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Abstract  
In recent years, work on quantum computers has made substantial progress. Many of the 
current public key cryptosystems can be broken if humans ever develop a powerful 
quantum computer. There are currently several commercial products that use these 
cryptosystems. Though we have developed defenses against quantum attacks, they are 
too risky and ineffective to be applied in daily life. The study analyzes hash-based digital 
signature methods. The evaluation of a digital signature using a Merkle tree. The paper 
investigates unique ideas using vector commitments and a Verkle tree. The authors of this 
study describe a novel, Verkle tree technology-based method for creating a digital 
signature system. This is accomplished using the Verkle tree, vector commitments, and 
vector commitments based on lattices for post-quantum aspects. This work also provides 
the theories behind post-quantum signature design using Verkle Tree. 
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1. Introduction 

Quantum computing will eventually prevail 
and spread more broadly. A cryptographic 
scheme for classical computers that can fend 
off attacks from quantum computers is known 
as post-quantum cryptography, also known as 
quantum encryption. Computers will be able to 
carry out complex calculations much more 
quickly than classical computers if they can 
take advantage of the special capabilities of 
quantum mechanics [1]. It should be obvious 
that a quantum computer might be able to 
perform some difficult tasks quickly. It is 
interesting to observe that a normal computer 
would need many years to accomplish these 
calculations. 

Quantum computing will take over and 
become more prevalent when we get there. 
Most, if not all, currently in use conventional 
cryptosystems will likely be rendered useless 
by quantum computers. Particularly, systems 
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based on the integer factorization problem 
(RSA). RSA-based cryptosystems are still 
widely employed in real-world applications; 
however, they are susceptible to assaults from 
quantum computers. The RSA cryptosystem is 
employed in a wide range of goods and 
programs. This cryptosystem is now used in an 
increasing number of commercial devices [2]. 
Because it is mostly utilized in encryption 
technologies, the RSA algorithm can be 
regarded as one of the most frequently used 
public key cryptosystems that develop with 
technology [3–7]. 

Many alternatives to RSA systems have 
been proposed, but none of them can be used 
in practice due to security or performance 
issues. One of the many proposed signature 
techniques is the hash-based one. Systems’ 
security depends on the hash function’s 
resistance to collisions because random 
integers are used as the initial random 
sequence [8]. It requires a lot of effort to create 
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secure and efficient post-quantum 
cryptosystems and put them into use. 

Many alternatives to RSA systems have 
been offered, but none of them can be utilized 
in practice due to security or performance 
difficulties. The hash-based signature method 
is one of many that have been suggested. The 
security of those systems depends on the hash 
function’s ability to withstand collisions 
because random numbers are utilized to 
generate the initial random sequences of those 
systems. Post-quantum cryptosystems need to 
be developed and put to use securely and 
effectively, which takes a lot of work [9–10]. 
Once quantum computing takes over, RSA and 
other asymmetric algorithms won’t be able to 
protect our personal information. We are 
working to develop post-quantum systems as a 
result. 

In practice, quantum computer assaults can 
jeopardize traditional digital signature 
approaches. Our objective is to create RSA 
substitutes that are impervious to assaults 
from quantum computers. Digital signature 
systems based on hashes are one option. These 
apps employ the cryptographic hash function. 
Due to the low collision rates of the hash 
algorithms they use, these digital signature 
techniques are safe. The hash-based digital 
signature method is one RSA substitute. How 
safe these systems are is dependent on the 
cryptographic hash functions used. 

We examined Merkle tree-based hash-
based one-time signature methods. These 
post-quantum approaches can withstand 
quantum attacks. Verkle trees, a powerful 
update to Merkle trees that keep only the most 
important data, are more effective and enable 
more efficient verification methods. This 
reduces the amount of necessary storage space 
needed. We spoke about the implicit 
commitments of Verkle trees and vectors. 
Additionally, vector commitments based on 
lattices are taken into consideration about 
post-quantum features. 

2. Literature Review 

Quantum computers can easily break the 
present encryption schemes. Therefore, it is 
now conceivable for attacks made possible by 
quantum computers to be successful. The 
study [1] also covers one-way functions and 

one-time signature methods. Digital signature 
methods that can withstand assaults from 
quantum computers are presented in this 
article [2]. The work [8] includes information 
on the current state of cryptanalysis as well as 
the construction of the McEliece public-key 
encryption system with algorithmic and 
parameter options. 

In [9], a variety of QRNG integration 
techniques are offered. Scientists are 
interested in quantum computers, according to 
the article [10]. Cryptosystems based on the 
integer factoring problem can be cracked by 
quantum computers. It suggests that the RSA 
system, one of the best-known public-key 
cryptosystems, is vulnerable to attack by 
quantum computers. The authors of 
publications [11–15] discuss various quantum 
number generators based on hash-based 
digital signature techniques. The Merkle 
scheme is fully explained in the article [16]. 
The application of vector commitment is 
discussed in works [17–19]. Verkle trees are 
described in this paper [20]. A Merkle tree-like 
design based on the SIS lattice issue is used in 
the study [21] to create a stateless updatable 
VC method. 

3. Hash-based One-Time Signature 
Schemes 

One-time signature schemes based on hashes 
have a lot of potential for the post-quantum 
era. Such is the operation of hash-based one-
time signature techniques. First, key 
generation must be completed. The process of 
signing is then followed by the process of 
verifying the signature. The private key for the 
signature scheme is created using a secret key 
that is produced at random. 

We concentrate on signature methods 
whose security is solely derived from the 
collision resistance of cryptographic hash 
functions. The Lamport-Diffie One-Time 
Signature (L-DOTS) scheme is an illustration of 
such a system [11]. It is assumed that 
computers have access to a constant supply of 
really random bits, which are effectively a 
series of impartial and independent coin tosses 
when constructing randomized algorithms and 
protocols. In actual applications, a sample that 
produces this sequence is obtained via a 
“source of randomness”. 
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The Lamport-Diffie one-time signature’s security 
parameter n is an integer. A one-way function 
called 𝑓 ∶  {0,1}𝑛  → {0,1}𝑛 and a cryptographic 
hash function 𝑓 ∶  {0,1}𝑛  → {0,1}𝑛 are used by 

L-DOTS to construct an L-DOTS key pair [12]. By 
formula (1), the Lamport-Diffie one-time 
signature key X is a string of 2n bits with n 
length that is selected at random.

𝑋 = (𝑥𝑛−1[0], 𝑥𝑛−1[1], … , 𝑥1[0], 𝑥1[1], 𝑥0[0], 𝑥0[1])𝜖𝑅 {0,1}(𝑛,2𝑛) (1) 

The L-DOTS verification key is Y: 

𝑌 = (𝑦𝑛−1[0], 𝑦𝑛−1[1], … , 𝑦1[0], 𝑦1[1], 𝑦0[0], 𝑦0[1])𝜖 {0,1}(𝑛,2𝑛) (2) 

The one-way function f, as defined by expression (3), is used to calculate the key: 

  𝑦𝑖[𝑗] = 𝑓(  𝑥𝑖[𝑗]), 0 ≤ 𝑖 ≤ 𝑛 − 1, 𝑗 = 0,1. (3) 

To generate a Lamport-Diffie one-time 
signature key, 2n evaluations of the f function 
are required. The verification and signature 
keys are n-length, 2n-bit strings. During L-
DOTS signature creation document 
𝑀 𝜖 {0,1}∗  is signed using L-DOTS and 
signature key X. 𝑔(𝑀) = 𝑑 =  (𝑑𝑛−1, … , 𝑑0) is 
the message digest for the message 𝑀. 𝑠𝑖𝑔𝑛 =

(𝑥𝑛−1[𝑑𝑛−1], … , 𝑥1[𝑑1], 𝑥0[𝑑0]) 𝜖 {0,1}(𝑛,𝑛)  is 
the L-DOTS signature. 

The n-bit strings of length n are used to 
create this signature. They are picked as 
message digest function d. The number of 

cryptographic functions that a processor can 
perform at a given time is usually calculated in 
hashes per second [13]. The ith bit string of this 
signature is xi[0] if the ith bit in d is 0, xi[1] 
otherwise. The signature does not require the 
evaluation of f. The signature is not dependent 
on the evaluation of f. The signature is n2 bytes 
long. 

In the case of L-DOTS verification, the verifier 
generates the message digest 𝒅 =
 (𝒅𝒏−𝟏, … , 𝒅𝟎) if we want to verify 𝑴′𝒔 
signature, 𝒔𝒊𝒈𝒏 = (𝒔𝒊𝒈𝒏𝒏−𝟏, … , 𝒔𝒊𝒈𝒏𝟎 ).   
Consequently, whether it is or is not is decided:

(𝑓(𝑠𝑖𝑔𝑛𝑛−1), … , 𝑓(𝑠𝑖𝑔𝑛0)) = (𝑦𝑛−1[𝑑𝑛−1], … , 𝑦0[𝑑0]). (4) 

Hash-based one-time signature schemes 
involve key generation, signature creation, and 
verification. A secret key is generated at 
random to create the private key. The secret 
key and hash function are applied repeatedly 
to the message, resulting in the signature. The 
recipient verifies the signature using the same 
hash function and the received message. The 
signature is considered valid if the result 
matches the sent one. 

Even though L-DOTS is big, it swiftly creates 
keys and signatures. The Winternitz One-Time 
Signature Scheme (W-OTS) is recommended 
as a way to reduce the number of signatures. 
W-OTS lowers the number of signatures by 
signing many bits in a message digest with a 
single string that serves as the one-time 
signature key. Like L-DOTS, W-OTS employs a 
cryptographic hashing method and a one-way 
function. 

Security and the integrity and authenticity 
of digital signatures are ensured by hash-based 
one-time signature structures, which require a 
special secret key for each signature. By 
guaranteeing the unique key, this strategy 

stops attackers from producing extra 
signatures if their system is breached. Due to 
the restricted use of each key combination, 
one-time signature schemes tend to be 
ineffective. To solve this problem, Ralph 
Merkle suggests a full binary hash tree that 
limits the use of different one-time verification 
keys to the root public key of the hash tree. 

4. Merkle Tree Authentication 
Scheme 

One-time signature schemes are challenging 
due to the need for storing n digests, making 
them impractical for everyday use. The Merkle 
Tree, a solution, uses a binary tree as the root 
to replace multiple verification keys with a 
single public key. This system uses a 
cryptographic hash function and a one-time 
Lamport or Winternitz signature scheme. 

The customizable Merkle Signature Scheme 
(MSS) supports any cryptographic hash 
function and any one-time signature scheme. 
Users are allowed to select the hash function 
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and signature scheme that best meets their 
needs and security concerns thanks to this 
flexibility. We assume that 𝑔 ∶  {0,1}∗  → {0,1}𝑛 
is a cryptographic hash function. We also 
assume that the one-time signature scheme 
also completes the Merkle scheme by 
providing the necessary mechanisms for 
generating one-time signatures that give the 
necessary security features. 

When generating the Merkle signature 
scheme key pair, the signer chooses 𝐻 ∈ ℕ, 
where 𝐻 ≥ 2. As a result, a key pair is created. 
It will be possible to sign and validate 2𝐻 
papers as a result. It should be emphasized that 
this is very different from signature schemes 
like RSA, which allow the use of a single key 
pair to sign or validate numerous documents 
[14]. In actuality, however, this number is also 
limited by the methods employed to create the 
signature or by particular laws [15]. 

The signer will produce 2𝐻 different key 

pairs (𝑋𝑗, 𝑌𝑗), 0 ≤ 𝑗 < 2𝐻 . The verification key 

in this case is 𝑌𝑗, and the signature key is 𝑋𝑗. 

Merkle tree has the following leaves: (𝑌𝑗), 0 ≤

𝑗 < 2𝐻. A parent node is the hash value of the 
concatenation of its left and right offspring. 
This is how a Merkle tree calculates its internal 
nodes. The Merkle signature scheme public key 
serves as the Merkle tree’s root. One-time 
signature keys with a length of 2𝐻 make up the 
MSS secret key [16]. 

This figure shows an example where the 
height of the Merkle tree is H=3. 

 
Figure 1: Merkle tree height H=3 

Generating an MSS key pair requires 
computing 2𝐻 unique key pairs and evaluating 
a 2𝐻+1 − 1 hash function.  

One-time signing keys are successfully used 
by MSS to generate signatures. We must first 
calculate the n-bit 𝑑 = 𝑔(𝑀) to sign a message 
on M. Then, using the sth one-time signature 
key 𝑋𝑠, 𝑠 ∈ {0, … , 2𝐻 − 1}, the signer creates a 

one-time signature, 𝑠𝑖𝑔𝑛OTS . This one-time 
signature and the matching one-time 
verification key 𝑌𝑠 make up a Merkle signature. 

The signer adds to the message the index s 
and the authentication path to the verification 
key 𝑌𝑠; to validate its authenticity. There are 
two steps in Merkle’s signature verification 
process. The one-time signature scheme 
verification algorithm is used by the verifier in 
the first stage to check the validity of d’s 
signature 𝑠𝑖𝑔𝑛OTS , using the one-time 
verification key 𝑌𝑠. The second stage of 
verification involves the verifier determining 
the validity of the one-time verification key 𝑌𝑠.  

A Merkle Tree with n nodes can be built in 
𝑂(𝑛) time because Merkle Trees are extremely 
quick. Unfortunately, their 𝑂(log2 𝑛) proof 
size is quite large and can be costly in terms of 
width. When a Merkle tree has many nodes, the 
resulting Merkle proofs may be extremely 
massive. Our local storage may experience a 
large and costly strain as a result of the Merkle 
Proof itself. 

5. Verkle Tree 

Verkle trees are a powerful upgrade to Merkle 
trees, enabling smaller verifications and 
increased efficiency [17]. They are essential for 
post-quantum cryptography due to their 
ability to lower computing and storage costs 
while maintaining high-security levels. Verkle 
trees are more efficient than Merkle trees, as 
they reduce redundant data and storage space 
required by intermediate nodes. They provide 
more effective verification processes by 
keeping only the necessary data. Verkle trees 
offer more flexibility than Merkle trees, as they 
require additional hash calculations to verify 
the integrity of specific data blocks. This 
scalability advantage makes them better suited 
for efficient handling of large datasets. 

The Verkle Tree is a method to construct a 
Merkle Tree using Vector Commitments 
instead of cryptographic hash functions. To 
construct a tree, choose k pieces and compute 
a Verkle Tree using files f0, f1, ..., fn. Compute a 
Vector Commitment (VC) for each subset of 
files and determine if each membership proves 
PRi with relation to VC. Compute Vector 
Commitments across the tree until the root 
commitment is calculated [18]. 
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In Fig. 2, 9 files with a branching factor of 3 are 
divided into subsets of size k = 3. Vector 
Commitment and membership proofs are 
computed over each subset, leaving 
obligations VC1, VC2, and VC3. Membership 
proofs PR9, PR10, and PR11 are computed for 
commitments VC1, VC2, and VC3 concerning 
commitment VC4. The Vector Commitment VC4 

is computed over these commitments, with the 
root commitment being the digest of the Verkle 
Tree. 

 
Figure 2: Verkle tree when 𝐾 = 3 

The Merkle and Verkle trees have distinct 
characteristics for proofs. In a Merkle tree, all 
sister nodes must be considered, requiring 
proof that contains all nodes. However, the 
Verkle tree uses “batching nodes” to verify 
multiple pathways simultaneously, reducing 
the amount of evidence needed to establish a 
value. This makes the Verkle tree more 
efficient and faster than the Merkle tree in 
proving values. 

Verkle trees require only the path and 
minimal additional information for proof, 
without sibling nodes. They benefit from a 
wider width, but Merkle Patricia trees do not. 
Wider trees lead to shorter routes, but the 
higher cost of proving every width -1 sister 
node per level is offset by the Verkle tree's lack 
of this cost. 

A Verkle tree uses a unique hash algorithm, 
using vector commitments instead of 
conventional hashes, to compute an inner node 
from its offspring. This method is more 
efficient than Merkle trees, as they achieve the 
same goal but are smaller in size in bytes. The 
main difference lies in the use of vector 
commitments for cryptographic hash 
functions. 

6. Vector Commitments 

Fundamentals of cryptography called 
commitment schemes allow a value to be 
concealed and then revealed. Two essential 

traits of commitment systems are binding, 
which limits access to other values, and hiding, 
which reveals the bare minimum of the value's 
properties. The VC schemes enhance 
commitments to accommodate ordered value 
sequences. One goal of VC schemes is to enable 
commitment to a vector and then opening at 
any preferred indices binding, which makes it 
challenging to open relative to several values at 
the same time. This goal is combined with 
potential attribute concealing. 

Users can commit to an ordered list of q 
values, known as a vector, using VC The 
commitment can be opened concerning 
specific places in the future (for example, to 
demonstrate that 𝑚𝑖 is the 𝑖-th committed 
message). Position bound requires vector 
commitments, ensuring adversaries cannot 
open commitments to two separate values 
simultaneously. To achieve conciseness [19], 
the length of the commitment string and the 
size of each opening must be independent of 
the vector length. 

Security characteristics like hiding property 
may also be required for vector commitments. 
The commitment should keep the values and 
order of the vector’s components a secret. 
Contrarily, the hiding property does not play a 
significant role in the execution of vector 
commitments. 

The ability to update VC is necessary. To 
update the commitment and the related 
openings, we have two algorithms. By 
switching the 𝑖th message from 𝑚𝑖 to 𝑚𝑖

′ and 
taking into account the modification of a 
commitment Com, the committer can acquire a 
(modified) Com’ holding the updated message. 
Holders of a message opening at position j 
concerning Com can use the second way to 
modify their evidence and make it valid 
concerning the new Com’. 

Multiple methods are employed for 
committing to and verifying vector messages 
while taking into account our vector 
commitment system. The technique employs a 
message space M, a commitment space Com, 
and a proof space Pr, depending on the setup 
settings. 

In essence, updating a commitment and 
proof should produce results that are 
comparable to those of generating a new 
commitment and proof on the altered message 
vector. Because state information is included 
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in the results, numerous updates are possible 
within polynomial constraints. 

To implement VC, we can make either the 
well-known RSA assumption or the Diffie-
Helman assumption. In terms of the 
effectiveness of the resulting solutions, the 
“quality” of the underlying assumption, or 
both, vector commitment provides compact 
and effective solutions that significantly 
outperform prior studies [20]. 

However, the resulting techniques must 
protect us from attacks by quantum 
computers. Unfortunately, quantum 
computers can currently defeat VC based on 
RSA. In this article, we strengthen earlier 
vector commitment and RSA assumption-
based schemes to increase their efficiency and 
security. We are developing Verkle tree-based 
signature systems, but we construct vector 
commitments using lattices. Our schemes are 
predicated on post-quantum assumptions. 

7. Lattice-Based Vector 
Commitment 

The use of VC methods enables concisely 
committing to an ordered series of values, 
enabling the illustration of desired points in a 
condensed manner. Since VCs can be updated 
without knowing the complete vector, 
modifications to commitments and proofs are 
possible. Cryptographic accumulators, 
external databases that have been verified, and 
cryptocurrencies are only a few of the 
important cryptographic uses that VCs have. 
They are helpful for databases with zero 
knowledge, cryptographic accumulators, and 
pseudonymous credentials, as well as for 
efficiently updated, publicly verifiable 
databases. 

The research on post-quantum VC methods, 
or those that are conceivably secure against 
quantum attacks, has likewise been rather 
sparse. It is possible to employ Merkle trees 
that were created using a post-quantum hash 
function, but they have updates that are 
comparatively expensive and unavoidably 
stateful. A stateless updatable VC scheme is 
produced naturally by a Merkle tree-like 
construction presented in the article [21] that 
is based on the SIS lattice problem. 

This study introduces stateless updatable 
vector commitment constructions based on the 

SIS lattice problem, allowing for secure 
commitment and verification of vector 
messages. The constructions are efficient and 
shorter than previous stateless updatable 
constructions, using private-key configuration 
and a central authority for public parameters. 

Due to the committer and verifier 
parameters’ widths being quadratic and linear 
in the message dimension 𝑑, respectively, in 
our prior construction’s VC scheme, the 
construction is unsuited for large dimensions 
in its current state. We provide an analysis of a 
general 𝑑-ary tree construction that, with no 
increase in the sizes of the parameters or 
commitments, converts a VC scheme for 
dimension 𝑑 into one for dimension 𝑑ℎfor any 
desirable positive integer ℎ. The only sizes that 
increase are the proof and proof-update sizes, 
which grow linearly with ℎ but independently 
of 𝑑. The stateless updatability quality of the 
basic scheme and the combinability of 
commitments and proofs, both of which are 
crucial for distributed VCs, are not preserved 
by this modification [22–25]. 

Here, we provide a customized tree-like 
transformation of our VC scheme built on SIS. 
Our transform, in contrast to the general one, 
keeps combinability and (differential) 
stateless updates because commitments are 
essentially linear in committed messages, 
though at the cost of slightly larger objects and 
a stronger SIS requirement. The transformation 
is based on the context’s core idea that was 
employed in a Merkle-tree-like structure based 
on SIS (which can be used as a VC). 

In that case, the proof size ends up being 

proportional to ℎ𝑑log2 (𝑑ℎ) since a proof must 

contain all of the brother-node information for 
each step in a root-to-leaf path. (The length of 
the proofs along the path and the sizes of the 
integers inside of them are the sources of the 

llog2(𝑑ℎ) factor.) The same general principle 

holds true for our SIS-based VC scheme, with 
the added benefit that proofs need not include 
sibling information, meaning that the proof 

size increases simply as ℎlog2 (𝑑ℎ) =

ℎ3log2 𝑑. 
For any choice of magnitude 𝑑 and tree 

height ℎ, our design is quantitatively a strict 
improvement (although at the cost of private 
setup). Additionally, according to its 
performance profile, using a moderately large 
𝑑 and a correspondingly smaller ℎ can 
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ultimately produce an asymptotic proof size 
that is equivalent to that of the generic tree 
transformation for VCs while maintaining 
combinability and stateless updates (though at 
the cost of private setup and a stronger SIS 
assumption). 

Our constructs employ conventional 
methods for preimage sampling and SIS—
based trapdoors. The “gadget” matrix, 
abbreviated G, is used in the constructions This 
matrix has an integer dimension of n by w. In 
building the trapdoor, the matrix G is essential. 
G illustrated by the formula: G = I𝑛 ⊗

(1, 2, … , 2⌈log2 𝑞⌉−1), where I𝑛 is the n×n 

identity matrix, and ⊗ stands for the 
Kronecker product. This illustration serves as 
a model, although any acceptable matrix G with 
certain characteristics may be utilized. 
Deterministic function G−1: ℤ𝑞

𝑛 → ℤ𝑤 is an 

inversion operation with particular 
characteristics. The formula G ⋅ G−1(u) = u for 
small values of 𝑔, and the norm of G−1(u) is 
constrained by 𝑔 for all u in ℤ𝑞

𝑛. 

G is a matrix with n×w dimensions and 
values 𝑍𝑞 . When performing the G−1operation 

(computing the inverse of G), the magnitude 
bound 𝑔G for the gadget matrix G is employed. 
Vectors for messages are chosen from a set 𝑀̅. 
𝑀̅ is a collection of w-dimensional vectors, 
where each element is drawn from a subset of 
𝐼‾.  𝐼‾ is a subset of the integers and is defined by 
the values— 𝑀𝐼 and 𝑀𝐼 . The chosen integer, ℎ 
The chosen integer. We employ algorithms that 
were constructed for previous construction 
[26–29]. 

The following algorithms have been 
defined. 

Setup Algorithm: 
The Setup̅̅ ̅̅ ̅̅ ̅̅

ℎ algorithm generates outputs 
based on input parameters. A commitment 
parameter 𝑐𝑝, a matrix U (made up of multiple 
submatrices), and vp are included in outputs. 

U(1) is the same as the matrix U that was 
discussed earlier. The matrix S(1) is an identity 
matrix of size wd×wd. 

For each k from 1 to h: 

S(𝑘) = I𝑑 ⊗ G−1(U(𝑘−1)) ∈ ℤ𝑤𝑑×𝑤𝑑𝑘
 (5) 

U(𝑘) = US(𝑘) ∈ ℤ𝑞
𝑛×𝑤𝑑𝑘

 (6) 

The inverse of G and the matrix U(𝑘−1)are 
used in an operation to produce S(𝑘). The 
matrix U(𝑘−1) is multiplied by S(𝑘) to get U(𝑘). 

Each of the blocks that make up U(𝑘) can be 
calculated separately using U and a value 𝚥‾ (𝚥‾ ∈
[𝑑𝑘]) without having to calculate the complete 
matrix. 

Commit Algorithm: 
From 1 to h, for each k: 
The Commit ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑘 algorithm requires a 
commitment parameter cp and a message 
vector m̅. Applying the inverse of G on U(𝑘) 
results in the computation of the value c̅ . 
Outputs include c̅ and 𝑠𝑡̅. 

Open Algorithm: 
For k = 1, the Open ̅̅ ̅̅ ̅̅ ̅̅

1algorithm is the same 

as the “Open” operation. 
For each k from 2 to h: 
• Based on the given values and the value 

𝚤‾′, a value 𝚤‾ is calculated. 
• Subvectors are created from a message 

vector m̅. 
• The Open algorithm and specific inputs 

are used to determine the p𝑖 value. 
• Using the Commit algorithm from the 

prior phase, a commitment value 

(c̅𝑖,−) is generated. 

• Using specific inputs and the Open 
algorithm, a value 𝑝‾𝑣‾ ′

′  is produced. 

• The result is 𝑝‾𝑧‾ . 

Verify Algorithms: 
Using the Verify operation, the Verify̅̅ ̅̅ ̅̅ ̅̅

1 
algorithm verifies some inputs for k = 1. 

For each k from 2 to h: 
• An index 𝑖 and a value  𝚤‾′ are defined 

based on 𝚤‾. The components of the 𝑝‾𝑧‾ 
value is separated into components. The 
process is rejected if a few verification 
requirements are not satisfied. 

• The process is denied if the verification 
from the (k–1)th algorithm—
Verify̅̅ ̅̅ ̅̅ ̅̅

𝑘−1 fails. If not, it’s accepted. 

Update Algorithms—From the linearity of 
commitment operations, update algorithms 
can be inferred. 

8. Novel Scheme Using Verkle 
Tree 

Implementing one-time signature methods can 
be challenging because a different key pair 
must be used to sign every message. These 
systems’ drawback is that n digests must be 
saved, which makes them impractical for 
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routine use. Therefore, regardless of the 
number of files we have, we would require a 
method that allows us to save a uniform-sized 
digest. The Merkle tree was suggested as a 
solution to this issue. This method can replace 
numerous verification keys with a single public 
key by employing a binary tree as the root [30–
33]. 

Merkle trees are quickly computed; it takes 
𝑂(𝑛) time to build a Merkle tree with n nodes. 
A Merkle tree with several nodes can be used 
to generate large Merkle proofs. Unfortunately, 
the size of their 𝑂(log2 𝑛) proof is extremely 
huge and can be expensive. The Merkle proof 
alone might be a heavy and costly burden on 
our local storage. To sign 2n messages, the tree 
must be n heights tall. The size of their proofs, 
𝑂(𝑤 log𝑤 𝑛), is more than that of Merkle Trees 
when using wider-width trees (w-ary trees). 
The proof size is fixed at 𝑂(1),  when a vector 
commitment method is used, however, the 
building of the vector commitment is 
extremely time-consuming and costly, 
requiring an 𝑂(𝑛2) calculation. 

Merkle proofs can be vastly improved using 
Verkle trees, which allow for significantly 
reduced proof volumes. The w width Verkle 
Tree can be built in just 𝑂(𝑤𝑛) time. The 
verifier simply needs to offer a single proof 
that demonstrates all parent-child ties 
between all commitments along the paths from 
each leaf node to the root, as opposed to having 
to present all “brother nodes” at every level. 
When compared to perfect Merkle trees, proof 
sizes can be reduced by a factor of 6–8. 

Instead of using the Merkle tree, we use the 
Verkle tree. 𝐻 ∈ ℕ, 𝐻 ≥ 2 are chosen by the 
signer when a key pair is formed. After that, the 
key pair is generated. They will enable the 
validation and signing of  2𝐻papers. The signer 
will generate  2𝐻distinct key pairs (𝑋𝑗, 𝑌𝑗), 0 ≤ 

𝑗 < 2𝐻. In this case, the verification key is 𝑌𝑗 

and the signature key is 𝑋𝑗. Both of them are bit 

strings. The leaves of the Verkle tree are 𝑔(𝑌𝑗), 

0 ≤ 𝑗 < 2𝐻 . Each node is a hash value that is 
formed by concatenating the hashes of its 
offspring, and they are calculated and used as 
the tree’s leaves. The public key is the primary 
commitment in the Verkle cryptography 
system. To create a public key, 2𝐻 pairs of keys 
must be calculated [34]. 

One-time signature key generation allows 
us to create signatures. To sign a message on 

M, the n-bit 𝑑 = 𝑔(𝑀)  must first be calculated. 
An arbitrary size message of size m is first 
changed into a message of size n using the hash 
function. The document’s signature is made up 
of the root commitment, one-time signature, 
one-time verification key, and finally, indexes 
for the evidence [35–36]. 

The one-time signature of 𝑠𝑖𝑔𝑛 should be 
authenticated using 𝑌𝑠 according to how 
Verkle’s signature verification works. The VCi 

commitments are confirmed if this is the case. 
If the root of the tree matches the root 
commitment, the signature is verified. The root 
commitment in a Verkle tree is digest d. 

9. Conclusions 

The paper gave a thorough overview of 
cryptography methods that might be used in 
both traditional and quantum settings. We 
covered post-quantum cryptography systems. 
We discussed hash-based one-way functions, 
as well as how we can integrate them into 
Merkle and Verkle trees. Lattice-based 
commitments and vector commitments were 
investigated. We spoke about how to calculate 
and integrate the effective Merkle tree—Verkle 
tree enhancement. Novel Shames’ success 
inspired the development of a new model, 
which then included Verkle tree. While they do 
necessitate more difficult cryptography, there 
may be huge scaling benefits. 

The defense against attacks from both 
classical and quantum computers is essential 
for us, so the resulting schemes must be. After 
reviewing the work that had been done, we 
were given the systems that were incorporated 
into Merkle. Merkle Trees, which are built 
using cryptographic hash functions, provide a 
strong defense against quantum assaults even 
though the verification size is too big. Each 
child in a Merkle tree is represented by the 
hash of the parent node. 

Our revised Verkle tree model defines a 
parent node as the vector commitment of its 
children. To implement the new technology, 
we discussed vector commitment and 
commitments based on hard lattice issues. The 
Verkle system allows for substantially smaller 
verifications, which is a significant 
improvement over the Merkle scheme. Instead 
of showing all nodes at each level, verification 
only needs one proof to authenticate all 



165 

parent-descendant relationships, namely all 
commits from each leaf node to the root. This 
makes it possible to reduce the verification size 
by around 6–8 times when compared to the 
conventional Merkle method. 

In our revised method, a Verkle tree was 
therefore taken into consideration instead of a 
Merkle tree. In this case, vector commitment is 
sufficient to establish the proof. Based on the 
premise of the lattice, we used vector 
commitments to build the Verkle tree. 

We must ensure that the strategies that 
emerge safeguard us against attacks from 
quantum computers. Our earlier vector 
commitments based on RSA could be 
compromised by quantum computers. The 
strategy has since been improved to make it 
safer and more effective. Verkle trees are used 
in our signature procedures, whereas lattices 
are used to create vector commitments. We use 
post-quantum assumptions to underpin our 
systems. 
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