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Abstract

Recently, there has been a notable surge of interest in Emotion Recognition (ER) systems, primarily
due to their potential in improving interactions between humans and computers. Meanwhile, Virtual
Reality (VR) has emerged as a groundbreaking technology that is also capable of transforming human-
computer interaction through the simulation of immersive and flexible environments. The integration
of ER into VR holds great promise for further advancing human-computer interaction by allowing the
virtual environment to adapt to the user’s emotional state. This adaptive VR setting is particularly
relevant in fields such as education and gaming, where there is often the need to adapt the content to a
person’s emotions. However, applying traditional ER systems to adaptive VR settings comes with several
challenges. In this paper, we identify the key differences between traditional ER and ER performed in VR
environments. Specifically, we argue that the two scenarios primarily differ in terms of data collection
methodologies and handling multimodality. After reviewing the main modalities considered in ER, and
describing existing datasets, we delve into the challenges associated with these factors, highlighting
the limitations of using traditional datasets in adaptive VR settings, and the fact that traditional ER
models are not designed to effectively handle the multiple modalities arising from the VR setting. In
addition to discussing these challenges, we also explore unique opportunities that arise from overcoming
them. These opportunities include acquiring diverse datasets, eliciting genuine emotional responses, and
exploiting multiple data modalities.
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1. Introduction

Emotions are complex physiological and psychological states provoked by a variety of situations
and stimuli. They play an essential role in human communication and are expressed through
various modalities, such as facial and vocal expressions, body language, and diverse physiological
responses. Emotion Recognition (ER) is the task of detecting emotions from a set of observed
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modalities. ER has drawn significant attention in recent years thanks to the latest advances
in sensing technologies and Artificial Intelligence. In particular, ER models based on Machine
Learning and Deep Learning have shown tremendous success, especially when using multimodal
data containing facial expressions and audio.

ER has the potential to enhance human-computer interaction, particularly in domains where
emotions provide valuable insights into user experiences, such as education and gaming. Another
notable technology that is gaining momentum in these fields is Virtual Reality (VR). This
technology simulates virtual environments in which users experience unparalleled levels of
immersion, and can actively interact with the virtual objects surrounding them. Moreover,
in VR it is possible to flexibly modify the virtual environment, for example by dynamically
changing the properties of the virtual objects. The integration of ER in VR settings makes it
possible to implement immersive yet personalized experiences that adapt to the users based
on their emotions, therefore further increasing their engagement. As an example, consider
an individual learning how to use complex equipment by interacting with its VR digital twin.
Based on the emotion detected by the ER system, the difficulty level can be adjusted accordingly.
For instance, it can be reduced in case the person feels anxious or frustrated about performing
certain actions, or it can be increased in case they feel bored.

Despite the recent advancements in ER systems, their applications in an adaptive VR setting
is challenging, mostly due to i) the characteristics of the datasets traditionally collected and used
to develop ER systems, and ii) the techniques implemented to handle multimodality. Specifically,
emotions in existing datasets are generally not spontaneously evoked or acted (in some cases in
a non-natural or exaggerated way), and they are usually annotated with labels (such as joy and
fear) that are not relevant to common adaptive settings (such as adaptive learning). Furthermore,
existing ER datasets are often collected from a limited number of individuals and do not consider
a wide range of factors that influence the expression of emotions, such as cultural backgrounds,
personality traits, and the specific activities in which individuals are engaged. This lack of
diversity limits the generalizability of ER models across different individuals and VR scenarios,
in which personalization and context-awareness are crucial. Then, data collected in VR are
inherently multimodal, with certain modalities (or combinations thereof) being more relevant
for specific use cases. Thus, unlike most state-of-the-art algorithms that are inclined towards
some specific combination of modalities (e.g., facial expressions and audio signals), the ER
models in VR should extract meaningful representations from any combination of available
data and fuse them in a flexible manner.

However, VR also brings unique opportunities to go beyond the existing ER systems in
terms of data collection and exploitation of multimodality. First, VR offers the possibility of re-
constructing diverse scenarios that provoke genuine emotional responses and natural behavior
during interaction. Besides, collecting synchronized data coming from multiple input modalities
in such settings provide an opportunity for self-supervised and unsupervised frameworks to
learn representations shared between modalities, including less commonly used data inputs,
without using or with limited use of data annotations. In this paper, we thoroughly review
the current landscape lying in the intersections of Emotion Recognition and adaptive Virtual
Reality solutions. In particular, the contributions and outline of our paper are summarized as
follows:



+ The modalities used for emotion recognition and their applicability in VR settings along
with the datasets commonly used in the ER research are introduced in Section 2.

+ In Section 3, we introduce the challenges associated with re-using the current advances
and datasets for ER. In particular, we aim to illustrate the identified challenges with the
relevant examples from the literature and, where applicable, with the relevant experiments
on open-source datasets.

« We formulate the opportunities for ER in adaptive VR in Section 4. In particular, we
propose a novel way to collect multimodal data in the VR environments using annotations
based on the theory of flow [1] and summarize the ideas that could extend the data
collection protocols to be more user-centric and take into account user behavior. Besides,
we present the opportunity of employing shared multimodal representation learning
methods based on the current advances from other domains and highlight the aspects
that have to be covered for a smooth adaptation of this paradigm.

2. Background on Emotion Recognition

2.1. Modalities
2.1.1. Bio-measurements

In recent years, particular attention in neuroscience research has been drawn by implicit
feedback human bodies produce while experiencing certain emotions. In particular, bodily
reactions to certain emotions include but are not limited to changes in heart rate and breathing
tempo, different levels of sweat gland activities, and tension in muscles [2].

Electrodermal activity (EDA) signals, also known as Galvanic Skin Response (GSR), are
recorded by sensors that measure changes in skin conductance which can be indicative of
emotional arousal levels. Heart Rate Variability is another source of information that can be
used to reflect the changes in the affective state. In particular, Electrocardiogram (ECG) is a
robust heart rate monitor that requires connecting multiple electrodes to subjects’ chests. A less
intrusive and more lightweight measurement of heart rate variability is Blood Volume Pulse
(BVP). Skin temperature (SKT) is also used for affect recognition, although it could be influenced
by several factors and typically is a weaker signal compared to EDA and BVP [2]. Wearable
devices, including both commercial-grade and research-grade options such as smart watches,
bracelets, and rings, have the capability to record EDA, BVP, and SKT data through integrated
electrodes.

Electroencephalography (EEG) signals, unlike the other physiological sensors, can be used
for evaluating two-dimensional affect recognition, i.e. both arousal and valence levels. However,
EEG devices require complex installation and, ideally, laboratory settings to collect accurate
data.

While the described sensors can be exploited to recognize certain affective states, not all of
them can be conveniently employed in real-life VR settings due to their intrusiveness, costs,
and integration complexity. While most of the commercial sensors currently available in the
market do not provide access to raw data, the research-grade devices are more expensive and
do not necessarily provide convenient means for real-time integration. Besides, more complex



sensors, such as ECG and EEG, require a stationary environment during recording for obtaining
high-quality data [3].

2.1.2. Body Movements

Body movement is represented as a sequence of joint positions and orientations over time. To
obtain body movements, motion capture technologies, like the Kinect and VR headsets, are
commonly used. These technologies mainly differ in the number of joints they track (e.g., the
Kinect performs full-body tracking, while VR headsets only capture a subset of joints, generally
head, and hands). The raw body movements are processed to extract features in various domains,
specifically the time, frequency, and time-frequency domains. In the time domain, features
such as velocity, acceleration, trajectory, and angle of joints [4], [5] are generally computed.
Features computed in the frequency domain are particularly useful in detecting abrupt or fast
movements (e.g., associated with emotions like anger or surprise), which might not be evident
in the time domain. Examples of such features are the amplitude and phase of the Discrete
Fourier Transform (DFT) [6]. As for the time-frequency domain, statistical features are generally
computed from the wavelet transformations, such as discrete wavelets [7] and Gabor wavelets
(8].

While body movements are relatively easy to capture, it is challenging to disambiguate
emotions based solely on body movements. Hence, this modality is often used in combination
with other signals (e.g., vocal cues) or used to tackle a more limited task, such as the identification
of the polarity of the emotion (negative vs positive).

2.1.3. Audio

Speech, as an important modality to convey emotions, contains both semantic information
and paralinguistic cues. The latter includes features such as intonation, timing, volume, and
pitch and, unlike the former, can be transferred through speech only [9]. To work with speech
for emotion recognition a suitable representation of these properties is needed. The Extended
Geneva Minimalistic Acoustic Parameter Set (eGeMAPS) [10] is a low-level descriptor often
used for ER based on speech. This descriptor extracts 88 features related to acoustic information.
However, in eGeMAPS, semantic information is lost. Another commonly used features are
Mel-frequency Cepstral Coefficients (MFCCs). MFCCs have been widely, and successfully,
used for automatic speech recognition as they contain information on the lower frequencies
of speech and emulate how humans perceive sound. Thus, MFCCs contain both acoustic and
semantic information about the speech. However, MFCCs are less robust to noise and ignore
the spectrum phase [11], which includes temporal characteristics of phonetic transitions. A
third option is to use self-supervised features extracted by neural network models such as
wav2vec2.0 [12] or HuBERT [13]. Pre-trained wav2vec2.0 models have already shown better
performance compared to eGeMAPS and MFCCs in the task of speech ER [14, 15] but come with
a higher computational cost. Besides, a combination of wav2vec2.0 features with eGeMAPS can
positively influence the classification performance for ER [14].

Compared to other modalities, such as facial expressions, speech is easy to acquire in a VR
context where the headset may introduce visual occlusions [16]. However, not all VR scenarios



require a user to speak, which makes it a limitation of this modality.

2.1.4. Facial Expression

Facial expressions are highly correlated with a person’s emotional state [17]. Facial expressions
can be captured using various instruments, such as cameras, depth sensors, and wearable devices.
Each of these instruments tracks facial expressions differently. Cameras capture the overall
facial movements, including the eyes, eyebrows, and mouth [18]. Depth sensing technologies
capture the three-dimensional structure of the user’s face [19]. Wearable devices, such as
ElectroMyoGraphy (EMG) sensors, measure the electrical signals generated by facial muscles.

Generally, several pre-processing operations are performed on the captured signals. These
operations depend on the type of sensors used for data collection. For instance, in data collected
with camera sensors, background removal and adjustment of image intensity value are common
operations. Features for downstream machine learning models are generally computed from the
spatial and frequency domains. Examples of features computed in the spatial domain are the
Local Binary Patterns (LBP) [20], which are very robust against changes in illumination levels
[21], and the Histogram of Oriented Gradients (HOG) [22], which are robust against geometric
and photometric transformations. Examples of features computed in the frequency domain
are the Local Phase Quantization (LPQ) [23] and the Gabor Filters [24], which are very robust
against blurring effects and change in rotation, resizing, and illumination, respectively. While
facial expressions allow for effective emotion recognition, their recognition in a VR setting is
problematic. In fact, cumbersome infrastructure with particular equipment like specific camera
sensors and lighting is required. Additionally, an important part of the face is obscured as its
upper part is covered by the VR headset. On the other hand, the lower part can be detected by
external cameras or even cameras embedded in the VR headset itself.

2.1.5. Pupil Dilation and Eye Gaze

Eye movement signals have proved correlated with a person’s emotional state [25]. In particular,
high pupil dilation is a sign of emotional arousal [26]. To a lower extent, also features related
to gaze (e.g., fixation) provide useful information about emotional states, but are generally
used as a complementary modality [27]. Pupil dilation and gaze information can be captured
using eye-tracking technologies, which are nowadays often embedded into VR headsets. These
technologies allow accurately capturing changes in pupil size [28], as well as information about
viewing directions (such as pitch and yaw angles). Some common pre-processing techniques
applied to pupil dilation signals include blink and saccades (i.e., rapid eye movements) elim-
ination [29], and the use of wavelet transformations for noise removal [30]. Then, statistical
features are generally derived from the time series of the pupil diameter [31]. The analysis
of pupil dilation is highly effective in ER, especially to tackle the task of arousal estimation.
However, this signal also comes with several limitations. In particular, pupil dilation is strongly
affected by lighting conditions, underlying cognitive processes, and individual differences (e.g.,
age and health status). Moreover, it is challenging to disambiguate emotions with the same
level of arousal, but with different levels of valence (such as excitement and anger) solely based
on pupil dilation data [32].



2.2. Datasets

In this section, we provide a concise overview of the main datasets currently available for ER
that encompass the mentioned modalities. Our categorization of datasets is based on two main
criteria: whether they were gathered specifically for VR environments or not, and whether the
data they encompass is unimodal or multimodal. The main characteristics of each dataset, such

as employed modalities and elicitation media, are summarized in Table 1.

Dataset Modalities EM Annotations subjects VR context
. Wrist: BVP, EDA,TEMP, and ACC Baseline, stress, R L
WESAD [33] Chest: ECG, EDA, EMG, and TEMP amusement Stimuli, self (limited) 15 X
. . Anger, Sadness, Happiness, . . .
Pacolab [34] Body Motion Joints and Neutral Emotions Stimuli, self (limited) 30 X
IKFDB [19] Image Frames (Color and Depth) 7 Facial Expressions Stimuli, self (limited) 40 X
EMOVOCorpus [35] Audio 6 Vocal Expressions Stimuli, self (limited) 6 X
Body Motion, Facial Expressions, Color and Depth . . N
AMIGOS [36] EEG, ECG, GSR 7 Main Expressions Video 40 X
EEG, GSR, Respiration Amplitude, L
DEAP [37] TEMP, BVP, EMG, EOG, Facial Expressions Arousal and Valence Music Video 22 X
videos, audio, eye gaze, Arousal and Valence,
MAHNOB-HCI [33] EEG, and peripheral/ physiological signals. dominance, and predictability Self u X
CASE [39] ECG, BVP, EMG, EDA, TEMP, respiration sensors Arousal and Valence Self 30 X
IEMOCAP [40] Speech, Head & face Motion capture Emotions Stimuli 10 X
Wrist: BVP, EDA, TEMP, ACC, HR, IBI Arousal/Valance,
K-EmoCon [41] Other: Speech, EEG, ECG, Attention & Meditation ~Emotions, BROMP Self, External, Partner up to 32 d
RAVDESS [42] Speech, Video Emotions External 24 X
CREMA-D [43] Speech, Audio Emotions External 91 X
Marin-Morales et al. [44] | EEG, ECG, Heart Rate Variability (HRV) Arousal and Valence 360 VR Videos 60 v
VREED [45] ECG, GSE, Gaze Tracking Arousal and Valence 360 VR Videos 34 v
Dozio et al. [46] Image 7 Facial Expressions 360 VR Videos 75 v
DER-VREED [47] EEG Happiness, Fear 360 VR Videos 32 v
Calmness, and Boredom
Pupil dilation, head movements, eye gaze . .
CEAP-360VR [48] EDA, SKT. TEMP, Acc, HR, IBI Arousal and Valence Continuous self-annotation 32 v

Table 1

Overview of the widely-used open-source emotion recognition datasets.

2.2.1. Unimodal Datasets for VR settings

A Dataset for Emotion Recognition using Virtual Reality and EEG (DER-VREEG) [47] contains
physiological EEG signals annotated with 4 classes of emotions namely happiness, fear, calmness,
and boredom. The dataset has been collected with the help of 32 participants, using Interaxon
Muse 2016 to measure the brainwave signals from four different channels (namely, AF7, AFS,
TP9, TP10). The Alpha, Beta, Delta, Theta, and Gamma bands are then extracted from the
raw signals. Emotion elicitation has been performed by projecting videos in VR. The dataset
presented in [44] contains EEG, ECG, and Heart Rate Variability (HRV) signals annotated with
arousal and valence measures, for 60 individuals. Signals have been measured with a Samsung
Gear VR HMD, which has also been used to elicit emotions by projecting 360-degree panoramic
views.

The dataset presented in [46] contains facial expressions annotated with seven classes of
emotions (namely joy, fear, disgust, surprise, sadness, anger, and neutral expressions), which
have been collected from 75 participants. Emotions have been evoked by means of 360-degree
audiovisual content, projected using various types of VR headsets.



2.2.2. Multimodal Datasets for VR settings

The Continuous Physiological and Behavioral Emotion Annotation Dataset for 360-degree
videos (CEAP-360VR) [48] consists of head and eye movement, pupil dilation, and physiological
signals (EDA, SKT, BVP, Acc, and heart rate). The dataset has been collected from 32 participants,
and emotions have been evoked using short 360-degree videos projected in VR. Such videos have
been selected from the open database of stimuli videos [49], and are annotated with arousal and
valence levels. Nevertheless, the labels in this dataset have been provided by the participants
themselves by means of self-annotations of arousal and valence scores. The physiological
measurements have been collected through the Empatica E4 wristband, whereas the VR headset
employed is HTC VIVE Pro Eye HMD. The VR Eyes Emotions Dataset (VREED) dataset [45]
contains eye tracking and psychological signals (ECG and GSR) annotated in arousal and valence
from 34 participants. The Biopac MP 150 system was used to continuously acquire ECG, GSR,
and eye-tracking signals. Emotion elicitation has been conducted by immersive 360-degree
videos using a VR headset.

2.2.3. Datasets for Emotion Recognition in non-VR settings

Examples of unimodal datasets are the EMOVO Corpus [35], IKFDB [19] and PACO Lab [34],
which consist of speech signals, facial expressions, and body motions, respectively. The emotion
elicitation means employed are text (for the EMOVO Corpus) and self-stimuli (for the other
datasets). As far as multimodal datasets are concerned, the K-EmoCon [41] dataset consists
of videos, speech, bio-measurements from wrist-worn (e.g., EDA and heart rate), head-worn
(e.g., EEG) and chest-worn (e.g., ECG) sensors. Emotions are evoked by letting participants
discuss a political topic. The DEAP dataset [37] contains facial expressions and physiological
signals (respiration amplitude, blood volume, and others). Videos and music have been used for
emotion elicitation. The AMIGOS dataset [36] contains body motion, facial expressions, and
physiological signals (e.g., EEG, and ECG). Emotion elicitation has been performed using videos.
The IEMOCAP dataset [40] contains speech and motions, and emotions have been evoked by
talking to the participants. The WESAD dataset [33] contains physiological signals (e.g., EDA)
and accelerations. In this dataset, a combination of emotion elicitation strategies have been
implemented, such as stress tests, videos, and guided exercises.

3. Challenging Aspects of Emotion Recognition in Adaptive VR
Systems
In this section, we elaborate on the main challenges that prevent the application of existing ER

models to the adaptive VR setting. Specifically, we discuss challenges related to data collection
and the handling of multimodality.



3.1. Data Collection
3.1.1. Emotion Elicitation

Effective emotion elicitation is essential in constructing reliable datasets for training ER algo-
rithms. Specifically, the observed signals (e.g., body motion and voice cues) should align with
the input stimuli. However, controlling the emotion elicitation process is challenging due to
several factors. Firstly, there is a lack of comprehensive understanding regarding the key factors
that trigger emotions. Additionally, individual subjectivity plays a role, as each person may
react differently to the same emotional stimulus. Furthermore, an individual’s psychological
state can influence the perceived emotion, regardless of the input emotional stimulus. This lack
of control over emotion elicitation poses a significant challenge to the collection of reliable
datasets. In fact, as further explained in subsections 3.1.2 and 3.1.4, failing to induce the target
emotion may impede the correct annotation of the collected data, which in turn compromises
its validity for developing ER systems.

To illustrate the mentioned challenge of emotion elicitation we draw an example from the
widely used WESAD dataset [33] that provides a three-class classification problem (baseline-
stress-amusement).

Specifically, we implemented a one-dimensional 3-layer CNN widely used as a backbone
model in related works [50, 51, 52]. As input, all biomarker modalities (EDA, BVP, and TEMP)
are resampled to the same frequency, segmented into 10-second intervals, and stacked to create
a single input with three channels. The flattened embeddings of the CNN layers are then passed
through a linear classification head. The model is trained using the whole dataset, i.e. all subjects,
to obtain the CNN representations. In Figure 1, the t-SNE projections of the embeddings are
visualized. As can be seen, multiple dense clusters of amusement instances appear in the middle
of the baseline class embeddings. In other words, even when all the available subjects are used
for training, the model fails to separate instances of amusement and baseline classes in most
of the cases showing that the used stimuli (i.e. humorous videos) have not been successful to
provoke higher levels of arousal typical for the amusement state. On the other hand, the stress
class is quite well separable from the baseline emotion. The stressful state, in this dataset, has
been evoked by the Trier Social Stress Test [53].

3.1.2. Data Annotation

Data annotation can be approached in various ways, each with its own set of challenges. One
approach involves associating the user’s emotion with the emotional stimulus used to trigger it.
For example, if a person is exposed to a stimulus intended to induce happiness, the corresponding
data is labeled as belonging to the happiness class. However, as illustrated in Section 3.1.1, there
may be instances where the user’s emotional response does not align with the expected emotion,
resulting in a distorted dataset. A second approach is self-annotated datasets. This approach
consists in asking users to express their own emotions. However, users may lack awareness
of their emotions or provide incorrect labels, leading to biased datasets. A third option for
data annotation involves a group of observers estimating the user’s emotions. However, even
experienced individuals may find the task of accurately recognizing and assessing emotions
challenging, introducing another potential source of bias in the dataset [41].
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Figure 1: WESAD embeddings projected on the two-dimensional space using t-SNE. The embeddings
were obtained using 3-layer 1D-CNN processing 10 seconds intervals.

3.1.3. Emotional Model

Emotion Recognition systems in adaptive scenarios, besides classical emotional models, require
more specific affective models measuring user engagement. In particular, it is important to
detect the frustration levels of users to either collect feedback about certain scenarios or adapt
the experience to increase user engagement [54].

One of the challenges of re-using open-source datasets to train models for adaptive VR
settings is that most of these datasets only contain more common emotional models, such as the
discrete Ekmanian model with six basic emotions [55] or dimensional models describing levels
of arousal and valence [56]. From the datasets covered in this paper, only one dataset, namely
K-EmoCon [41], contains, among others, an emotional model that can be used to track the
engagement level of users. Specifically, the dataset authors also provide the so-called BROMP
annotations [57] that are specifically used in education. Nevertheless, the class representation
for this type of annotation is extremely imbalanced which makes it difficult to be used as a basis
for training a classification model.

It is important to mention that the relevant literature also suggests a mapping between
common emotional models and engagement-related ones. For example, in [58] and [59], authors
provide a mapping between a two-dimensional model and discrete emotions related to the
theory of flow based on empirical data they collected using educational and computer gaming
scenarios, respectively. Nevertheless, most of the datasets have been collected with the goal to
elicit certain emotions and they are not tailored to various engagement signals. Besides, the
affective states and their ranges vary significantly for different domains depending on certain
education or gaming scenarios, meaning that data collection covering various scenarios is
preferred.



3.1.4. User and Task Heterogeneity

The expression of emotions exhibits a certain level of consistency among individuals, but each
person also has a unique way of expressing emotions. This individuality poses a challenge in
developing a universal system that can effectively analyze the emotions of diverse individuals.
The difficulty primarily stems from the subjective nature of emotions and the influence of
cultural factors. Regarding the former, individuals may respond differently to the same stimulus.
For instance, some individuals may not exhibit outward signs of a specific emotion, while others
may express it in unconventional ways. As for the latter, cultural norms and expectations shape
how emotions are expressed and interpreted. Facial expressions or vocal cues that convey a
particular emotion in one culture may carry different meanings or interpretations in another
culture.

While the problem of user heterogeneity is widely recognized in the field of affective comput-
ing [60], the issue of task heterogeneity in emotion recognition also deserves attention. Indeed,
how individuals express emotions is influenced by the type of task they are engaged in. In the
context of VR, this problem becomes particularly significant due to the versatility offered by
this technology, which enables users to immerse themselves in various types of tasks, such
as operating industrial machinery or engaging in educational assignments. Consequently, it
is challenging to extend emotion recognition algorithms, previously trained on datasets col-
lected from individuals performing specific tasks, to effectively work on individuals performing
different tasks.

In order to visualize the problem of user heterogeneity, we employ a Leave-One-Subject-Out
Cross-Validation (LOSO-CV) protocol on unimodal and multimodal datasets, WESAD [33] and
K-EmoCon [41], respectively. The LOSO-CV protocol consecutively uses data from each subject
in a dataset as a test set. The remaining subjects are exploited for training and validation. For
both datasets, we train a 3-layer CNN that we have previously introduced in Section 3.1.1 for
the biomarker data. Additionally, for the audio modality in K-EmoCon, a single dense layer was
trained on top of the eGeMAPS features. We visualize the distribution of model performance
across different subjects in LOSO-CV in Figure 2. As can be seen, the performance spread
is wide for both datasets. Besides the fact that the emotions were perceived differently, such
performance could have also been caused by the elicitation protocols that did not trigger similar
affective states in different subjects.

3.2. Multimodality
3.2.1. Unsupervised Representation Learning

The last couple of years have seen rapid developments in representation learning in the major
Al areas, including Computer Vision, Natural Language Processing (NLP), and Automatic
Speech Recognition. Novel Self-Supervised Learning (SSL) frameworks have been extensively
used to pre-train large Deep Learning models to extract robust and meaningful features from
different types of data. Typically, the state-of-the-art SSL approaches leverage large unlabeled
datasets to pre-train the models on so-called pre-text tasks. These tasks formulate auxiliary
objectives, such as predicting part of the input signal from the surrounding context [61] or
learning distortion-invariant features [62], that allow the models to extract meaningful features
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Figure 2: Distribution of weighted F1-scores for LOSO cross-validation for the WESAD and K-EmoCon
datasets.

from data.

SSL paradigm has been also applied to emotion recognition to learn unimodal features from
different modalities. Experiments conducted on various modalities, such as ECG data [63], facial
videos, text, and audio data [64], and EDA, BVP, and SKT data [50], show that unsupervised
representation learning is a promising direction that allows Deep Learning models to learn
robust unimodal representations without acquiring data annotations. Another approach that
has been used for audio and video modalities is to exploit the large speech models, such as
wav2vec2.0 [12, 14] and HuBERT [13] for audio, pre-trained on huge unimodal datasets. A
similar approach has been used for physiological data in [65] where researchers exploited a
large private unannotated dataset to pre-train the Deep Learning encoder.

Given the significant progress in exploiting SSL for unimodal emotion recognition, there are
still some challenging aspects when adapting them to VR settings. First, the publicly available
unimodal datasets are quite limited for certain modalities relevant to the VR context, such as
physiological data and pupil dilation. Besides, pre-trained models do not guarantee optimal
performance when transferring representations to emotion recognition tasks. To demonstrate
this problem we compare a large pre-trained speech model, namely wav2vec2.0 [12], adapted
to emotion recognition as proposed in [14] and a simple linear encoder built on top of the
handcrafted eGeMAPS features on two datasets, EMOCAP [40] and K-EmoCon [41]. As can be
seen from the F1-score values presented in Table 2, the pre-trained wav2vec2.0 features perform
significantly better compared to the encoder for eGeMAPS which was trained from scratch on
IEMOCAP. However, for K-EmoCon, eGeMAPS features passed through a simple linear model
are more robust compared to the features extracted by wav2vec2.0.

3.2.2. Flexible Multimodal Fusion

As discussed in subsection 2.1, emotion recognition can be approached by processing data
from multiple modalities. Moreover, in the last decade, researchers have paid a significant



Features IEMOCAP | K-EmoCon
wav2vec2.0 | 63.2% 31.4%
eGeMaps 48.6% 37.0%

Table 2
Average F1-score for EMOCAP and K-EmoCon.

amount of attention to multimodal emotion recognition using a variety of input modalities
simultaneously. While each of these data sources can contain informative and unique cues about
the experienced affective state, each of them also brings its specific limitations. For instance,
algorithms based on facial expression data are vulnerable to different types of occlusions, such
as the VR headset. What is more, in certain settings and tasks, some data inputs can be irrelevant.
In particular, audio data might be the main source of information when the scenario implies
oral communication, whereas, in some gaming and educational scenarios, subjects may not be
supposed to communicate orally. In such cases, flexible fusion algorithms are needed to choose
the most relevant cues to evaluate the affective states of the subjects.

Another challenging aspect that has to be considered is the predictive power of certain
modalities. For example, the literature highlights that most of the sensors that can be installed
in simple non-intrusive wearable devices, such as EDA, BVP, and SKT sensors, collect signals
that could explain various intensity levels of emotions, or arousal levels. However, there is no
evidence that changes in valence levels, or pleasantness of emotions, cannot be tracked using
the mentioned modalities [66]. Hence, the choice of modalities to be used should also be tailored
for a specific scenario and downstream task.

Finally, selecting the type of fusion algorithm is a challenging process. While the late decision-
level fusion techniques are more lightweight and do not require data streams perfectly aligned
between modalities, they do not take into account the inter-modal correlations [67]. On the
contrary, the early and feature-level fusion methods employ the inter-modal dependencies in
the representation learning and prediction-making process. Nevertheless, feature fusion, which
is typically done through feature concatenation, requires well-synchronized inputs and is less
flexible in terms of the set of input modalities.

4. Opportunities for Emotion Recognition in VR

4.1. Data Collection
4.1.1. Collecting Datasets for Emotion Recognition in Adaptive VR

VR holds significant potential for collecting extensive datasets for ER in adaptive scenarios.
This potential primarily arises from the ability to track users’ signals across different modalities
(e.g., body motion and physiological signals) and evoke stronger and more genuine emotional
reactions. Furthermore, VR allows for precise control over environmental factors like colors
and shapes, further enhancing the emotional experience. However, as discussed in subsection
3.1.1, the lack of complete understanding of which factors actually trigger emotions limits the
control over emotion elicitation. To address this challenge, authors in [68] propose leveraging
the theory of flow [1] as a theoretical guideline for systematic emotion elicitation.



Given that the theory of flow establishes a connection between task difficulty, individual
skills, and emotional response, we argue that it is particularly well-suited for eliciting emotions
in an adaptive VR setting, for the following reasons. Firstly, in most adaptive VR settings, such
as those found in education and training scenarios, users are often required to perform tasks
that can be adjusted in difficulty based on the users’ skills. Following the theory of flow, when
the difficulty level is customized to match the skills of the users, it can induce the following
emotions: anxiety if the difficulty exceeds the users’ skills, engagement if the difficulty aligns
well with the users’ skills, and boredom if the difficulty is below the users’ skills level. Secondly,
as discussed in subsection 3.1.3, traditional emotional models tend to focus on emotions (e.g.,
joy and fear), which may not properly align with most adaptive VR scenarios. In these scenarios,
the emotions identified by the theory of flow, namely anxiety, engagement, and boredom, are
more relevant and meaningful in understanding the user’s emotional experience.

Based on these considerations, the authors of Ref. [68] presented a VR application called the
Magic Xroom, which utilizes the theory of flow for precise control over emotion elicitation.
The main objective of the Magic Xroom is to collect extensive datasets for ER in adaptive VR
scenarios. In the Magic Xroom, the task difficulty dynamically adjusts based on participants’
skill levels, aiming to strike an optimal balance that induces the desired emotional states of
engagement, anxiety, or boredom. Continuous monitoring of participants’ body responses,
including body movements, heart rate, and skin conductance, is performed to gather multimodal
data. Additionally, users can express their emotions through a virtual panel, providing explicit
feedback on their emotional experiences. By adopting a systemic approach to emotion elicitation
and collecting multimodal data with relative annotations, the Magic Xroom offers a scalable
system for collecting datasets to develop emotion recognition systems, particularly well-suited
for the adaptive VR setting.

4.1.2. Personalized Data Collection

As discussed in subsection 3.1.4, developing universal ER systems that effectively work for
different individuals is extremely challenging. However, it is possible to address this challenge by
taking a different approach. In particular, instead of focusing on building universal systems, the
emphasis can be placed on creating personalized datasets and constructing custom models. VR
opens up possibilities for achieving this goal, for the following reasons. Firstly, VR is becoming
increasingly used on a regular basis. For instance, individuals can engage in educational or
entertainment scenarios that span multiple sessions. This provides an opportunity to observe
individuals across these sessions and gather more data about them. Secondly, VR enables the
flexible creation of various contexts, allowing one to observe individuals engaged in different
tasks and situations. By having a significant amount of data from diverse contexts, it becomes
possible to study emotional expressions more extensively, and better capture an individual’s
unique style of expression. Thirdly, leveraging the interactive nature of VR, users can provide
instant emotional feedback through virtual panels or other means. This facilitates the annotation
of data tailored to each specific individual, which further enhances the customization of datasets
for building personalized ER models.



4.1.3. Behavior-Driven Emotion Recognition

Emotions are not solely discernible through body signals, such as voice and physiological
data, but can also be inferred from behavioral clues (e.g., how an individual interacts with the
objects surrounding her). In fact, the utilization of user behavior holds significant potential
in revolutionizing emotion recognition algorithms. By providing a realistic, immersive, and
adaptable environment where users can interact with virtual scenes, VR offers a remarkable
opportunity to study the relationship between behavior and emotions that, to our knowledge,
has never been tackled in previous works. Indeed, by integrating behavioral data with traditional
signals, more comprehensive and accurate models can be developed. This novel approach opens
avenues for capturing nuanced emotional experiences and enriching the understanding of the
diverse ways in which emotions manifest.

4.2. Shared Multimodal Representation Learning

In recent years, Self-Supervised Learning or unsupervised representation learning has drawn
a lot of attention in the research literature. Specifically, this paradigm offers an opportunity
to pre-train large Deep Learning models using vast amounts of unannotated data, and later
fine-tune the models to a certain downstream task using significantly smaller datasets. As
previously described in Section 3.2.1, SSL has already been adapted to emotion recognition in
two forms, namely unimodal SSL pre-training and the use of large models pre-trained on other
tasks exploiting the same modalities.

The latest works in other major Al domains demonstrate that multimodal pre-training
and representation alignment across modalities show superior results for both unimodal and
multimodal downstream tasks [69, 70, 71, 72]. To the best of our knowledge, this direction has
not been explored in the research regarding using various combinations of modalities related
to the VR settings and for emotion recognition, in general, except for audio-visual cues [73].
Multimodal representation learning brings opportunities to improve the representations of
affective states and align them between various modalities. This is especially promising for the
adaptive settings, as SSL models typically have a better ability to transfer knowledge between
various tasks. Moreover, unsupervised representation learning methods utilize discriminatory
information, patterns, and correlations identified in multimodal data, whereas supervised
methods are guided by strong priors from annotations. Given the challenge of annotating input
data, the labels used by supervised models can be misleading and limited to a certain affective
model. Besides, this approach has the potential to address the challenge of flexible multimodal
fusion given that latent representations from different modalities are aligned.

Multimodal unsupervised representation learning typically requires large amounts of data.
Hence, this would require the collection of large unannotated datasets with relevant synchro-
nized modalities in an immersive environment covering various types of tasks eliciting different
types of affective states as described in Section 4.1.1. Besides, another aspect to consider is
that multimodal alignment might have to follow a certain schema to extract specific features
related to different emotion dimensions given the limitations of some modalities in recognizing
changes across certain dimensions (e.g., EDA signals and valence levels). The study exploring
this direction has been recently conducted for an audio modality to disentangle the latent



representations for arousal, valence, and dominance dimensions [74].

5. Conclusion

Adaptive Virtual Reality, with its immersive and interactive nature, presents an opportunity to
personalize the user experience based on their emotions with the goal to increase engagement
and user satisfaction. These properties of the interactive sessions are crucial in learning and
gaming environments to maximize the progress of users. However, there are notable differences
between the settings required to build classical Emotion Recognition models compared to the
ER algorithms suitable for adaptive VR environments.

In this paper, we aim to critically review the current landscape of ER and its suitability
for adaptive VR settings. In particular, we introduce the modalities for ER and highlight the
limitations that can arise when integrating them into the VR settings. We also summarize
and describe the open-source datasets frequently used for unimodal and multimodal ER and
focus on emotions elicitation and annotation protocols. Based on our observations and related
literature, we formulate a list of challenges for adapting ER to adaptive VR and categorize them
into two groups. First, data collection-related challenges contain crucial yet rigorous aspects
of successfully eliciting genuine and spontaneous emotions and correctly annotating them.
Besides, adaptive VR settings can benefit from certain emotional models that, to the best of
our knowledge, are not employed in open-source datasets. Another category of challenges is
associated with tackling multimodality. The current state-of-the-art ER models are typically
based on two major modalities, namely facial expressions and audio, that cannot be dominant
in VR applications. Thus, given that the largest datasets and pre-trained models are tailored for
this combination of modalities, one of the challenges is to obtain meaningful representations
for less common modalities that can be integrated into VR environments. Besides, another
challenging aspect is to allow the flexible fusion of various modalities based on the selected VR
scenario.

Finally, our paper suggests a set of opportunities that can be seen as a call for action in
future studies on the intersection of ER and adaptive VR applications. First, we propose to
cover the challenges associated with data collection. In particular, we present a novel setup
for collecting data within the adaptive user-centric VR environment. Besides, we propose to
perform personalized data collection and extract cues related to the behavior of individuals
in order to adapt the models to various users smoothly. Finally, we propose ideas to adapt
multimodal representation learning to ER in order to create robust shared representations and
make multimodal fusion more flexible.
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