evidence needed to establish a
value. This makes the Verkle tree more
efficient and faster than the Merkle tree in
proving values.

Verkle trees require only the path and
minimal additional information for proof,
without sibling nodes. They benefit from a
wider width, but Merkle Patricia trees do not.
Wider trees lead to shorter routes, but the
higher cost of proving every width -1 sister
node per level is offset by the Verkle tree's lack
of this cost.

A Verkle tree uses a unique hash algorithm,
using vector commitments instead of
conventional hashes, to compute an inner node
from its offspring. This method is more
efficient than Merkle trees, as they achieve the
same goal but are smaller in size in bytes. The
main difference lies in the use of vector
commitments for cryptographic hash
functions.

6. Vector Commitments

Fundamentals of cryptography called
commitment schemes allow a value to be
concealed and then revealed. Two essential

traits of commitment systems are binding,
which limits access to other values, and hiding,
which reveals the bare minimum of the value's
properties. The VC schemes enhance
commitments to accommodate ordered value
sequences. One goal of VC schemes is to enable
commitment to a vector and then opening at
any preferred indices binding, which makes it
challenging to open relative to several values at
the same time. This goal is combined with
potential attribute concealing.

Users can commit to an ordered list of q
values, known as a vector, using VC The
commitment can be opened concerning
specific places in the future (for example, to
demonstrate that 𝑚𝑖 is the 𝑖-th committed
message). Position bound requires vector
commitments, ensuring adversaries cannot
open commitments to two separate values
simultaneously. To achieve conciseness [19],
the length of the commitment string and the
size of each opening must be independent of
the vector length.

Security characteristics like hiding property
may also be required for vector commitments.
The commitment should keep the values and
order of the vector’s components a secret.
Contrarily, the hiding property does not play a
significant role in the execution of vector
commitments.

The ability to update VC is necessary. To
update the commitment and the related
openings, we have two algorithms. By
switching the 𝑖th message from 𝑚𝑖 to 𝑚𝑖

′ and
taking into account the modification of a
commitment Com, the committer can acquire a
(modified) Com’ holding the updated message.
Holders of a message opening at position j
concerning Com can use the second way to
modify their evidence and make it valid
concerning the new Com’.

Multiple methods are employed for
committing to and verifying vector messages
while taking into account our vector
commitment system. The technique employs a
message space M, a commitment space Com,
and a proof space Pr, depending on the setup
settings.

In essence, updating a commitment and
proof should produce results that are
comparable to those of generating a new
commitment and proof on the altered message
vector. Because state information is included

162

in the results, numerous updates are possible
within polynomial constraints.

To implement VC, we can make either the
well-known RSA assumption or the Diffie-
Helman assumption. In terms of the
effectiveness of the resulting solutions, the
“quality” of the underlying assumption, or
both, vector commitment provides compact
and effective solutions that significantly
outperform prior studies [20].

However, the resulting techniques must
protect us from attacks by quantum
computers. Unfortunately, quantum
computers can currently defeat VC based on
RSA. In this article, we strengthen earlier
vector commitment and RSA assumption-
based schemes to increase their efficiency and
security. We are developing Verkle tree-based
signature systems, but we construct vector
commitments using lattices. Our schemes are
predicated on post-quantum assumptions.

7. Lattice-Based Vector
Commitment

The use of VC methods enables concisely
committing to an ordered series of values,
enabling the illustration of desired points in a
condensed manner. Since VCs can be updated
without knowing the complete vector,
modifications to commitments and proofs are
possible. Cryptographic accumulators,
external databases that have been verified, and
cryptocurrencies are only a few of the
important cryptographic uses that VCs have.
They are helpful for databases with zero
knowledge, cryptographic accumulators, and
pseudonymous credentials, as well as for
efficiently updated, publicly verifiable
databases.

The research on post-quantum VC methods,
or those that are conceivably secure against
quantum attacks, has likewise been rather
sparse. It is possible to employ Merkle trees
that were created using a post-quantum hash
function, but they have updates that are
comparatively expensive and unavoidably
stateful. A stateless updatable VC scheme is
produced naturally by a Merkle tree-like
construction presented in the article [21] that
is based on the SIS lattice problem.

This study introduces stateless updatable
vector commitment constructions based on the

SIS lattice problem, allowing for secure
commitment and verification of vector
messages. The constructions are efficient and
shorter than previous stateless updatable
constructions, using private-key configuration
and a central authority for public parameters.

Due to the committer and verifier
parameters’ widths being quadratic and linear
in the message dimension 𝑑, respectively, in
our prior construction’s VC scheme, the
construction is unsuited for large dimensions
in its current state. We provide an analysis of a
general 𝑑-ary tree construction that, with no
increase in the sizes of the parameters or
commitments, converts a VC scheme for
dimension 𝑑 into one for dimension 𝑑ℎfor any
desirable positive integer ℎ. The only sizes that
increase are the proof and proof-update sizes,
which grow linearly with ℎ but independently
of 𝑑. The stateless updatability quality of the
basic scheme and the combinability of
commitments and proofs, both of which are
crucial for distributed VCs, are not preserved
by this modification [22–25].

Here, we provide a customized tree-like
transformation of our VC scheme built on SIS.
Our transform, in contrast to the general one,
keeps combinability and (differential)
stateless updates because commitments are
essentially linear in committed messages,
though at the cost of slightly larger objects and
a stronger SIS requirement. The transformation
is based on the context’s core idea that was
employed in a Merkle-tree-like structure based
on SIS (which can be used as a VC).

In that case, the proof size ends up being

proportional to ℎ𝑑log2 (𝑑ℎ) since a proof must

contain all of the brother-node information for
each step in a root-to-leaf path. (The length of
the proofs along the path and the sizes of the
integers inside of them are the sources of the

llog2(𝑑ℎ) factor.) The same general principle

holds true for our SIS-based VC scheme, with
the added benefit that proofs need not include
sibling information, meaning that the proof

size increases simply as ℎlog2 (𝑑ℎ) =

ℎ3log2 𝑑.
For any choice of magnitude 𝑑 and tree

height ℎ, our design is quantitatively a strict
improvement (although at the cost of private
setup). Additionally, according to its
performance profile, using a moderately large
𝑑 and a correspondingly smaller ℎ can

163

ultimately produce an asymptotic proof size
that is equivalent to that of the generic tree
transformation for VCs while maintaining
combinability and stateless updates (though at
the cost of private setup and a stronger SIS
assumption).

Our constructs employ conventional
methods for preimage sampling and SIS—
based trapdoors. The “gadget” matrix,
abbreviated G, is used in the constructions This
matrix has an integer dimension of n by w. In
building the trapdoor, the matrix G is essential.
G illustrated by the formula: G = I𝑛 ⊗

(1, 2, … , 2⌈log2 𝑞⌉−1), where I𝑛 is the n×n

identity matrix, and ⊗ stands for the
Kronecker product. This illustration serves as
a model, although any acceptable matrix G with
certain characteristics may be utilized.
Deterministic function G−1: ℤ𝑞

𝑛 → ℤ𝑤 is an

inversion operation with particular
characteristics. The formula G ⋅ G−1(u) = u for
small values of 𝑔, and the norm of G−1(u) is
constrained by 𝑔 for all u in ℤ𝑞

𝑛.

G is a matrix with n×w dimensions and
values 𝑍𝑞 . When performing the G−1operation

(computing the inverse of G), the magnitude
bound 𝑔G for the gadget matrix G is employed.
Vectors for messages are chosen from a set 𝑀̅.
𝑀̅ is a collection of w-dimensional vectors,
where each element is drawn from a subset of
𝐼‾. 𝐼‾ is a subset of the integers and is defined by
the values— 𝑀𝐼 and 𝑀𝐼 . The chosen integer, ℎ
The chosen integer. We employ algorithms that
were constructed for previous construction
[26–29].

The following algorithms have been
defined.

Setup Algorithm:
The Setup̅̅ ̅̅ ̅̅ ̅̅

ℎ algorithm generates outputs
based on input parameters. A commitment
parameter 𝑐𝑝, a matrix U (made up of multiple
submatrices), and vp are included in outputs.

U(1) is the same as the matrix U that was
discussed earlier. The matrix S(1) is an identity
matrix of size wd×wd.

For each k from 1 to h:

S(𝑘) = I𝑑 ⊗ G−1(U(𝑘−1)) ∈ ℤ𝑤𝑑×𝑤𝑑𝑘
 (5)

U(𝑘) = US(𝑘) ∈ ℤ𝑞
𝑛×𝑤𝑑𝑘

 (6)

The inverse of G and the matrix U(𝑘−1)are
used in an operation to produce S(𝑘). The
matrix U(𝑘−1) is multiplied by S(𝑘) to get U(𝑘).

Each of the blocks that make up U(𝑘) can be
calculated separately using U and a value 𝚥‾ (𝚥‾ ∈
[𝑑𝑘]) without having to calculate the complete
matrix.

Commit Algorithm:
From 1 to h, for each k:
The Commit ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑘 algorithm requires a
commitment parameter cp and a message
vector m̅. Applying the inverse of G on U(𝑘)
results in the computation of the value c̅ .
Outputs include c̅ and 𝑠𝑡̅.

Open Algorithm:
For k = 1, the Open ̅̅ ̅̅ ̅̅ ̅̅

1algorithm is the same

as the “Open” operation.
For each k from 2 to h:
• Based on the given values and the value

𝚤‾′, a value 𝚤‾ is calculated.
• Subvectors are created from a message

vector m̅.
• The Open algorithm and specific inputs

are used to determine the p𝑖 value.
• Using the Commit algorithm from the

prior phase, a commitment value

(c̅𝑖,−) is generated.

• Using specific inputs and the Open
algorithm, a value 𝑝‾𝑣‾ ′

′ is produced.

• The result is 𝑝‾𝑧‾ .

Verify Algorithms:
Using the Verify operation, the Verify̅̅ ̅̅ ̅̅ ̅̅

1
algorithm verifies some inputs for k = 1.

For each k from 2 to h:
• An index 𝑖 and a value 𝚤‾′ are defined

based on 𝚤‾. The components of the 𝑝‾𝑧‾
value is separated into components. The
process is rejected if a few verification
requirements are not satisfied.

• The process is denied if the verification
from the (k–1)th algorithm—
Verify̅̅ ̅̅ ̅̅ ̅̅

𝑘−1 fails. If not, it’s accepted.

Update Algorithms—From the linearity of
commitment operations, update algorithms
can be inferred.

8. Novel Scheme Using Verkle
Tree

Implementing one-time signature methods can
be challenging because a different key pair
must be used to sign every message. These
systems’ drawback is that n digests must be
saved, which makes them impractical for

164

routine use. Therefore, regardless of the
number of files we have, we would require a
method that allows us to save a uniform-sized
digest. The Merkle tree was suggested as a
solution to this issue. This method can replace
numerous verification keys with a single public
key by employing a binary tree as the root [30–
33].

Merkle trees are quickly computed; it takes
𝑂(𝑛) time to build a Merkle tree with n nodes.
A Merkle tree with several nodes can be used
to generate large Merkle proofs. Unfortunately,
the size of their 𝑂(log2 𝑛) proof is extremely
huge and can be expensive. The Merkle proof
alone might be a heavy and costly burden on
our local storage. To sign 2n messages, the tree
must be n heights tall. The size of their proofs,
𝑂(𝑤 log𝑤 𝑛), is more than that of Merkle Trees
when using wider-width trees (w-ary trees).
The proof size is fixed at 𝑂(1), when a vector
commitment method is used, however, the
building of the vector commitment is
extremely time-consuming and costly,
requiring an 𝑂(𝑛2) calculation.

Merkle proofs can be vastly improved using
Verkle trees, which allow for significantly
reduced proof volumes. The w width Verkle
Tree can be built in just 𝑂(𝑤𝑛) time. The
verifier simply needs to offer a single proof
that demonstrates all parent-child ties
between all commitments along the paths from
each leaf node to the root, as opposed to having
to present all “brother nodes” at every level.
When compared to perfect Merkle trees, proof
sizes can be reduced by a factor of 6–8.

Instead of using the Merkle tree, we use the
Verkle tree. 𝐻 ∈ ℕ, 𝐻 ≥ 2 are chosen by the
signer when a key pair is formed. After that, the
key pair is generated. They will enable the
validation and signing of 2𝐻papers. The signer
will generate 2𝐻distinct key pairs (𝑋𝑗, 𝑌𝑗), 0 ≤

𝑗 < 2𝐻. In this case, the verification key is 𝑌𝑗

and the signature key is 𝑋𝑗. Both of them are bit

strings. The leaves of the Verkle tree are 𝑔(𝑌𝑗),

0 ≤ 𝑗 < 2𝐻 . Each node is a hash value that is
formed by concatenating the hashes of its
offspring, and they are calculated and used as
the tree’s leaves. The public key is the primary
commitment in the Verkle cryptography
system. To create a public key, 2𝐻 pairs of keys
must be calculated [34].

One-time signature key generation allows
us to create signatures. To sign a message on

M, the n-bit 𝑑 = 𝑔(𝑀) must first be calculated.
An arbitrary size message of size m is first
changed into a message of size n using the hash
function. The document’s signature is made up
of the root commitment, one-time signature,
one-time verification key, and finally, indexes
for the evidence [35–36].

The one-time signature of 𝑠𝑖𝑔𝑛 should be
authenticated using 𝑌𝑠 according to how
Verkle’s signature verification works. The VCi

commitments are confirmed if this is the case.
If the root of the tree matches the root
commitment, the signature is verified. The root
commitment in a Verkle tree is digest d.

9. Conclusions

The paper gave a thorough overview of
cryptography methods that might be used in
both traditional and quantum settings. We
covered post-quantum cryptography systems.
We discussed hash-based one-way functions,
as well as how we can integrate them into
Merkle and Verkle trees. Lattice-based
commitments and vector commitments were
investigated. We spoke about how to calculate
and integrate the effective Merkle tree—Verkle
tree enhancement. Novel Shames’ success
inspired the development of a new model,
which then included Verkle tree. While they do
necessitate more difficult cryptography, there
may be huge scaling benefits.

The defense against attacks from both
classical and quantum computers is essential
for us, so the resulting schemes must be. After
reviewing the work that had been done, we
were given the systems that were incorporated
into Merkle. Merkle Trees, which are built
using cryptographic hash functions, provide a
strong defense against quantum assaults even
though the verification size is too big. Each
child in a Merkle tree is represented by the
hash of the parent node.

Our revised Verkle tree model defines a
parent node as the vector commitment of its
children. To implement the new technology,
we discussed vector commitment and
commitments based on hard lattice issues. The
Verkle system allows for substantially smaller
verifications, which is a significant
improvement over the Merkle scheme. Instead
of showing all nodes at each level, verification
only needs one proof to authenticate all

165

parent-descendant relationships, namely all
commits from each leaf node to the root. This
makes it possible to reduce the verification size
by around 6–8 times when compared to the
conventional Merkle method.

In our revised method, a Verkle tree was
therefore taken into consideration instead of a
Merkle tree. In this case, vector commitment is
sufficient to establish the proof. Based on the
premise of the lattice, we used vector
commitments to build the Verkle tree.

We must ensure that the strategies that
emerge safeguard us against attacks from
quantum computers. Our earlier vector
commitments based on RSA could be
compromised by quantum computers. The
strategy has since been improved to make it
safer and more effective. Verkle trees are used
in our signature procedures, whereas lattices
are used to create vector commitments. We use
post-quantum assumptions to underpin our
systems.

10. Acknowledgment

This work was supported by Shota Rustaveli
National Science Foundation of Georgia
(SRNSF) STEM-22-1076.

References

[1] J. Buchmann, E. Dahmen, M. Szydlo,
Hash-based Digital Signature Schemes,
Post-Quantum Cryptography, Springer,
(2009) 35–93. doi: 10.1007/978-3-540-
88702-7_3.

[2] L. Chen, et al, Report on Post-Quantum
Cryptography, National Institute of
Standards and Technology 12 (2016).
doi: 10.6028/nist.ir.8105.

[3] A. Bessalov, et al., Implementation of the
CSIDH Algorithm Model on
Supersingular Twisted and Quadratic
Edwards Curves, in: Workshop on
Cybersecurity Providing in Information
and Telecommunication Systems, vol.
3187, no. 1 (2022) 302–309.

[4] A. Bessalov, et al., CSIKE-ENC Combined
Encryption Scheme with Optimized
Degrees of Isogeny Distribution, in:
Workshop on Cybersecurity Providing in
Information and Telecommunication
Systems, vol. 3421 (2023) 36–45.

[5] A. Bessalov, et al., Modeling CSIKE
Algorithm on Non-Cyclic Edwards
Curves, in: Workshop on Cybersecurity
Providing in Information and
Telecommunication Systems, vol. 3288
(2022) 1–10.

[6] A. Bessalov, et al., Multifunctional CRS
Encryption Scheme on Isogenies of Non-
Supersingular Edwards Curves, in:
Workshop on Classic, Quantum, and
Post-Quantum Cryptography, vol. 3504
(2023) 12–25.

[7] A. Bessalov, et al., Computing of Odd
Degree Isogenies on Supersingular
Twisted Edwards Curves, in: Workshop
on Cybersecurity Providing in
Information and Telecommunication
Systems, vol. 2923 (2021) 1–11.

[8] B. Bhaskar, N. Sendrier. McEliece
Cryptosystem Implementation: Theory
and Practice, Post-Quantum
Cryptography, (2008) 47–62. doi:
10.1007/978-3-540-88403-3_4.

[9] I. Maksim, et al,. Advantages and
Challenges of QRNG Integration into
Merkle, Sci. Practical Cyber Secur. J. 4(1)
(2020) 93–102.

[10] A. Gagnidze, M. Iavich, G. Iashvili, Novel
Version of Merkle Cryptosystem,
Bulletin of the Georgian National
Academy of Sciences 11(4) (2017).

[11] L. Lamport, Constructing Digital
Signatures From a One Way Function
(1979).

[12] M. Iavich, et al., Post-Quantum Digital
Signatures with Attenuated Pulse
Generator, in: Information Society and
University Studies vol. 2698 (2020) 42–
45.

[13] M. Iavich, et al., Improvement of Merkle
Signature Scheme by Means of Optical
Quantum Random Number Generators,
Advances in Intelligent Systems and
Computing (2021) 478–487.

[14] M. Iavich, A. Gagnidze, G. Iashvili, Hash
Based Digital Signature Scheme with
Integrated TRNG, CEUR Workshop
Proceedings vol. 2145 (2018) 79–82.

[15] A. Hülsing, J. Rijneveld, F. Song,
Mitigating Multi-Target Attacks in Hash-
Based Signatures, Public-Key
Cryptography—PKC 2016 (2016) 387–
416. doi: 10.1007/978-3-662-49384-
7_15.

https://doi.org/10.1007/978-3-540-88702-7_3
https://doi.org/10.1007/978-3-540-88702-7_3
https://doi.org/10.6028/NIST.IR.8105
https://doi.org/10.1007/978-3-540-88403-3_4
https://doi.org/10.1007/978-3-662-49384-7_15
https://doi.org/10.1007/978-3-662-49384-7_15

166

[16] R. Merkle, A Digital Signature Based on a
Conventional Encryption Function,
Advances in Cryptology—CRYPTO’87
(1988) 369–378. doi: 10.1007/3-540-
48184-2_32.

[17] H. Chen, D. Liang, Adaptive Spatio-
Temporal Query Strategies in
Blockchain. ISPRS Int. J. Geo-Inf. 11(7)
(2022) 409. doi: 10.3390/ijgi11070409.

[18] W. Wang, A. Ulichney, C. Papamanthou,
BalanceProofs: Maintainable Vector
Commitments with Fast Aggregation,
Yale University, Cryptology ePrint
Archive (2022).

[19] K. Kurosaw, H. Goichiro, Public-Key
Cryptography—PKC 2013, 16th
International Conference on Practice
and Theory in Public-Key Cryptography
(2013).

[20] J. Kuszmaul, Verkle Trees (2019). URL:
https://math.mit.edu/research/highsch
ool/primes/materials/2018/Kuszmaul.
pdf

[21] C. Papamanthou, et al., Streaming
Authenticated Data Structures,
Advances in Cryptology—EUROCRYPT
(2013) 353–370. doi: 10.1007/978-3-
642-38348-9_22.

[22] M. Iavich, et al., Improved Post-Quantum
Merkle Algorithm Based on Threads,
Advances in Intelligent Systems and
Computing (2021) 454–464. doi:
10.1007/978-3-030-55506-1_41.

[23] M. Iavich, et al., Lattice based Merkle,
CEUR Workshop Proceedings, vol. 2470
(2019) 13–16.

[24] Z. Hu, et al., High-Speed and Secure
PRNG for Cryptographic Applications,
Int. J. Comput. Network Inf. Secur. 12(3)
(2020) 1–10. doi: 10.5815/ijcnis.2020.
03.01.

[25] B. Bünz, et al., FlyClient: Super-light
Clients for Cryptocurrencies, IEEE
Symposium on Security and Privacy (SP)
(2020) 928–946. doi: 10.1109/SP40000.
2020.00049.

[26] S. Tynymbayev, et al., Modular
Reduction Based on the Divider by
Blocking Negative Remainders, News of
the National Academy of Sciences of the
Republic of Kazakhstan, Series of
Geology and Technical Sciences 2(434)
(2019) 238–248. doi:
10.32014/2019.2518-170x.60.

[27] D. Cooper, et al., NIST Special Publication
800-208: Recommendation for Stateful
Hash-Based Signature Schemes, NIST
(2020). doi: 10.6028/NIST.SP.800-208.

[28] S. Gnatyuk, et al., New Secure Block
Cipher for Critical Applications: Design,
Implementation, Speed and Security
Analysis, Advances in Intelligent
Systems and Computing (2020) 93–104.

[29] S. Gnatyuk, et al., Method of Algorithm
Building for Modular Reducing by
Irreducible Polynomial, 16th

International Conference on Control,
Automation and Systems (2016) 1476–
1479. doi: 10.1109/iccas.2016.7832498.

[30] G. Alagic, et al., Status Report on the
Third Round of the NIST Post-Quantum
Cryptography Standardization Process,
NIST (2022). doi: 10.6028/NIST.IR.8413-
upd1.

[31] S. Gnatyuk, T. Zhmurko, P. Falat,
Efficiency Increasing Method for
Quantum Secure Direct Communication
Protocols, IEEE 8th Int. Conf. Intelligent
Data Acquisition Adv. Comput. Syst.
Technol. Appl. 1 (2015) 468–472. doi:
10.1109/idaacs.2015.7340780.

[32] Q. Yuan, M. Tibouchi, M. Abe, Security
Notions for Stateful Signature Schemes,
IET Information Security 16(1) (2022)
1–17. doi: 10.1049/ise2.12040.

[33] M. Iavich, et al., Hybrid Encryption
Model of AES and ElGamal
Cryptosystems for Flight Control
Systems, IEEE 5th Int. Conf. Methods Syst.
Navigation Motion Control (2018) 229–
233.

[34] I. Khaburzaniya, et al., Aggregating and
Thresholdizing Hash-Based Signatures
Using STARKs, ACM Asia Conf. Comput.
Commun. Secur. (2022) 393–407. doi:
10.1145/3488932.3524128.

[35] M. Kalimoldayev, et al., Matrix Multiplier
of Polynomials Modulo Analysis Starting
with the Lower Order Digits of the
Multiplier, News of the National
Academy of Sciences of the Republic of
Kazakhstan, Series of Geology and
Technical Sciences 4(436) (2019) 181–
187. doi: 10.32014/2019.2518-170x.
113.

https://doi.org/10.1007/3-540-48184-2_32
https://doi.org/10.1007/3-540-48184-2_32
https://doi.org/10.3390/ijgi11070409
https://link.springer.com/book/10.1007/978-3-642-38348-9
https://doi.org/10.1007/978-3-642-38348-9_22
https://doi.org/10.1007/978-3-642-38348-9_22
https://doi.org/10.1007/978-3-030-55506-1_41
https://doi.org/10.5815/ijcnis.2020.03.01
https://doi.org/10.5815/ijcnis.2020.03.01
https://doi.org/10.1109/SP40000.2020.00049
https://doi.org/10.1109/SP40000.2020.00049
https://doi.org/10.32014/2019.2518-170X.60
https://doi.org/10.6028/NIST.SP.800-208
https://doi.org/10.1109/ICCAS.2016.7832498
https://doi.org/10.6028/NIST.IR.8413-upd1
https://doi.org/10.6028/NIST.IR.8413-upd1
https://doi.org/10.1109/IDAACS.2015.7340780
https://doi.org/10.1049/ise2.12040
https://doi.org/10.1145/3488932.3524128
https://doi.org/10.1145/3488932.3524128
https://doi.org/10.32014/2019.2518-170X.113
https://doi.org/10.32014/2019.2518-170X.113

