CEUR-WS.org/Vol-3543/paperl8.pdf

Understanding Developer Practices and Code Smells
Diffusion in Al-Enabled Software: A Preliminary Study

Giammaria Giordano’, Giusy Annunziata!, Andrea De Lucia’ and Fabio Palomba’

"University of Salerno (Italy) - SeSa Lab

Abstract

To deal with continuous change requests and the strict time-to-market, practitioners and big companies
constantly update their software systems to meet users’ requirements. This practice force developers
to release immature products, neglecting best practices to reduce delivery times. As a possible result,
technical debt can arise, i.e., potential design issues that can negatively impact software maintenance
and evolution and, in turn, increase both the time-to-market and costs. Code smells—sub-optimal
design decisions identifiable by computing software metrics and providing a general overview of code
quality —are common symptoms of technical debt. While previous research focused on code smells
primarily considering them in the context of Java, the growing popularity of Python, particularly for
developing artificial intelligence (AI)-Enabled systems, calls for additional investigations. This preliminary
analysis addresses this gap by exploring the diffusion of Python-specific code smells, and the activities
performed by developers that induce the introduction of code smells in their systems. To perform
our preliminary investigation, we selected 200 AI-Enabled systems available in the NicHE dataset; We
extracted 10,611 information on the releases using PYDRILLER, and PYSMELL to extract information about
code smells. The results reveal several insights: 1) Code smells related to object-oriented principles are
rarely detected in Python; 2) Complex List Comprehension is the most prevalent and the most long-alive
smell; 3) The main activities that can induce code smells are evolutionary. This study fills a critical
gap in the literature by providing empirical evidence on the evolution of code smells in Python-based
Al-enabled systems.

Keywords

Software Maintenance, Software Evolution, Software Refactoring, Code Smells,

1. Introduction

To meet customers’ needs and due to the continuous environmental changes, practitioners and
big companies update their source code as fast as possible [1]. The continuous change requests
and the stringent time-to-market force developers to release immature products, putting aside
best practices to decrease the delivery time [2, 3]. As a possible output of this process could be
the introduction of technical debt [4]—i.e., potential design issues that can negatively impact the
software system during maintenance and evolution. One of the symptoms of technical debt is

IWSM/MENSURA 23, September 14-15, 2023, Rome, Italy

Q giagiordano@unisa.it (G. Giordano); gannunziata@unisa.it (G. Annunziata); adelucia@unisa.it (A.D. Lucia);
fpalomba@unisa.it (F. Palomba)

€} https://giammariagiordano.github.io/giammaria-giordano/ (G. Giordano); https://giusyann.github.io/

(G. Annunziata); https://docenti.unisa.it/003241/home (A.D. Lucia); https://fpalomba.github.io/ (F. Palomba)

® 0000-0003-2567-440X (G. Giordano); 0009-0002-0742-7261 (G. Annunziata); 0000-0002-4238-1425 (A.D. Lucia);
0000-0001-9337-5116 (F. Palomba)

© 2021 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

== CEUR Workshop Proceedings (CEUR-WS.org)

mailto:giagiordano@unisa.it
mailto:gannunziata@unisa.it
mailto:adelucia@unisa.it
mailto:fpalomba@unisa.it
https://giammariagiordano.github.io/giammaria-giordano/
https://giusyann.github.io/
https://docenti.unisa.it/003241/home
https://fpalomba.github.io/
https://orcid.org/0000-0003-2567-440X
https://orcid.org/0009-0002-0742-7261
https://orcid.org/0000-0002-4238-1425
https://orcid.org/0000-0001-9337-5116
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

the presence of so-called code smells [5], i.e., sub-optimal design decisions applied by developers
during the software development. Code smells are detectable by calculating software metrics
that provide insight into the quality of the project. They can indicate a negative impact on
software maintenance and increase the effort required to perform evolutionary activities.

Over the last decades, several researchers targeted studies to investigate code smells from
different angles. On the one hand, by proposing both static and machine learning tools useful to
detect the presence of code smells and their impact on code quality [6, 7, 8]. On the other hand,
researchers are focused on understanding when and especially the motivations that lead to
introducing code smells [9, 10]. In addition, it is noticed that their presence negativity impacts
code attributes—e.g., code comprehension [11] and change-bug proneness [12, 13]. Despite
the willingness spent by researchers on this topic, we noticed that several previous work
consider as “lowest common denominator” the adoption of Java programming language [14,
15, 16]. Although the use of Java is consolidated over time, other programming languages—i.e.,
Python—are increasingly widespread; a recent statistic' reports that Python jumped over Java
in terms of diffusion in the last few years. Although the possible reasons for this overtaking are
multiple, we noticed that it is common practice for practitioners and big companies to select
programming languages that allow combining different paradigms—e.g., object-oriented and
procedural— with taking full advantage of the features of each of the paradigms, characteristics
that are by default in Python. Moreover, from this perspective, we noticed that only a tiny
subset of previous work focuses on detecting code smells for Python projects but considers
only traditional systems [17, 18]. However, taking into account that Python is one of the most
popular programming languages to build Al-Enabled systems? and considering the different
philosophy in terms of the mindset of Python, we noticed a lack of empirical investigation
on the diffusion of code smells in AI-Enabled systems, and the related activities performed by
developers during the introduction of them. Seek consolidated literature, on code smells, in
traditional evolutionary systems drove us to investigate them [9, 19]. That work emphasizes
identifying the diffusion of code smells and the activities most likely to cause their introduction
as a first step in keeping effort low during software maintenance [20].

To fill this gap, we investigated both the diffusion of the code smells and the activities that
led developers to introduce them in Al-Enabled systems. To conduct our analysis, we selected
over 200 Al-Enabled systems provided by NICHE dataset [21], considered over 10,600 releases
identified with PYDRILLER, and extracted information on code smells using PYSMELL.

The principal results indicated that: 1) The code smells regarding the object-oriented principles
are rarely detected during our analysis, and this suggests that Python developers tend to use
other reuse mechanisms to build AI-Enabled systems; 2) Complex List Comprehension has been
observed 1465 times and is both the most present and the most long alive; 3) Code smells does
not follow a specific and common pattern over time, but the trend seems to be project-dependent;
4) The evolutionary activities are the most common activities that can induce developers to
introduce code smells.

Our work makes the following main contributions:

+ A preliminary analysis of the diffusion of code smells in AI-Enabled systems;

Thttps://www.statista.com/statistics/793628/worldwide-developer-survey-most-used-languages/
*https://bootcamp.berkeley.edu/blog/ai-programming-languages/

https://bootcamp.berkeley.edu/blog/ai-programming-languages/

+ A preliminary investigation on the activities performed by developers that led to the
introduction of code smells in AI-Enabled systems;

+ A publicly available replication package [22] containing raw data and scripts used to
conduct our work that researchers can use to replicate or extend this work.

Paper structure. Section 2 discusses the background information and the related work con-
nected to this work. Section 3 reports an overview of the method applied. Section 4 summarizes
the results obtained. Section 5 shows the threats to validity and the mitigation strategies applied.
Section 6 expands the discussion section and provides takeaway messages. Lastly, section 7
concludes the paper.

2. Background and Related Work

This section describes the background information on Python-specific code smells. In addition,
we overview the current literature.

2.1. Background

With the proliferation of object-oriented (0.0.) programming languages, most effort has been
spent by researchers to identify the presence of code smells in source code. Fowler released
the first definition of code smells [5] in 1997, proposing an informal catalog of 22 code smells,
identifying most of them by looking at the bad practices of object-oriented programming
languages—e.g., Large Class—and discovered that their presence could increase the effort to
perform maintenance activities. After the catalog was published, several studies investigated
code smells in traditional systems, primarily emphasizing Java projects [16, 23, 24]. Nevertheless,
Python developers underline substantial differences between Python and other programming
languages in terms of syntax and mindset—i.e., they do not limit to “translating” from other
programming languages to Python—but instead, change the development approaches. These
differences are so substantial that the Python community coined the term “Pythonic way” to
refer to the practice of writing code snippets that leverage the unique constructs and features
provided by Python.

Due to the above considerations, a more specific re-definition of code smells is necessary to
fit better the language’s specific characteristics—a key example is Complex List Comprehension.

The smell refers to a list comprehension that contains multiple and articulate expressions.
Python provides expressions and operations that can be applied for each element in a compact
way; However, if these expressions are too elaborated, the understandability could be affected
by causing possible defect-proneness.

*https://medium.com/swlh/the-pythonic-way-6ad73abfbb00

https://medium.com/swlh/the-pythonic-way-6ad73abfbb00

1

2

1

)

3

1

5

Listing 1 shows an example of a Complex List Comprehension.

numbers_str = [H24ll’ ”15", 1121"’ 1127"’ n35|v’ "40", 1145"’ "50", "121", "363"]

filtered_numbers = [int(num) ** 2 for num in numbers_str if (int(num) % 3 == 0
and len(num) >= 2 and "5" not in num and str(int(num) ** 2) == str(int(num)
xx 2)[::-1])]

Listing 1: Example of Complex List Comprehension.
The code above-mentioned makes the following operations for each “num” in “numbers_str”:

+ Convert the num from string to integer;
1. Checks whether num is a multiple of 3;
2. Checks whether num has more than 2 digits;
3. Checks that the digit 5 is not contained in the original string;
4

. Checks whether the square of num is a palindrome.
« If all the controls are successful, the square of num is added in the list "filtered_numbers”.

To mitigate possible code comprehension issues, developers should consider replacing a
complex list comprehension with a loop when possible.
Listing 2 shows a possible refactoring strategy of the previous code.

numbers_str = ["24", "15", "21", "27", "35", "40", "45", "50", "121", "363"]
filtered_numbers = []
for num in numbers_str:
num_int = int(num)
if num_int % 3 ==
if len(num) >= 2:
if "5" not in num:
square = num_int ** 2
if str(square) == str(square)[::-1]:
filtered_numbers.append(square)

Listing 2: Example of Complex List Comprehension refactorized.

2.2. Related Work

In the context of our work, we survey the state-of-the-art by discussing studies on Python-
specific code smells both from an evolutionary point of view and not.

Van Oort et al. [25] investigated the presence of Python-specific code smells by selecting 74
artificial intelligence projects using PyLint. The authors noticed two important facts: 1) The
code smell most frequent is duplicated code, and 2) They found with a manual investigation
that PyLint is not sufficiently able to detect code smells in Al-Enabled systems due to the
similarity between the detection rules applied by the tool and mathematical expressions that in
a non-negligible number of cases, caused unfair matches causing many false positives. Chen
et al. [26] performed an empirical investigation of code smells in Python projects analyzing 106

popular repositories using PYSMELL. As a principal outcome, they found that Long Parameter
List and Long Method were the most prevalent smells. Concerning previous work, we performed
three additional steps: 1) We changed the domain of the experiment objects from traditional
systems to Al-enabled systems; 2) We increased the number of projects from 106 to 200; and
3) We considered not only the diffusion but also the activities performed by developers that
induced code smells.

To the best of our knowledge, the most similar study was performed by Chen et al. [17]
in 2016, where they empirically evaluated Python-specific code smells from an evolutionary
perspective by selecting 110 releases of 5 traditional Python projects. The authors found that
the presence of code smells evolves over time but not statistically significantly. Also, in this
case, the differences between our work are multiple: Firstly, we selected Al-Enabled systems as
experimental objects instead of traditional ones. Secondly, we extended the original study in
terms of the number of releases and projects. Finally, we also investigated the activities that led
developers to introduce code smells in those systems.

3. Method

[l

Answer RQ1

Research
Question #1

PySmell

Releases

PyDriller

Sampling

it

Answer RQ2

Research
Question #2

Figure 1: Overview of the method applied in this study.

The ultimate goal of this preliminary study is to analyze the diffusion of code smells in Al-
Enabled systems and understand the activities performed by developers that, in turn, induced
the introduction of code smells, with the aim to identify how code smells are distributed in
Al-Enabled systems, and what stages of development are most likely to introduce code smells.
The perspective is for both developers and researchers. The former are interested in avoiding
an incidental introduction of code smells that can increase the effort during maintenance and
evolutionary activities. The latter are interested in enhancing the knowledge of code smells

during the software evolution in systems different from Java. For this reason, we formulated
the following research questions:

Q RQ;. What is the diffusion of code smells in AI-Enabled systems?

Q RQ,. What are the activities that most frequently lead to the introduction of code smells
in AI-Enabled systems?

The objective of the RQq is to assess the diffusion of code smells in terms of frequency, density,
and variation with the purpose to give a general overview of code smells in Al-Enabled systems.
For these reasons, we identified three sub-research questions:

« RQ1; What is the frequency of code smells in AI-Enabled systems?
« RQ1, What is the density of code smells in Al-Enabled systems?
« RQ13 What is the variation of code smells in AI-Enabled systems?

While the objective of the RQ, is to identify commits that introduced new code smells with
the purpose of identifying which kinds of activities most frequently induce the introduction of
new code smells. To conduct our experiments, we followed the empirical software engineering
principles and guidelines of Wohlin et al. [27]. In addition, we follow the ACM/SIGSOFT Empirical
Standards * to report our results. We include all the material, including scripts, raw data, and
figures, in our online appendix publicity available [22]. Figure 1 provides an overview of the
method applied to perform our study.

3.1. Dataset Selection

The context of this experiment is composed of 200 Al-specific projects and over 10,600 releases.

More specifically, to perform our analysis, we used NICHE dataset [21]—i.e., a dataset pub-
lished in 2023 that contains 572 Al-specific projects. The reasons why we chose this dataset
are multiple. On the one hand, the authors filter out unpopular projects—i.e., projects with
less than 100 stars and no longer active projects. On the other hand, they manually verified
information about the quality of the projects using a heuristic approach by labeling 400 projects
as “well-engineered” according to 8 distinct dimensions: Architecture, Community, Continuous
Integration, Documentation, History, Issues, License, and Unit Testing.

Architecture. The projects have a clear definition of the components and how they communi-
cate with other parts of the software system.

Community. All projects have many collaborators that maintain the repository.

Continuous Integration (CI). The projects use a CI mechanism that ensures stable source
code for development or release.

*Available at: https://github.com/acmsigsoft/EmpiricalStandards. We followed the “General Standard” and
“Repository Mining”guidelines.

Documentation. All projects provide documentation and additional material useful during
maintenance activities.

History. The projects have a long history, which indicates that developers frequently perform
maintenance tasks to guarantee a good level of viability.

Issues. The management activities have been done only using the GitHub issue, thus improving
the traceability between requirements and source code.

License. All the projects explicitly expose a license of use useful to understand the terms of
conditions about the partial or total reuse of system components.

Unit Test. To ensure a good quality level, all the projects show unit tests used to verify the
correctness of the component.

Starting from the initial dataset, we focused on the 400 projects labeled as “well-engineered”
and randomly selected a statistically significant sampling of 200 projects, considering a confi-
dence level of 95%, and a margin error of 5%.

3.2. Data Collection

Once we identified the sample of projects, due to the time-consuming activity, we set up
PYDRILLER [28] to extract only commits marked as “release” according to GitHub, and pull out
the corresponding commit message. We decided to focus only on these commits because they
are typically released after a more meticulous inspection by developers. At the end of this step,
we collected information on over 10,600 releases. To extract Python-specific code smell, we
used PYSMELL [17]—i.e., a code smell static analyzer tool. The principal motivations that drove
to use it are that: 1) PYSMELL can detect 11 types of Python-specific code smell, and the authors
manually validated the instances of code smells; 2) The tool is one of the most used in previous
work on this topic [29, 26].

Finally, to better perform our analysis, we discarded projects not useful for our study i.e.,
projects with zero instances of code smells and projects with fewer than two releases. At the
end of this phase, we obtained 34 projects useful for our analysis.

To the sake of comprehension, we report the list of code smells detectable by PySMELL with
the relative detection rule in Table 1.

3.3. Data Analysis

Once terminated the data collection, we analyzed the information from both quantitative and
qualitative standpoints.

To address RQq, we analyzed code smells diffusion in terms of frequency, density, and variation
over time. More in detail, to analyze the frequency, we built a Python script to count for each
release the instances of code smells, and then, we aggregated results independently from the
project to provide a generic overall. To identify the density, we calculated the ratio between the
number of smells and lines of code (LOC) for each release for all projects. Lastly, we clustered
results in a time interval to calculate the variation.

*https://docs.github.com/en/repositories/releasing-projects-on-github/about-releases

Code Smell Acronym Description Detection rule
Large Class LG A class with a large number of op- | Lines of code (LOC) > 200 or Number of
erations. Attributes (NOA) + Number of Methods
(NOM) > 40.
Long Parameter List | LPL A method or a function that con- | Number of Parameters (PAR) > 5.
tains a long list of parameters.
Long Method LM A method or a function containing | Method Lines of Code (MLOC) > 100.
many Lines of Code (LOC).
Long Message Chain | LMC An expression that accesses an ob- | Length of Message Chain (LMC) > 4.
ject using a long line of dot opera-
tions.
Long Scope Chain LSC A method or a function that shows | Depth of Closure (DOC) > 3.
a multiple-nested.
Long Base Class List | LBCL A class that has been defined with | Number of Base Classes (NBC) > 3.
too many base classes
Useless Exception | UEH An exception too many generic or | Number of Except Clauses ((NEC)=1 and
Handling that contains an empty statement. | Number of General Exception Clauses
(NGEC) = 1) or NEC = Number of Empty
Except Clauses (NEEC)
Long Lambda Func- | LLF A lambda function that contains | Number of Characters in One Expression
tion multiple and complex expressions. | (NOC) > 80.
Complex List Com- | CLC A list comprehension that contains | Number of Loops (NOL) 4+ Number of Con-
prehension multiple and complex expressions. | trol Conditions (NOCC) > 4.
Long Element Chain | LEC An expression accessing an object | Length of Element Chain (LEC) > 3.
using a long list of bracket opera-
tors.
Long Ternary Condi- | LTCE A ternary conditional expression | Number of Characters in One Expression
tional Expression too many long. (NOC) > 40.

Table 1
List of Code Smells detectable with PYSMELL with the related detection rule.

To address RQ,, we analyzed the activities that led developers to introduce code smells. To
address this, we performed the following steps: 1) We merged in a single CSV file all the output
files; 2) For each pair release R;, Ri11 € project P;, we labeled the release R; ;1 as “increase” if
the difference in terms of the number of code smells between the version R; ;1 and R; is more
than 0; “stable”, in the difference equal to 0; and lastly, “decrease” if the difference is lower
than 0; 3) To identify what activities have been done by developers who have introduced code
smells we labeled the commit marked as “increase” with “Bug fixing ”, “Evolutionary Activity”,
“Refactoring”, or “Other” according to the corresponding commit message, as also done in
previous work [30] by using a manual “pattern-matching” strategy—i.e., we manually verify the
presence of specific keywords, e.g., “ bug fix” to indicate a bug fixing activity—in the commit
message. To perform this step, the first two authors of this work independently labeled each
commit marked as “increase” based on what they felt was the category that corresponded to the
most appropriate activity, and in case of discordance, were discussed by involving the other
authors of the study until convergence was reached.

At the end of this step, all authors agreed on the assigned categories. Table 2 shows the labels
with the relative descriptions.

Two aspects are worth discussing. First, due to ambiguous commit messages, we decided
to discard from our analysis commits labeled as “Other” to avoid possible noise—e.g., message
commits not written in English. Second, we give, in some cases, a combination of two or more

Label Description

Bug Fixing A commit removes a bug in the source code
Evolutionary Activity A commit that introduces a new feature in the system
Refactoring A commit that performs a refactoring activity
Other A commit that does not provide sufficient information to be labeled
Table 2

Description of the labels used.

labels—e.g., Bug-Fixing and Refactoring—because, in some cases, the commit messages referred
to more than one activity.

4. Analysis and Discussion of the Results

In this section we report the main results of our analysis and discuss findings and implications.

4.1. RQ1;. On the frequency of Python-specific code smell

To address the RQ1;, we analyze the frequency of Python-specific code smell according to the
section 3. Figure 2 indicated the frequency of code smells.

1500 1465

1000

Frequency

226

q
Long Lambda Function
Long Element Chain

Long Message Chainin
ary Conditional Expression
Complex List Comprehension

ng Tern

Name Smell

Figure 2: Results of the frequency of Python-specific code smell over time.

According to our results, it is possible to make several considerations. First, we noticed
that 3 of the 11 code smells categories were not detectable during our analysis—i.e., Large
Class, Long Base Class List, and Useless Exception Handling. Considering that previous work on
object-oriented languages underlines the predominance of these smells [31] and that all of them
referred to improper use of the object-oriented principle, the main assumption of the absence
of this family of smells is that developers do not adopt or only partially adopt object-oriented
approaches to build Al-enabled systems, but prefer others reuse strategies. Second, we noticed
a clear gap between the first two smells—i.e., Complex List Comprehension and Long Ternary

Conditional Expression—which appear respectively 1400 and 226 times and the other 6 smells.
In both cases, the smells refer to syntactic contractions to reduce the lines of code required to
perform an operation. This result suggests a possible correlation between the Python philosophy
that encourages developers to write compact code snippets and the massive presence of these
smells.

4.2. RQ1,. On the density of Python-specific code smell

To address the RQ1, we analyze the density of code smells from an evolutionary perspective.
We observed that they often do not exhibit a consistent pattern of increase/decrease over time.
Instead, they appear to be influenced by external factors, as exemplified by the anomaly observed
in row 4, column 6, where an unstable pattern can be observed. These anomalies lead us to
believe that the code smells introduction and their removal could vary causally due to software
evolution activities. Figure 3 provides the density overview for all the projects under analysis.

AN Tl d

<
>‘
e
=
.
=

LI~ gl

5
RE

Figure 3: Overview of the density of code smells for each project analyzed.

4.3. RQ1;. On the variation of Python-specific code smell

Finally, to address the RQ15; we analyzed the code smells variation. We decided to show the
results in a 3-month interval for readability reasons. Figure 4 shows the code smells trend
over time. Looking at the figure, several considerations can be made. In the first place, no
common pattern has been identified, suggesting that the code smells variation also seems
project-dependent. Perhaps more interesting, we noticed that 80% of the projects had been
affected at least once by a Complex List Comprehension. This outcome reinforces the results
of RQ1;, showing that introducing this kind of smell is frequent in these systems. Lastly, we

Figure 4: Results of the variation of Python-specific code smell over time for the month.

noticed that this smell is also one of the longest-lived, as in some cases, its presence covers a
period from 2017 to 2023.

P Key findings of RQ;.

The density of code smells does not follow a specific pattern but varies depending on the
project being considered. Code smells related to object-oriented practices are never detected

during our analysis. The most frequent smell is Complex List Comprehension, with 1465
observations that are also the longest-lived.

4.4. RQ,. On the activities that led developers to introduce code smells in
Al-Enabled systems

To address the RQ,, we analyzed activities that led developers to introduce code smells in
Al-Enabled systems as specified in the section 3. Figure 5 shows the results obtained.

70%

5%

0

['Refactoring’]

['Evolutionary Activity']

[Bug fixing’, "Evolutionary Activity']

[Evolutionary Activity', 'Refactoring]

Figure 5: Activities performed by developers during the introduction of code smells.

The main outcome of this RQ is that developers introduce code smells in 70% of the cases
during evolutionary activities. More in detail, by analyzing the commit messages it was observed
that in most cases the commits, were related to merge activities or had generic messages
indicating a system update. Although no further clarification can be provided for those generic
commit messages related to system upgrades, it is assumed that the complexity and criticality
of merge activities increase the likelihood of introducing code smells. Furthermore, due to the
unstable trend exhibited over time, we can assume the developers tend to neglect the adoption of
quality assurance tools throughout the software life cycle for monitoring code quality attributes.
This highlights an unawareness regarding the potential impact of software quality degradation,
which can lead to increased system complexity and the introduction of software bugs.

P Key findings of RQo.

Code smell introduction is most common in evolutionary activities. In particular, we noticed
that the merge operations could drastically increase the possibility of introducing them in
Al-Enabled systems. Finally, our findings suggest a lack of awareness by practitioners of the
importance of monitoring quality attributes of source code as their systems evolve.

5. Threats to Validity

In this subsection, we discuss possible threats to the validity that could have affected the results
and the strategies we applied to mitigate them.

Construction Validity. This threat regards the relationship between theory and observation.
The crucial aspect in our case regards the dataset exploited. We are conscious that the project
selection can influence the results obtained. However, to mitigate this aspect, we selected NICHE
dataset—i.e., a dataset manually labeled and validated by other researchers as “well engineered”
projects according to 8 different dimensions. Another threat regarding the data collection phase:
to mitigate this aspect, we used well-established tools—i.e., PYDRILLER and PYSMELL. The first
has been used to extract information on releases, while the second has to extract information
on Python-specific code smells. In any case, we made all script, additional material, and row
data publicly available for the sake of verifiability. While we recognize possible limitations of
these two tools, they represent the state of the art.

Conclusion Validity. The main threat that can affect the conclusion validity refers to the
use of PySmell to detect Python-specific code smells for Al-Enabled systems. While previous
research underlines that other tools cannot work in Al-Enabled systems, no studies have been
performed on PySmell. As part of our agenda, we will investigate the precision and recall of
this tool on Al-Enabled systems.

External Validity. This threat is mainly connected with the generalizability of results. To
mitigate this aspect, we analyzed 200 projects and 10,600 releases of open-source projects with
different domains and different characteristics in terms of size, number of classes, and so on.
Furthermore, we planned to conduct further analysis by increasing the number of projects and
commits to assess our preliminary results.

6. Further Discussion and Take-Away Messages

The analysis of the results opens the door to several implications and take-away messages
useful to increase the awareness of the presence of Python-specific code smells in Al-enabled
systems. We argue our discussion points that led to deriving such practical implications.

Awareness is the key point. Based on our results, developers need to be aware of the
potential impact of code smells on their systems during the software evolution process. Despite
the existing body of research that emphasizes the importance of monitoring quality attributes
to prevent a subsequent increase in effort [32, 23], there is still a need for further empirical
investigations to determine the extent to which code smells can pose a danger.

K> More empirical research needs to be done to begin to make developers aware of the potential
issues associated with the presence of code smells.

Different mindsets imply different smells. The different mindsets Python developers
adopt to build systems that encourage using specific code constructors to avoid loops or minimize
the lines of code required to perform tasks can induce the proliferation of other code smells
that are not commonly found in other programming languages. Although these smells are,
in some cases, different from those identified in the literature, this does not imply that their
presence cannot still lead to a decrease in software quality over time. A critical analysis of the

peculiarities of the language should be performed to investigate what best practices the Python
community should adopt to mitigate the presence of code smells in their systems.

K> A thorough analysis of the Python community is needed to understand whether what they
consider best practices may be antipatterns that can cause code smells.

7. Conclusion and future work

In this paper, we conducted a preliminary investigation on the diffusion of code smells in
Al-Enabled systems in terms of frequency, density, and variation and the activities performed
by developers that induced their introduction. We selected 200 Al-Enabled and over 10,600
releases. We used PySmell and PyDriller. The latter has been used to extract information
on Python-specific code smells, while the former has to obtain information about releases
and commit messages. The results indicated that the code smell most frequent and longest
alive is Complex List Comprehension. Their variations do not follow a specific pattern over
time but seem project-dependent. The activities often cause code smells are evolutionary and
principally related to merge activities. Furthermore, code smells related to the incorrect use
of object-oriented principles are rarely detected, and this suggests developers prefer using
other reuse mechanisms to build Al-Enabled systems. Our findings underline developers’ need
for more awareness of monitoring quality attributes during the software evolution to avoid
the incidental introduction of code smells in their projects, and a deeper investigation of the
approaches adopted by Python developers to write source code is necessary to assess if these
practices can induce the proliferation of code smells. As part of our agenda, we plan to manually
investigate the precision and recall of PySmell on Al-Enabled systems and perform a large-scale
analysis by increasing the number of projects and commits.

Acknowledgments

Fabio is partially supported by the Swiss National Science Foundation - SNF Project No. PZ00P2_-
186090 (TED). This work has been partially supported by the Qual-Al and EMELIOT national
research projects, which have been funded by the MUR under the PRIN 2022 and 2020 programs,
respectively (Contracts 2022B3BP5S and 2020W3A5FY)

References

[1] M. Lehman, Programs, life cycles, and laws of software evolution, Proceedings of the IEEE
68 (1980) 1060-1076. doi:10.1109/PROC.1980.11805.

[2] P.Kruchten, R. L. Nord, I. Ozkaya, Technical debt: From metaphor to theory and practice,
IEEE Software 29 (2012) 18-21. d0i:10.1109/MS.2012.167.

[3] J. Miinch, K. Schmid, Perspectives on the Future of Software Engineering, 2013.

[4] W.Cunningham, The wycash portfolio management system, in: Addendum to the Proceed-
ings on Object-Oriented Programming Systems, Languages, and Applications (Addendum),
OOPSLA ’92, Association for Computing Machinery, New York, NY, USA, 1992, p. 29-30.
URL: https://doi.org/10.1145/157709.157715. d0i:10.1145/157709.157715.

http://dx.doi.org/10.1109/PROC.1980.11805
http://dx.doi.org/10.1109/MS.2012.167
https://doi.org/10.1145/157709.157715
http://dx.doi.org/10.1145/157709.157715

(5]
(6]

(7]

[10]

[11]

M. Fowler, Refactoring: Improving the design of existing code, in: 11th European
Conference. Jyvaskyls, Finland, 1997.

S. Vidal, H. Vazquez, J. A. Diaz-Pace, C. Marcos, A. Garcia, W. Oizumi, Jspirit: a flexible
tool for the analysis of code smells, in: 2015 34th International Conference of the Chilean
Computer Science Society (SCCC), IEEE, 2015, pp. 1-6.

N. Moha, Y.-G. Guéhéneuc, L. Duchien, A.-F. Le Meur, Decor: A method for the specification
and detection of code and design smells, IEEE Transactions on Software Engineering 36
(2009) 20-36.

F. Palomba, D. Di Nucci, A. Panichella, A. Zaidman, A. De Lucia, Lightweight detection
of android-specific code smells: The adoctor project, in: 2017 IEEE 24th international
conference on software analysis, evolution and reengineering (SANER), IEEE, 2017, pp.
487-491.

M. Tufano, F. Palomba, G. Bavota, R. Oliveto, M. Di Penta, A. De Lucia, D. Poshyvanyk,
When and why your code starts to smell bad (and whether the smells go away), IEEE
Transactions on Software Engineering 43 (2017) 1063-1088.

M. Tufano, F. Palomba, G. Bavota, M. Di Penta, R. Oliveto, A. De Lucia, D. Poshyvanyk, An
empirical investigation into the nature of test smells, in: Proceedings of the 31st IEEE/ACM
international conference on automated software engineering, 2016, pp. 4-15.

M. Abbes, F. Khomh, Y.-G. Guéhéneuc, G. Antoniol, An empirical study of the impact
of two antipatterns, blob and spaghetti code, on program comprehension, in: 2011 15th
European Conference on Software Maintenance and Reengineering, 2011, pp. 181-190.
doi:10.1109/CSMR. 2011 . 24.

F. Khomh, M. D. Penta, Y.-G. Guéhéneuc, G. Antoniol, An exploratory study of the
impact of antipatterns on class change- and fault-proneness 17 (2012) 243-275. URL:
https://doi.org/10.1007/s10664-011-9171-y. doi:10.1007/s10664-011-9171-y.

F. Palomba, G. Bavota, M. Di Penta, F. Fasano, R. Oliveto, A. De Lucia, On the diffuseness
and the impact on maintainability of code smells: A large scale empirical investigation,
in: Proceedings of the 40th International Conference on Software Engineering, ICSE 18,
Association for Computing Machinery, New York, NY, USA, 2018, p. 482. URL: https:
//doi.org/10.1145/3180155.3182532. doi:10.1145/3180155.3182532.

F. A. Fontana, P. Braione, M. Zanoni, Automatic detection of bad smells in code: An
experimental assessment., J. Object Technol. 11 (2012) 5-1.

E. Van Emden, L. Moonen, Java quality assurance by detecting code smells, in: Ninth
Working Conference on Reverse Engineering, 2002. Proceedings., IEEE, 2002, pp. 97-106.
G. Giordano, A. Fasulo, G. Catolino, F. Palomba, F. Ferrucci, C. Gravino, On the evolution
of inheritance and delegation mechanisms and their impact on code quality, in: 2022 IEEE
International Conference on Software Analysis, Evolution and Reengineering (SANER),
2022, pp. 947-958. doi:10.1109/SANER53432.2022.00113.

Z. Chen, L. Chen, W. Ma, B. Xu, Detecting code smells in python programs, in: 2016
international conference on Software Analysis, Testing and Evolution (SATE), IEEE, 2016,
pp- 18-23.

Z. Chen, L. Chen, W. Ma, X. Zhou, Y. Zhou, B. Xu, Understanding metric-based detectable
smells in python software: A comparative study, Information and Software Technology 94
(2018) 14-29.

http://dx.doi.org/10.1109/CSMR.2011.24
https://doi.org/10.1007/s10664-011-9171-y
http://dx.doi.org/10.1007/s10664-011-9171-y
https://doi.org/10.1145/3180155.3182532
https://doi.org/10.1145/3180155.3182532
http://dx.doi.org/10.1145/3180155.3182532
http://dx.doi.org/10.1109/SANER53432.2022.00113

[19]

[20]

[21]

[24]

[31]

W. Fenske, S. Schulze, D. Meyer, G. Saake, When code smells twice as much: Metric-based
detection of variability-aware code smells, in: 2015 IEEE 15th International Working
Conference on Source Code Analysis and Manipulation (SCAM), 2015, pp. 171-180. doi:10.
1109/SCAM.2015.7335413.

A. Yamashita, L. Moonen, Do code smells reflect important maintainability aspects?,
in: 2012 28th IEEE International Conference on Software Maintenance (ICSM), 2012, pp.
306-315. doi:10.1109/ICSM.2012.6405287.

R. Widyasari, Z. Yang, F. Thung, S. Q. Sim, F. Wee, C. Lok, J. Phan, H. Qi, C. Tan, Q. Tay,
et al., Niche: A curated dataset of engineered machine learning projects in python, arXiv
preprint arXiv:2303.06286 (2023).

G. Giordano, G. Annunziata, A. De Lucia, F. Palomba, Understanding developer practices
and code smells diffusion in ai-enabled software: A preliminary study — online appendix,
https://figshare.com/s/d7b26dc76bc5c7aa06c8, 2023.

Z. Soh, A. Yamashita, F. Khomh, Y.-G. Guéhéneuc, Do code smells impact the effort
of different maintenance programming activities?, in: 2016 IEEE 23rd International
Conference on Software Analysis, Evolution, and Reengineering (SANER), volume 1, 2016,
pp- 393-402. doi:10.1109/SANER. 2016.103.

F. Palomba, D. Di Nucci, A. Panichella, A. Zaidman, A. De Lucia, On the impact of code
smells on the energy consumption of mobile applications, Information and Software
Technology 105 (2019) 43-55. URL: https://www.sciencedirect.com/science/article/pii/
$0950584918301678. doi:https://doi.org/10.1016/j.infsof.2018.08.004.

B. Van Oort, L. Cruz, M. Aniche, A. van Deursen, The prevalence of code smells in
machine learning projects, in: 2021 IEEE/ACM 1st Workshop on Al Engineering - Software
Engineering for AI (WAIN), 2021, pp. 1-8. doi:10.1109/WAIN52551.2021.00011.

Z. Chen, L. Chen, W. Ma, X. Zhou, Y. Zhou, B. Xu, Understanding metric-based detectable
smells in python software: A comparative study, Information and Software Technology 94
(2018) 14-29. URL: https://www.sciencedirect.com/science/article/pii/S0950584916301690.
doichttps://doi.org/10.1016/j.infsof.2017.09.011.

C. Wohlin, P. Runeson, M. Host, M. C. Ohlsson, B. Regnell, A. Wesslén, Experimentation
in software engineering, Springer Science & Business Media, 2012.

D. Spadini, M. Aniche, A. Bacchelli, Pydriller: Python framework for mining software
repositories, in: Proceedings of the 2018 26th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineering, ES-
EC/FSE 2018, Association for Computing Machinery, New York, NY, USA, 2018, p. 908-911.
URL: https://doi.org/10.1145/3236024.3264598. doi:10.1145/3236024.3264598.

N. Vatanapakorn, C. Soomlek, P. Seresangtakul, Python code smell detection using machine
learning, in: 2022 26th International Computer Science and Engineering Conference
(ICSEC), 2022, pp- 128-133. doi:10.1109/ICSEC56337.2022.10049330.

M. Tufano, F. Palomba, G. Bavota, R. Oliveto, M. Di Penta, A. De Lucia, D. Poshyvanyk,
When and why your code starts to smell bad, in: 2015 IEEE/ACM 37th IEEE International
Conference on Software Engineering, volume 1, 2015, pp. 403-414. d0i:10.1109/ICSE.
2015.59.

D. I Sjeberg, A. Yamashita, B. C. Anda, A. Mockus, T. Dyba, Quantifying the effect of
code smells on maintenance effort, IEEE Transactions on Software Engineering 39 (2013)

http://dx.doi.org/10.1109/SCAM.2015.7335413
http://dx.doi.org/10.1109/SCAM.2015.7335413
http://dx.doi.org/10.1109/ICSM.2012.6405287
https://figshare.com/s/d7b26dc76bc5c7aa06c8
http://dx.doi.org/10.1109/SANER.2016.103
https://www.sciencedirect.com/science/article/pii/S0950584918301678
https://www.sciencedirect.com/science/article/pii/S0950584918301678
http://dx.doi.org/https://doi.org/10.1016/j.infsof.2018.08.004
http://dx.doi.org/10.1109/WAIN52551.2021.00011
https://www.sciencedirect.com/science/article/pii/S0950584916301690
http://dx.doi.org/https://doi.org/10.1016/j.infsof.2017.09.011
https://doi.org/10.1145/3236024.3264598
http://dx.doi.org/10.1145/3236024.3264598
http://dx.doi.org/10.1109/ICSEC56337.2022.10049330
http://dx.doi.org/10.1109/ICSE.2015.59
http://dx.doi.org/10.1109/ICSE.2015.59

1144-1156. d0i:10.1109/TSE. 2012. 89

[32] O. Ancan, C. Cares, Are relevant the code smells on maintainability effort? a laboratory
experiment, in: 2018 IEEE International Conference on Automation/XXIII Congress of
the Chilean Association of Automatic Control ICA-ACCA), 2018, pp. 1-6. doi:10.1109/

ICA-ACCA.2018.8609845.

http://dx.doi.org/10.1109/TSE.2012.89
http://dx.doi.org/10.1109/ICA-ACCA.2018.8609845
http://dx.doi.org/10.1109/ICA-ACCA.2018.8609845

	1 Introduction
	2 Background and Related Work
	2.1 Background
	2.2 Related Work

	3 Method
	3.1 Dataset Selection
	3.2 Data Collection
	3.3 Data Analysis

	4 Analysis and Discussion of the Results
	4.1 RQ11. On the frequency of Python-specific code smell
	4.2 RQ12. On the density of Python-specific code smell
	4.3 RQ13. On the variation of Python-specific code smell
	4.4 RQ2. On the activities that led developers to introduce code smells in AI-Enabled systems

	5 Threats to Validity
	6 Further Discussion and Take-Away Messages
	7 Conclusion and future work

