
The Framework for Study of Caching Algorithm Efficiency.

© Thanh Hung Ngo
Don State Technical University

nthungla@yahoo.com

Mosab Bassam Y. Al Zgool
Don State Technical University

mosab2000@yahoo.com
PhD supervisor: Michael V. Grankov

Abstract.
In this paper we offer several models of
reference sequences (traces of references) using
Markov chains for testing of the replacement
policies in caching systems. These models
enable the generations of traces with the
repeated subsequences of references, which are
of great interest for study of forecasting
methods in caching systems. Furthermore, we
offer the scheme of the program stand, where
these models have been realized, and result of
the experiments, which have been carried out
with its help.
Index terms: program stand, model of reference
sequences, Markov chains, traces with repeated
subsequences.

1 Introduction
The most popular method to study the replacement
policies in caching systems is its testing by the program
simulating caching system. In this approach different
traces are given to the input of the program and the
cache-hit rate is registered as the result provided cache-
system. The more the value of this rate is, the more
efficient the investigated policy performs.

Specific characters of the functioning of the
information system often render a big influence upon
behavior of the reference sequences. So testing the
policy, have been specially designed for a certain
information system, requires the traces, reflecting
specifics of the system. There are two ways of achieving
the reference sequences: by means of logging the
accesses being executed in the system for a long-lasting
time (e.g. collecting reference sequences) [1, 2] and by
means of trace generating programs [3, 4]. The traces
having been achieved using the first method more really
reflect the specifics of the system, but their achievement
requires a significant computing and material resources.
The achievement of traces using program-generator is
faster and cheaper. The main problem of the last method

is the development of mathematical model, describing
the information system.

In this paper we offer several models of reference
sequences using Markov chains [5]. Besides, we offer
the scheme of the program stand, where these models
have been realized, and the result of the experiments,
which have been carried out with its help.

2 Models of reference sequences

2.1 Model with One Markov Chain (MOMC)
 The model is widely used for modeling of different
queuing systems, including caching system. MOMC is
specified by the triple ()π,, AS , where:

1. { }NsssS ,,, …21= - the set of objects in
the system. Objects may be the papers in paper caching
systems or the objects in the object caching systems;

N

2. { }ijaA = - the object transition probabilities.
The value of element of matrix equals to the
probability of event, when the system, having accessed
the object , accesses the object . If mark the
object having been accessed at the moment

ija

is js
t as ,

then:
tq

()itjtij sqsqPa === + |1 ,

Njiaa
N

j
ijij ≤≤=≥ ∑

=

,,, 110
1

;

3. ()Nπππ=π ,,, …21 - the initial object
distribution.

The generation of traces by MOMC follows the
algorithm:

1. Input , , S A π .
2. Input the count of references L (length of trace).
3. Initialize value for the variable , which is the

string logging the references to the object, as an empty
string.

O

4. Initialize value for the variable t , which is the
current count of references:

1=t .
5. Choose the initial object from the set

according to the initial object distribution .
tq S

πProceedings of the Spring Young Researcher's
Colloquium On Database and Information Systems
SYRCoDIS, St.-Petersburg, Russia, 2008 6. WHILE Lt ≤

mailto:nthungla@yahoo.com

7. Let , append to the string : kt sq = ks O

ksOO += .
8. Choose the next object according to the matrix

of object transition probabilities and the current
object .

A
ks

9. Increase the value of the current count of
references t by one:

1+= tt .
10. END-WHILE.
11. Save the achieved reference string O as the

desired trace.
Special occasions of implementing MOMC. Let’s

consider the following realizations of MOMC:

1. Njiji
N

aij ≤≤∀= ,:,, 11 .

In this case we achieve the model describing the
system where the accesses to the objects obey the
uniform law.
2. The absolute cyclic traces (ACT).
Generation of the ACT is made by picking up the
matrix of transition probabilities as in table 1.

i\j 1 2 3 4
1 0 0 0 1
2 0 0 1 0
3 1 0 0 0
4 0 1 0 0

Table 1: matrix of cyclic transitions.

A fragment of ACT, achieved by using the matrix
in table 1, looks like: …, 2, 3, 1, 4, 2, 3, 1, 4, ….
The ACT is of interest to study the anomalies
such as Belady’s anomaly.
3. The cyclic traces with random “noise” (CTRN).
Replacements of one or more unit element (the
element with value equaling to 1) of matrix in
table 1 by the value , and zero elements in
the corresponding rows by the value

 result in inclusion of a random

“noise” in cyclic traces (

xe λ−

() ((11 −− λ− Ne x /))
()
λ

≤≤
Nx ln0 and

). When , we achieve the ACT as in
occasion 2. Increasing the value of

λ<0 0=x
x , the

indeterminacy in behavior of traces increase.

When ()
λ

=
Nx ln , we achieve the traces, in

which references to the objects obey the uniform
law (as in occasion 1). Thus the first and the
second occasions are just the special cases of the
third occasion.
For example we have brought into the matrix in
table 1 the noise with the following parameters

 and have generated traces
with its help. The matrix of transition
probabilities now looks like in table 2. Some of
generated traces are as follow:

(019807 ., ==λ x)

(1, 4, 2, 3, 4, 2, 3, 4, 4, 2, 3, 1, 4, 2, 4);

(2, 3, 1, 2, 2, 3, 1, 4, 3, 1, 4, 2, 4, 1, 4).

i\j 1 2 3 4
1 0.043 0.043 0.043 0.871
2 0.043 0.043 0.871 0.043
3 0.871 0.043 0.043 0.043
4 0.043 0.871 0.043 0.043

Table 2: matrix of cyclic transitions with random
“noise”.

Because of one’s simplicity the MOMC is not able
to describe the functioning principles of the real
systems. To specify the more complicated mechanisms
it is used the hidden Markov model.

2.2 Model with Hidden Markov Chain (MHMC)
MHMC is specified by the quintuple ()π,,,, BAVS ,
where:

1. { }UsssS ,,, …21= - the set from U users of
the information system;

2. { }ijaA = - the user transition probabilities. If
mark the user, which has got access to the system at the
moment t , by , then: tq

()itjtij sqsqPa === + |1 ,

Ujiaa
U

j
ijij ≤≤=≥ ∑

=

,,, 110
1

;

3. { }NvvvV ,,, …21= - the set from objects
of the system;

N

4. { }ijbB = - probabilities of choosing object for
the users. The -th row is the object choice probability
distribution for the i -th user. The value of element
equals to the probability of event, when the current user

i
ijb

it sq = chooses the object . If mark this object as ,
then:

jv to

()itjtij sqvoPb === | ,

NjUibb
N

j
ijij ≤≤≤≤=≥ ∑

=

1110
1

,,, ;

5. ()Nπππ=π ,,, …21 - the initial user
distribution.

The generation of traces by MHMC follows the
algorithm:

1. Input , V , , , π . S A B
2. Input the count of references L (length of trace).
3. Initialize value for the variable , which is the

string logging the references to the object, as an empty
string.

O

4. Initialize value for the variable t , which is the
current count of references: . 1=t

5. Choose the initial user from the set
according to the initial user distribution .

tq S
π

6. WHILE Lt ≤
7. Let kt sq = .

8. Choose the current object according to the

matrix and the current user .
to

B ks

9. Let , append to the string : lt vo = lv O

lvOO += .
10. Choose the next user according to the matrix of

user transition probabilities and the current user . A ks
11. Increase the value of the current count of

references t by one: . 1+= tt
12. END-WHILE.
13. Save the achieved reference string O as the

desired trace.
The second model more naturally reflects the

relationship between the elements of the information
system: each user accesses to the objects due to his logic
(his distribution law).

Both of the described models have disadvantages.
The first one is not taken into account the presence of
the users, and the second one is not able to model the
cyclic traces. For elimination of these restrictions we
offer the two-level model of Markov chains.

2.3 Two-Level Model of Markov Chains (TLMMC)

TLMMC is specified by the six
()VSVS AAVS ππ ,

}

}

,,,, , where:

1. - the set from U users of
the information system;

{ UsssS ,,, …21=

2. - the set from objects
of the system;

{ NvvvV ,,, …21= N

3. { }ijS aA = - the user transition probabilities. If
mark the user, which has got access to the system at the
moment t , by , then: tq

()itjtij sqsqPa === + |1 ,

Ujiaa
U

j
ijij ≤≤=≥ ∑

=

,,, 110
1

;

4. - matrix of object
transition probabilities for the users, where:

(U
V AAAA ,,, 21 …=)

{ }kk
ij

aA = - matrix of object transition

probabilities for the k -th user. Value of the element

equals to the probability of event, when the -th user,
having chosen the -th object, chooses the -th object.
If mark the object, being chosen by the -th user at his

k
ij

a

k
i j

k
r -th choice, as , then ro

() ()()(ktirjr
k sqvovoPa
ij

=∧=== + |1)

)

,

; UkNjiaa
N

j

kk
ijij

≤≤≤≤=≥ ∑
=

1110
1

,,,,

5. (US πππ=π ,,, …21 - the initial user
distribution;

6. (U
V

()kkkk
N

ππππ ,,, 21
…= - the initial object

distribution for the -th user. . k Uk ≤≤1
The generation of traces by MHMC follows the

algorithm:
1. Input: , V , , , and S SA UAAA ,,, 21 …

U
S ππππ ,,,, …21 .

2. Input the count of references L (length of trace).
3. Initialize value for the variable , which is the

string logging the references to the object, as an empty
string.

O

4. Initialize value for the variable l , which is the
current count of references: . 1=l

5. Initialize value for the variable t , which is the
count of the user turns: 1=t .

6. Choose the initial user from the set
according to the initial user distribution .

tq S

Sπ
7. WHILE Ll ≤
8. Let kt sq = .
9. Initialize value for the variable r , which is

the session count of references for the
current user: 1=r .

10. Choose the initial object according to the

distribution
ro

kπ .
11. Generate the number z , which is the count

of references will be made by the current
user.

12. WHILE () (zrandLl ≤)≤
13. Let mr vo = , append to reference

string:
mv

mvOO += .
14. Increase the value of by one:

.
l

1+= ll
15. Choose the next object according

to the matrix
1+ro

kA and the current
object . ro

16. Increase the value of r by one:
1+= rr .

17. END-WHILE
18. Choose the next user according to

matrix and the current user .
1+tq

SA kt sq =
19. Increase the value of t by one: 1+= tt .
20. END-WHILE.
21. Save the achieved reference string O as the

desired trace.
Let’s consider an example illustrating the usage of

TLMMC. Set value for the parameters of TLMMC as
below:

{ } { } ()
() ();.,.,.,.;.,.,.,.

;.,.;,,,;,

5050505050505050

5050432121
21 ==

==

ππ
=π SVS

)ππππ ,,, 21 …= - the initial object
distributions for the users, where:

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

250250250250
250250250250
250250250250
250250250250

0010
0001
0100
1000

5050
5050

2

1

....

....

....

....

;;
..
..

A

AAS

One of the traces achieved with help of the model
looks like: 4, 2, 3, 1, 3, 1, 4, 2, 4, 2, 3, 1, 1, 2, 2, 3, 1, 4,
1, 1, 2, 3, 1, 4, 2, 1, 4, 2. In this trace the absolute cyclic
trace (…, 1, 4, 2, 3, 1, 4, 2, 3, …) has been distorted and
fragmented into subsequences due to the random turns
of the users and the random number of references
having been made in their turns. These distortions create
more difficulties for the methods identifying the
subsequences in the references sequence. So the model
TLMMC is of great interest to investigate the prediction
methods in caching system [6, 7].

3 The scheme of program stand
The program stand has been written in programming
environment Delphi 7. It has following components (fig.
1):

1. Trace - generator.
Generate traces by the one of different models.
2. Realization block of replacement policies.
3. Cache simulator.
Simulate the performance of cache-system with the
chosen policy and chosen traces model.
4. Analysis block
Analyze the result of performance of cache-system.

Figure 1: The components of the program stand.

4 Experiments
Functioning of the program stand has been illustrated by
benchmark analysis of performance of different
replacement policies: Random, LRU and LFU. The
result of the experiment is showed in fig. 2.

In the investigation it has been used the model
TLMMC with the following parameters:

{ } { } ()
() (;.,,.,.;.,,.,.

;.,.;,,,;,

010101010101

551002121
21 ……

…

==

==

ππ
=π SVS

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

55
55

..

..
SA ;

Matrix 1A is specified as matrix of cyclic traces
with a random “noise” (looks like the matrix in tab. 2).
When 0=x the absolute cyclic trace, being generated
according to this matrix, looks like:

⎟⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

66898978595399391575989
8850362784838237583886771070
6156727175696867634024166292
2590601994555418529645492247

4648314342417351658117443233
26653212879100806423529207430

7834151411121376999735874321

,,,,,,,,,,,
,,,,,,,,,,,,,,
,,,,,,,,,,,,,,
,,,,,,,,,,,,,,
,,,,,,,,,,,,,,

,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,

Matrix 2A determines for the second user the
equiprobable transition from an object to any objects,
including the transition to it self, i.e.

. 100110012 ≤≤∀= jijiaij ,:,,/
As magnitude of the “noise” coefficient it has been

used three values: 0=x ; and 10540.=x 60524.=x .
In all cases 1=λ . When , in generated traces
present the repeated subsequences. This fact has
negatively influenced upon performance of Random and
LRU, but not for LFU. In this case it is registered the
slight advantage of Random over LRU and significant
advantage of LFU over the rest. Increasing the
magnitude of

0=x

x , the indeterminacy in generation of the
traces rapidly increases. This change positively
influences upon performance of Random and LRU, and
equalizes the performance of all policies.

Figure 2: Experiment result.

5 Conclusions

)
 The result of the demonstration experiment shows

urgency and relevance of the offered traces models and
also program stand for study of different replacement
policies. The TLMMC presents a great interest to study

the forecasting method in cache-system. The traces
generated by this model were applied to testing the
decomposition method of the relations in database
systems with the criteria of increasing the cache-hit rate
[8]. Herein, when the magnitude of x reaches its
maximum value, the experimental cache-hit rate
completely agrees with the corresponding rate
theoretically has been achieved in that paper.

References
[1] Min Xu, Vyacheslav Malyugin, Jeffrey Sheldon,

Ganesh Venkitachalam, Boris Weissman. ReTrace:
Collecting Execution Trace with Virtual Machine
Deterministic Replay. // Third Annual Workshop
on Modeling, Benchmarking and Simulation, held
in conjunction with the 34th Annual International
Symposium on Computer Architecture, June 2007.
http://www.xhfamily.com/x/files/MoBS07_replay_i
trace.pdf

[2] Hervé Touati, Alan Jay Smith. Reducing and
Manipulating Complex Trace Data. // Software -
Practice and Experience. Vol. 21, June 1991, 639–
655.

[3] Eeckhout L., De Bosschere K., Neefs H.
Performance analysis through synthetic trace
generation. // Performance Analysis of Systems and

Software, 2000. ISPASS. IEEE International
Symposium on Volume, Issue, 2000.

[4] Germán Galeano Gil, Juan A. Gómez Pulido, and
Juan M. Sánchez Pérez. Tool for the Analysis and
Memory-Trace Generation of DOS Executable
Files. // Microprocessors and Microsystems,
Volume 22, Issue 7, 25 January 1999, Pages 389-
393.

[5] Lawrence R. Rabiner. A tutorial on Hidden Markov
Models and selected applications in speech
recognition. // Proceedings of the IEEE, VOL. 77,
NO. 2, Feb 1989.

[6] Fei Guo and Yan Solihin. A Prediction Model for
Alternative Cache Replacement Policies. //
http://www.ece.ncsu.edu

[7] Thomas M. Kroeger, Darrell D. E. Long. Predicting
File System Actions from Prior Events. //
Proceedings of the USENIX 1996 Annual
Technical Conference, pages 319-328, January
1996.
http://citeseer.ist.psu.edu/kroeger96predicting.html

[8] Thanh Hung Ngo, Michael V. Grankov. New
Object Function for Vertical Partitioning in
Database System. // the present colloquium.

http://www.xhfamily.com/x/files/MoBS07_replay_itrace.pdf
http://www.xhfamily.com/x/files/MoBS07_replay_itrace.pdf
http://www.sciencedirect.com/science/journal/01419331
http://www.sciencedirect.com/science?_ob=PublicationURL&_tockey=%23TOC%235658%231999%23999779992%2380559%23FLA%23&_cdi=5658&_pubType=J&_auth=y&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=e0c70e7865d367e4cd255e42738238b7
http://citeseer.ist.psu.edu/kroeger96predicting.html

