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Abstract. We investigate theoncept products an expressive feature for de-
scription logics (DLs). While this construct allows us to express an atgwaby
common and natural type of statement, it can be simulated only by the xery e
pressive DLSROZQ for which no tight worst-case complexity is known. How-
ever, we show that concept products can also be added to th8EIG7Q and
SHOI, and to the tractable DEL™ without increasing the worst-case com-
plexities in any of those cases. We therefore argue that conceptgisquiovide
practically relevant expressivity at little cost, making them a good candidate
future extensions of the DL-based ontology language OWL.

1 Introduction

The development of description logics (DLs) has been driwethe desire to push the
expressivity bounds of these knowledge representationdtisms while still maintain-
ing decidability and implementability. This has lead toywexpressive DLs such as
SHOIN, the logic underlying the Web Ontology Language OWL [RHOIQ, and
SROIQ [1] which is the basis for the ongoing standardisation of OWlag the next
version of the Web Ontology Language. On the other hand, tigiteweight DLs for
which most common reasoning problems can be implementesibjgolynomial time
have also been sought, leading, e.g., to the tractabl€ Dt* [2].

In this work, we continue these lines of research by invatitig an expressive
feature — theoncept product in the context of various well-known DLs, showing that
this added expressivity does not increase worst-case esitips in any of these cases.
Intuitively, the concept product — hitherto sporadicalgsdribed (e.g. in [3] or [4]) but
neglected by mainstream DL research and OWL standardiseffiorts — allows us to
define a role that connects every instance in one class wity énstance in another
class. An example is given in the title: Given the class o€kphants, and the class of
all mice, we wish to specify a DL knowledge base that allowsousonclude that any
individual elephant is bigger than any individual mouse stated more formally:

Y(X).Vy.Elephant(x) A Mouse(y) — biggerThan(x, y)

Using common DL syntax, one could also wriiephant? x Mouse” c biggerThan’,
which explains the name “concept product” and will also watit our DL syntax.
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Maybe surprisingly, this semantic relationship cannot pec#ied in any but the
most expressive DLs today (except for not that widely knowrs Ehat allow for role
negation, cf. [5, 6]). Using quantifiers, one can only stat tany elephant is bigger
thansomemouse, or that elephants are bigger than nothing but micemitNgs also
allow us to state that some particular elephant is bigger #flanice, and with DL-safe
rules [7], one might say that alamedelephants are bigger than athmedmice. Yet,
none of these formalisations captures the true intentidheiformal statement.

Now one could hope that this kind of statement would be rameded in practical
applications, but in fact it represents a very common mauglpbroblem of relating
two individuals based on their (inferred) properties. Maltand life sciences provide a
wealth of typical examples, for example:

— Alkaline solutions neutralise acid solutions.
— Antihistamines alleviate allergies.
— Oppositely charged bodies attract each other.

Reasoning about such relations is important e.g. in theegbof the HALO projed,
which sets out to develop reasoning systems for solving texgxamination questions
from physics, biology, and chemistry. Qualitative reasgnabout a given scenario is
often required before any concrete arithmetic procesgimsscan be invoked.

Another particularly interesting example is the task ofeleping a knowledge base
capturing our current insights about DL complexities andilable reasoning imple-
mentations. It should entail statements like

— Any reasoner that can hand®#7Q can deal with every DLP-ontology.

— Any problem within pTme can be polynomially reduced to anyH me-complete
problem.

— Inany description logic containing nominals, inverses anchber restrictions, sat-
isfiability checking is hard for any complexity below or etjgapTimE.

All of those can easily be cast into concept products. Arr@sting aspect of reasoning
about complexities is that it involves uppand lower bounds, and thus also escapes
from most other modelling attempts (e.g. using classesaakdf instances to represent
concrete DLs). This might be a reason that the DL complexayigatof is based on
JavaScript rather than on more advanced DL knowledge remiason technologies.

In this paper, we show that it is in fact not sdfdiult to extend a broad array of
existing description logics with enough additional moihgllpower to capture all of
the above, while still retaining their known upper compigkXiounds. We start with the
short preliminary Section 2 to recall the definition of the BROZQ, and then proceed
by introducing the concept product formally in Section 3n€ept products there can
indeed be simulated by existing constructs and thus ar@nésed as syntactic sugar.
This is quite diferent for the tractable DIEL* investigated in Section 4. Yet, we
will see that polynomial reasoning ii£L™* with concept products is possible, thus
further pushing th&L envelope. In the subsequent Section 5, we showSH&D7Q
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Table 1. Semantics of concept constructorsSROZQ for an interpretatiod with domain4-.

Name SyntaxSemantics

inverse role R {(x,y) € 47 x A7 | {y, x) € RY}

universal role |U A7 x AF

top T A7

bottom 1 0

negation -C |47\ Cf

conjunction CnD|C'nD?

disjunction CubD |cfuDf

nominals {a} {a’)

univ. restriction [YRC |{x € 47 | (x,y) € R? impliesy € C’}

exist. restriction|/IR.C |{x € 47 | for somey € 4% , (x,y) € Rf andy € C’}
qualified numbgrn S.C|{x € 47 | #y € 47 | (x,y) € ST andy e C*} < n}
restriction >nNSC|{xe 47 | #ly e 47 | (x,y) € ST andy e CT} > n}

andSHOI with concept products are still NieTimMe-complete and EpTive-complete,
respectively, thus obtaining tight complexity bounds fareay expressive DL as well.
We omit most formal details for reasons of space — all prontsextended definitions
are found in [8].

2 Preliminaries: the DL SROIQ

In this section, we recall the definition of the expressiveadigtion logicSROIQ [1].
We assume that the reader is familiar with description ¢8j. As usual, the DLs
considered in this paper are based on three disjoint finteeaféndividual names\;,
concept namelc, androle names\g containing theuniversal role Ue Ng.

Definition 1. A SROZQ Rbox forNgr is based on a seR of atomic rolesdefined as
R :=NrU{R | Re Ng}. As usual, we sétiv(R) := R andInv(R") := R.

A generalisedole inclusion axion{RIA) is a statement of the form 8. . .0S,, C R,
and a set of such RIAs isSROJQ Rbox An Rbox igegularif there is a strict partial
order<onR suchthat S< R if Inv(S) < R, and every RIA is of one of the forms:

RoRER, R CR Sj0...05,CR Ro0Sj0...05,CR Sj0...05,0RCR

such that Re Ny is a (non-inverse) role name, and S R fori = 1,...,n. The set of
simpleroles for some Rbox is defined inductively as follows:

— If arole R occurs only on the right-hand-side of RIAs of thenf& C R such that
S is simple, then R is also simple.
— The inverse of a simple role is simple.

A SROIQ Tbox consists of concept inclusion axioms of the fa@Znt D whereC
andD are concept expressions based on the constructors shovable I. As all DLs
in considered this paper support nominals, we do not esigliceed to introduce Abox
axioms, which can be internalised into the Thox in the steshéaay [1]. A SROIQ
knowledge base thus is assumed to be the union of an Rbox aadcarding Thox.



Further details olBROIQ can be found in [1]. We have omitted here several semantic
features that are not relevant to our study, especiallpuariorms of role assertions.

An interpretation consists of a set’ called domain(the elements of it being
calledindividualg together with a functio’ mapping individual names to elements of
A%, concept names to subsets4df, and role names to subsetstdfx 47. The function
4 is inductively extended to role and concept expressionshasrs in Table 1. An
interpretation/ satisfiesan axiomy if we find thatf E ¢:

- T ESCRIif ST c R,

— T ESy0...08, CRif S{o...0S! C R (o being overloaded to denote the
standard composition of binary relations here),

- J7ECCDifcf cD’.

An interpretations satisfiesa knowledge base KB (we then say thais a model
of KB and write 7 E KB) if it satisfies all axioms of KB. A knowledge base KB is
satisfiabldf it has a model. Two knowledge bases arpiivalenif they have exactly the
same models, and they arquisatisfiabléf both are unsatisfiable or both are satisfiable.

3 Simulating Concept Products inSROI1Q

We now formally introduce the Dkoncept producas a new constructor in description
logic knowledge bases. The D8ROIQ extended with this constructor will be denoted
SROIQ*. It will turn out that concept products appearsystactic sugamn SROIQ*
since they can be represented by combining nominals, ievefss, and complex role
inclusion axioms.

Definition 2. A concept product inclusiois a statement of the form €D C R where
C,D € C are SROIQ concepts, and R is an atomBROZQ role.

A SROIQ* Rbox is the union of SROZQ Rbox with a set of concept product
inclusions based on roles and concepts for that Rbox. Siitypbf roles is defined as
in SROIQ where concept product axioms are considered as additionalskof RIAs.
Especially, any role R occurring in such a statement is noipée inSROIQ*.

A SROIQ" knowledge baskB is the union of aSSROZQ* RboxR and aSROIQ
Tbhox7 (for R).

The model theoretic semantics 8ROZQ is extended tSROIQ* by settingl =
C x D C Riff Cf x Df ¢ Rffor any interpretatiorf .

We immediately observe that generalises the universal role which can now be
defined by the axionT x T £ U. However, our extension of the notion of simplicity of
roles would then causd to become non-simple, which is not needed. We conjecture
that one can generally consider the concept product to havenpact on simplicity
of roles, but our below approach of simulating concept patslin SROZQ requires
us to impose that restriction. We leave it to future work toaeive a modified tableau
procedure folSROIQ* that directly takes concept products into account — ourlt®su
for SHOIQ* show that such an extended simplicity would not impose jgmisithere.

Lemma 3. Consider aSROI@* knowledge baskB with some concept product axiom
C x D C R. A knowledge bad€B’ that is equisatisfiable t&B is obtained as follows:



— delete the Rbox axiom&£D C R,
— add a new RIA Ro R, C R, where R, R, are fresh role names,
— introduce fresh nomingh}, and add Tbox axioms C 3R;.{a} and DC 3R; {a}.

Clearly, the elimination step from the above lemma can bdiegpecursively to
eliminate all concept products. A simple induction thuddsethe following result:

Proposition 4. EverySROZQ* KB can be reduced to an equisatisfial 807 Q KB in
polynomial time. In particular, satisfiability $ROIQ* knowledge bases is decidable.

Decidability of SROIQ was shown in [1]. SIhceSROIQ is already NEpTmME-
hard, this also diices to conclude that the (currently unknown) worst-casepbexities
of SROIQ* andSROIQ coincide.

4 Polynomial Reasoning with Concept Products i6£**

In this section, we investigate the use of concepts produactise DL EL£** [2], for
which many typical inference problems can be solved in paiyial time.EL** cannot
simulate concept products as it does support nominals afd, Rut no inverse roles.
While it is known that the addition of inverses makes satidftgtrhecking ExpTime-
complete [10], we show that sound and complete reasonirgthét concept product is
still tractable. We simplify our presentation by omittingncrete domains frol8£**

— they are not fiected by our extension and can be treated as shown in [2] —yand b
considering onh&L*** knowledge bases that are in a simplified normal form — the
normal form transformation for the general case is detaiid8].

Definition 5. An EL** knowledge bas&B in normal formis a set of axioms of the
following forms:

ACC AnBE C RCT AxBLC T
JRACB AC JdRB ReSCT

where ABe NcU{{a} |ae NJU{T},CeNcU{{a)|aeN;}u{L},and RS, T € Ng.

A polynomial algorithm for checking class subsumption€if** has been given
in [2], and it was shown that other standard inference problean be reduced to that
problem. We now present a modified algorithm &f£*** — also using some modi-
fied notation — and show its correctness for this extendedTie. algorithm checks
whether a subsumptiof C B between concept names is entailed by some normalised
EL knowledge base KB. To this end, it computes aSeff inclusion axioms that
are entailed by KB, where we only need to consider axioms eféhmsC = D and
C C dR.D, whereC, D are elements of the s@t:= Nc U {{a} |ae N;} U {T, L}.

The setS is initialised by settingS := {CC C|C e BJju{CC T | C € 8}. Then the
rules in Table 2 are applied until no possible rule applarafurther modifiesS. The
rules refer to a binary relatior» C 8 x 8 that is defined based on the current content
of 8. Namely,C ~» D holds whenever there a@, . .., Cx € 8 such that

— C; is equal to one of the followingZ, T, {a} (for some individuala € N;), or A
(where the subsumptioA C B is to be checked),



Table 2. Completion rules for reasoning .. SymbolsC, D, possibly with subscripts or
primes, denote elements 8f whereass might be any element # U {3RC | C € 8B}.

(R1l) f DEEeKBandCLC D e SthenS:=Su{CcC E}.

(R2) IfCinCyc DeKBand{CL C;,CC Cy} CSthenS:=Su{CcC D}.

(R3) IfdRCC D e KBand{C; C dRC,,C,C C} Cc SthenS :=SuU{C; C D}.

(R4) If{Cc3IRD,DE L} cSthenS:=SuU{CcLC 1}.

(R5) If{Cc{a},DC{a},DC E} c SandC ~ DthenS:=SuU{CLC E}.

(R6) fRC SeKBandCLC JdRD € SthenS :=Su{C L 3S.D}.

(R7) fRoSET e KBand{C, £ dRC,,C, C 3S.C3} € SthenS = SU{C, C IT.Cg}.
(R8) IFCxDCReKB,D'CDeS, andC ~ D’ thenS:=Su{CLC IRD'}.

— G C3JRCiq e SforsomeReNg(i=1,...,k—-1),and
- Cx=D.

Intuitively, C ~» D states thaD cannot be interpreted as the empty set if we assume
thatC contains some element. The opti@a = A reflects the fact that we can base
our conclusions on the assumption tiais not equivalent taL — if it is, the queried
subsumption holds immediately, so we do not need to cheslctse'

After terminating with the saturated s8t the algorithm confirms the subsumption
A C Biff one of the following conditions hold:

ACBeS or AL LeS or {ajC Le S(forsomeaeN;) or TC L€eS.

It can indeed be shown that the algorithm is correct, andithans in polynomial
time. For reasons of space, we include only the completgess into this paper.

Lemma 6. LetS be the saturated set obtained by the subsumption checlgogithim
for a normalisedSL*** knowledge baskB and some queried subsumptiorcAB. If
KB E AL B then one of the following holds:

ACBeS or ACLeS or {aJc LeS(forsomeaN|) or TC LS.

Proof. We show the contrapositive: if none of the given conditiootdhthen there
is a models for KB within which the subsumptio C B does not hold. The proof
proceeds by constructing this model. The dom#irof I is chosen to contain only one
characteristic individual for all classes of KB that are egsarily non-empty, factorised
to take inferred equalities into account. To this end, we fiefine a set of concept
expression®™ = {C € B | A~ C}. A binary relation~ on 8- that will serve us to
represent inferred equalities is defined as follo@sy D iff C=Dor{CC {a},DC
{a}} € S for somea € N;.

We will see below that is an equivalence relation d8~. Reflexivity and symmetry
are obvious. For transitivity, we first show that elementatesl by~ are subject to the
same assertions ifi. Thus conside€, C’ € 8~ such thaC ~ C’. We claim that, for all
concept expressiors, we find thatC C E € S impliesC’ C E € S (Claim x). Assume
C # C’ and{C C {a},C’ C {a}} € S —the other case is trivial. But by our definition of
8-, we find thatC ~» C’, and hence rule (R5) is applicable and establishes theregtjui

4 This case is actually missing in [2], and it needs to be added to obtain a derajgerithm.



result. This also yields transitivity of, since{C; C {a},C, C {a}} € S andC,; ~ C3
impliesC; C {a} € S and thusC; ~ C3. We use €] to denote the equivalence class of
C € 8~ w.r.t. ~. These observations allow us to make the following definitbs:

{[ClICeB) C! = {[D]e4’ |DcCeS}forCeNc
[{a)] for ae N, R := {(([C],[D]) € 4f x4* |CCc ARD € S} for Re Ng.

AI
al

Note thatN, was assumed to be fixed and finite, and thatalle 8- for all a €
N; such that {a}] is well-defined. Roles and concepts not involved&n or S are
automatically interpreted as the empty set by the aboveitiefinThe definitions of
C’ andR! are well-defined due ta) above.

We can now observe the following desired correspondencedeesi/ andsS: For
anyC,D e 8-, we find that C] € D? iff C £ D € S (Claim 1). We distinguish various
cases based on the structurebof

— D = 1. We can concluded] ¢ 17 andC © 1 ¢ S by noting that, for any
E € B~ we have thaE C 1 ¢ S. To see that, suppose the contrary. By E
there is a chailCy, ..., Cyx € B as in the definition of» such thalCy = E. Using
Ci-1 C JRE € S and rule (R4), we conclude th&_; C L € S. Applying this
reasoning inductively, we obta®; C L € S. But asC; is of the formA, {a}, or T,
this contradicts our initial assumptions.

— D = T. By the initialisation ofS,C C T € Sand also €] € T7.

— D € N¢. This case follows directly from the definition @t

— D = {a} for somea € N;. If [C] € {a}’ then [C] = [{a}], and henceC ~ {a}. Since
{a} C {a} € S, we obtainC C {a} € S from (x). Conversely, ifC C {a} € S, then
C ~ {a} and hencg[C]} = {[{a})]} = {a}’ as required.

It is easy to see thaf ¢ A C B: sinceA € 8-, we find that A] € A’ due to
A C A € S by the initialisation of the algorithm. But sindeC B ¢ S, we have that
[A] ¢ B based on¥).

Finally, it only remains to show thdt is indeed a model of KB. We argue that each
axiom of KB is satisfied by by considering the possible normal forms:

— DC EwithE e BU{ARE’ | E’ € 8. If[C] € D, thenC C D € S by () and thus
rule (R1) can be applied to yield C E. If E € 8, the claim follows from ). For
E = dRE’, we conclude tha€ ~» E’ and thusE’ € 8~. By definition of R/, we
find ([C],[E’]) € R?, and sincéE’ C E’ € S we can invoke ) to obtain E’] € EX
as required.

— C;, nC, C D. This case is treated similar to the above case, using rilg §Rd
treating only the (simpler) case whdbec 8.

— 3RD C E. If [C] € ARD? then([C],[D’]) € R’ for some P’] € D’. By the
definition of R” and §), there is som®” € [D’] such thatC = IRD” € S. Since
D” € 8 and D] = [D’] € D, we can conclud®” C D € S from (f). Thus rule
(R3) implies thaC C E, and we obtain€] € E? by invoking (f).

— RC S. If ([C],[D]) € R! then there i< C IRD’ € S with [D’] = [D]. Rule (R6)
thus entailecC C 3S.D’ € S, which yields([C],[D]) € S? by definition ofS’.

— Ro SC T. This case is treated like the previous case, using (R7adsbf (R6).



- CxDCRIf[C] e C! and D] € D7, then ) yields{C’ = C,D’ £ D} C S.
SinceD’ € 87, we haveA ~» D’ which clearly implie<C ~» D’ by definition of~».
Hence rule (R8) was applied to yie@RIC dR.D’ € S and by (R1) we also obtain
C’C dRD’ € S. Now([C'],[D’]) € R! follows from the definition oR’. i

Theorem 7. The problem of checking concept subsumptior&4ii™ is P-complete.

Finally, one might ask how concept producteat other reasoning tasks, such as
conjunctive query answering .. As we have extended the origindl.™ algo-
rithm in a rather natural way, we expect that the automassdbalgorithm for conjunc-
tive query answering that was presented in [11] can readilypbdified to cove& L™,
so that the same complexity results for conjunctive quergiould be obtained.

5 The Concept Product inSHOIQ and SHOT

Below, we investigate the use of concept product$SHOIQ, the description logic
underlying OWL DL. SinceSHOIQ does not support generalised role inclusion ax-
ioms, concept products can not be simulated by means of atiens. Yet, we will see
below that the addition of concept products does not inerdasworst-case complexity
of SHOIQ which is still NExeTiMe even for binary encoding of numbers. The proof
also shows that roles occurring in concept product inchssican still be considered
simple without impairing this result. Finally, we will takebrief look at the DLSHOI
which is obtained fron8HOI Q by disallowing number restrictions, and for which sat-
isfiability checking is only EpTiMe-complete. Again, we find that the addition of the
concept product t&HOI does not increase this worst-case complexity.

Definition 8. A SROIQ* knowledge basKB is in SHOIQ" if

— all Rbox axioms oKB are of the form SE R, Ro RCE R, orCx D C R for Re Nr
arole name, & R an atomic role, and (D € C concept expressions,
— KB does not contain the universal role U or expressions of thma faR Self.

For a fixed knowledge bad€B, C* is the smallest binary relation oR such that:

— RC* R for every atomic role R,
— RC* S andinv(R) C* Inv(S) for every Rbox axiom R S, and
— RE* T whenever R* S and SC* T.

Given an atomic role R, we writeans(R) € KB as an abbreviation for: RRC R € KB
or Inv(R) o Inv(R) C Inv(R) € KB.

WheneveRC* S andS C* R, the rolesR andS are interpreted identically in any
model of KB. One could thus syntactically substitute oneheint by the other, which
allows us to assume that all knowledge bases considered lalee an acyclic Rbox.
Moreover, we assume that for all concept product inclusdnsB C R, bothA andB
are atomic concepts. Obviously, this restriction does fiethexpressivity, as complex
concepts in such axioms can be moved into the Thox. Given alkdge base KB, we
obtain its negation normal formdNF(KB) in the usual way. In particular, every GCI
C C Dis transformed into a universally valid conceéftF(—C u D). Furthermore, it is
possible to eliminate transitivity axioms using an accogdransformation in [7]:



Table 3. Transformation fromALCHOIQ" to C2. X is a meta-variable for representing various
term symbols in the final translation. The transformatiopare assumed to be analogous to the
given transformations for,.

a(CED) = ¥xay(-CuD,Xx) 7(RC S) = VxVY.(-R(X,y) V S(x.y))
7(CxDER) = VXVY.(=C(X) Vv =D(y) vV R(x, y)) 7(KB) = Agexs 7(¢)
ax(T,X) = T (A, X) = A(X) for anyA e N¢
(L, X) = L nx({a}, X) = a= Xforanyae N,
7x(=C, X) = —m4(C, X) mx(C D, X) = my(C, X) A my(D, X)
a(CuD,X) = mx(C, X) V x(D, X) mx(VRC, X) = ¥X.(R(X,X) = 7y(C, X))
mx(ARC, X) = AX(R(X, X) A 7y(C, X)) mx(=NRC, X) = Anx(R(X X) A 7y(C, X))
(<N RC, X) = Anx(R(X X) = 7,(C, X))

Definition 9. Given aSHOIQ knowledge baskB, let clos(KB) denote the smallest
set of concept expressions where

NNF(-C U D) € clos(KB) for any Thox axiom @ D,

D € clos(KB) for every subexpression D of some concept €os(KB),

NNF(=C) € clos(KB) for any<n RC € clos(KB),

V¥S.C e clos(KB) if Trans(S) € KB and SC* R for a role R withYR.C € clos(KB).

Moreover, letQ(KB) denote the knowledge base obtained fid® by removing all
transitivity axioms R R C R, and adding the axioHRC C VS.(VS.C) for every
VYR.C € clos(KB) with Trans(S) € KB and SC* R.

Slightly generalising according results from [7], one chow that anySHOIQ*
knowledge base KB is equisatisfiable to tie CHOIQ* knowledge bas&(KB).
Therefore, we can reduce satisfiability checkingiHOI7Q* to satisfiability checking
in ALCHOIQ". Following a widely known approach taken in e.g. in [3] or mor
recently in [12], we can decide the latter problem by a reidadb C?, the two-variable
fragment of first-order logic with counting quantifiers fohieh this problem has been
shown to be NkpTmme-complete, even for binary coding of numbers [13]. Intutiy
C? admits all formulae of function-free first-order logic tlwaintain at most two variable
symbols, and which may also use the counting quantifigrs 3., and 3, for any
n > 0. Such quantifiers impose the obvious restrictions on thebau of individuals
satisfying the quantified formula. Moreover, binary eqyadi can be defined from those
constructs. For formal details, see [13].

We transformALCHOIQ* knowledge bases int6? by means of the recursive
functions in Table 3, only slightly modifying the standard B> FOL transformation
given e.g. in [7], where further explanations can be founmhitng the standard proof
thatz(KB) is indeed equisatisfiable to KB (cf. [7]), we obtain ttedléwing result:

Theorem 10. The problem of checking knowledge base satisfiabilitySlBfO7 Q" is
NExpTmMe-complete, even for binary encoding of numbers.

SHOI™ is defined as the fragment SFHOTQ* without number restrictions. Ob-
viously, transitivity can be eliminated as in the cas88#{07Q*, hence we only need



to consider the problem of checking satisfiability@# CHOI™* KBs. We now further
reduce amALCHOI™ KB to an equisatisfiablALCHOI KB in polynomial time. In
addition to the standard negation normal form, we now reqgaitother normalisation
step that simplifies the structure of KB figtteningit to a knowledge baseLAT(KB).

This is achieved by transforming KB into negation normahi@nd exhaustively apply-
ing the following transformation rule: Select an outermasturrence oOR.D in KB,
such tha € {3,V} andD is a non-atomic concept and substitute this occurrence with
ORF whereF is a fresh concept name, moreover, addL D to the knowledge base.
Obviously, this procedure terminates in polynomial timelging a flat knowledge base
FLAT(KB) all Thox axioms of which are Boolean expressions ovemfalae of the form

T, 1, A -A, orQRAwith Aan atomic concept name. Moreover, one can show that any
ALCHOI™ knowledge base KB is equisatisfiableRioAT(KB). Next we show how to
eliminate concept products from such a knowledge base.

Lemma 11. Consider a flattenedl LCHOI™ knowledge baskB. Let Cx D C R with
C,D € N¢ be some concept product axiom containedB. Then a knowledge base
KB’ that is equisatisfiable t&B is obtained as follows:

— delete the Rbox axiom&€D C R,

— add CC 3S;.{o} and D C 3S,.{o} where S, S, are fresh roles and o is a fresh
individual name

— for all roles T with RC* T ,substitute any occurrence'6T.A byVT. ArvS;.VS; . A

Applied iteratively, this step eliminates all concept prots. Having a flat knowl-
edge base is essential to ensure that this can be done iropabirtime. Based on the
known ExpTmme-completeness a$HOT [14], we now obtain the following result:

Theorem 12. The satisfiability checking problem f&HOI™ is ExeTiMe-complete.

6 Conclusion

We have investigated trencept products an expressive feature for description log-
ics. It allows statements of the for@ x D C R, expressing that all instances of the
classC are related to all instances bBfby the roleR. While this construct can be sim-
ulated inSROIQ with a combination of inverse roles, nominals, and roleusn
axioms, we have shown that it can also be added to many wealeethat do not sup-
port such simulation. In particular, each of the extended BIL*™*, SHOIQ*, and
SHOI preserves its known upper complexity bound P xNEwmEe, and EpTmve. For
the tractable logi€L™**, we also provided a detailed algorithm that might serve as a
basis for extending existing.L** implementations with that new feature.

Our results indicate that concept products, even thoughatreehitherto only avail-
able inSROIQ, do in fact not have a strong negative impact on thadilty of rea-
soning in simpler DLs. In contrast, the features used to kitawconcept products in
SROIQ may have much more negative impact in general. Inverse,riesxample,
are known to rende€L** ExpTiMe-complete [10]. Since concept products provide a
valuable modelling tool that can be applied in many scesatitey appear as a nat-
ural candidate for future extensions of the DL-based Welnlogy Language OWL,
possibly even in the ongoing OWL Zert.



Our results also entail a number of research questions fareguworks. First of
all, one might ask what other features available (indiy@dti SROZQ could be easily
ported back to less complex DLs. We are currently investiged broad generalisation
of concept products that appears to be rather promisingsndspect.

But also the study of concept products as such bears varipers problems. As
remarked in Section 3, the simulation of concept producR07Q causes roles to be
classified as non-simple. Yet, their use in number restristimerely provides an alter-
native way of describing nominals, so that it might be cotjexd that this restriction
could be relaxed. Other obvious next steps are the inveistigaf concept products
for SHIQ andSHOQ, the direct treatment of concept products in further reggpn
algorithms, and the possible augmentation of other poprdatable DLs with this fea-
ture. Moreover, implementations and concrete syntacénabdings for OWL would
be important to make concept products usable in practice.
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