CEUR-WS.org/Vol-3514/paper59.pdf

A tool to easing the configuration and deploying
process of Hyperledger Fabric

Domenico Cantone’, Daniele Francesco Santamaria™ and Vincenzo Spinello’

IUniversity of Catania, Department of Mathematics and Computer Science, Viale Andrea Doria, 6, 95125, Catania, Italy

Abstract

Hyperledger Fabric is an open-source project for building permissioned blockchains that allow com-
ponents such as consensus and membership services to be plug-and-play. Thanks to its modular and
versatile design, a broad range of industry use-cases can be implemented. However, industries lack for
tools to easing the instantiating and configuration process of Hyperledger Fabric, thus making difficult
its dissemination. In this paper, we contribute to the Hyperledger Fabric ecosystem by delivering a
user-friendly, free-to-use, and open-source tool that enables users to easily configure and deploy a
Hyperledger Fabric instance, thus favouring its adoption and spreading.

Keywords
Hyperledger Fabric, Blockchain, GUI, Graphic User Interface

1. Introduction

Hyperledger [1] is a family of open-source projects started in 2015 by the Hyperledger Foundation,
hosted by the Linux Foundation [2]. The main purpose of the project is to provide a set of
developing tools for building blockchain-based distributed systems. Many sub-projects derive
from Hyperledger, such as Hyperledger Fabric, Hyperledger Besu, and Hyperledger Aries. Among
them, particularly relevant for the business and industry realms is the Hyperledger Fabric, a
private blockchain conceived both for private and public organizations, which does not bind
users to particular requisites thanks to its high extent of customization and configuration.
Hyperledger Fabric offers a unique approach to consensus protocols that enables performance
at scale while preserving privacy.

One of the limitations of the Hyperledger Fabric is the lack of high-level and user-friendly
tools that allow neophyte users to deploy the network and build custom solutions, thus limiting
the dissemination of the blockchain and its broad adoption. These premises motivate the effort
of the work, currently under development, presented in this contribution.

We introduce the Hyperledger Fabric GUI (HFG, in short), a tool based on a graphic user
interface that has been developed to tackle the above-mentioned problem by simplifying and
hastening the instantiating and configuration process of Hyperledger Fabric, thus minimizing

BIR-WS 2023: BIR 2023 Workshops and Doctoral Consortium, 22nd International Conference on Perspectives in Business
Informatics Research (BIR 2023), September 13-15, 2023, Ascoli Piceno, Italy

*Corresponding author.

& domenico.cantone@unict.it (D. Cantone); daniele.santamaria@unict.it (D. F. Santamaria);

1000006449 @studium.unict.it (V. Spinello)

@ 0000-0002-1306-1166 (D. Cantone); 0000-0002-4273-6521 (D.F. Santamaria)

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR Workshop Proceedings (CEUR-WS.org)

mailto:domenico.cantone@unict.it
mailto:daniele.santamaria@unict.it
mailto:1000006449@studium.unict.it
https://orcid.org/0000-0002-1306-1166
https://orcid.org/0000-0002-4273-6521
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

error risks: indeed, even a simple error, such as providing a wrong parameter or performing
some step incorrectly, may lead to a wrong configuration of the network and, consequently,
either a re-configuration or a re-instantiating of the network. Thanks to HFG, users are only
requested to fill out a configuration form concerning the network, leaving the underlying steps
to the configuration scripts provided by the tool. As a main consequence, users are warned of
wrong parameters which may lead to the deployment of inconsistent instances of Hyperledger
Fabric. In this case, the application automatically deletes the old instance and creates a new
one. The presented work is part of a project that aims at delivering a tool for simplifying the
deployment and configuration not only of Hyperledger Fabric but also of any other products
concerning the Hyperledger ecosystem and of Hyperledger-based applications. The tool is
available at [3], both for test and contributions.

The paper is organized as follows. Section 2 introduces some related works; Section 3 provides
a general overview of Hyperledger Fabric, focusing on the features that are configured by HFG;
Section 4 presents a general and short overview of the steps that should be carried out when
instantiating a working instance of Hyperledger Fabric; Section 5 presents the Hyperledger
Fabric GUI, illustrating how it simplifies the deployment and configuration of Hyperledger Fabric.
Finally, in Section 6, we draw our conclusions and discuss some future research directions.

2. Related Works

There are several projects related to the deployment of Hyperledger Fabric instances.

Hyperledger Caliper, as described in [4], serves as a benchmarking tool for Hyperledger. It
provides a set of predefined use cases that enable users to measure the performance of various
configurations of a Hyperledger instance. This allows for the comparison of different setups to
determine the most efficient one based on the organization’s needs. Hyperledger Caliper can
be used with Hyperledger Besu, Hyperledger Burrow, Ethereum, Hyperledger Fabric, FISCO
BCOS, Hyperledger Iroha, and Hyperledger Sawtooth. Caliper measures various performance
metrics related to resource utilization, including transaction latency, transactions per second
(TPS), success and failure rates (i.e., successful and failed transactions in a test cycle), among
others. It is important to note that Caliper does not offer tools for the rapid deployment of a
Hyperledger instance.

Hyperledger Composer, as described in [5], is a suite of collaboration tools designed to
simplify the development of Hyperledger applications. It streamlines the process of creating a
functional Hyperledger Fabric instance from scratch and enables easy construction of blockchain
business networks, smart contracts, and blockchain applications. It is worth noting that this
tool has been deprecated since 2019, and there are no plans to reintroduce its functionalities.

Distributed Ledger Performance Scan (DLTG) is a tool designed to facilitate the instantiation
of new Hyperledger instances. It currently supports various blockchain platforms, including
Hyperledger Fabric, Ethereum with the Geth and Parity clients, Hyperledger Indy, Quorum with
RAFT and IBFT consensus, and Hyperledger Sawtooth. DLTG distinguishes itself from HFG in
that it creates an additional Linux virtual machine on the host, which contains all the necessary
packages to initiate a Hyperledger instance. DLTG is primarily intended for creating prototype
networks for testing purposes, while HFG is used for the instantiation and configuration of fully

operational Hyperledger Fabric instances. Additionally, DLTG can be utilized for benchmarking
the performance of these prototype networks.

In [6], the authors introduce a Hyperledger Fabric Network instantiation tool called Fabnet.
Fabnet retrieves the required binary files for starting certificate authorities from a remote server
and then transfers them to the requesting host. Once all the necessary files have been received
on the host machine, the user must execute an initialization script to instantiate Hyperledger
Fabric. In contrast, HFG downloads all the essential files directly onto the user-specified host and
executes them in the correct sequence. Notably, among these files, HFG utilizes configuration
scripts that can be edited in real-time by the user through a user-friendly interface.

3. Preliminaries

Hyperledger Fabric stands out from other platforms due to its inherent modularity and flexibility.
Hyperledger Fabric provides many customization options about every single aspect of the
network; for instance, the choice of the consensus algorithm has been made feasible by the
implementation of the Pluggable Consensus Protocol [7]. In this way, organizations can choose
the consensus algorithm that better fits their own needs. Usually, organizations that adopt
Hyperledger Fabric choose to create consortia in order to exchange information in a secure way.
A consortium is an environment formed by organizations sharing common goals that chose to
collaborate. The communication among organizations of the same consortium is performed via
channels. In order to control the agents that can join a consortium and how the information
is exchanged within consortia, Hyperledger Fabric introduces a consortium administrator.
Moreover, Hyperledger Fabric provides organizations with many cryptographic mechanisms to
secure the exchange of information through such channels. In particular, thanks to channels,
Hyperledger Fabric is equipped with an execution environment allowing Turing-complete
programs called smart contracts [8]. Smart contracts can be programmed in Hyperledger Fabric
by exploiting the most common programming languages such as Java and Python.

Another primary advantage of permissioned blockchains such as Hyperledger Fabric is
that native cryptocurrency is not required to utilize transactions; hence, all transactions are
performed without paying any cost. The modularity of this network—thanks to consortia and
channels—, the expressivity of smart contracts, and cost-free transactions make Hyperledger
Fabric practical in many business domains. This is the case, for example, when tokenizing and
tracking physical assets: organizations involved in such type of business activities can make up
a consortium and monitor all asset movements, thus minimizing fraud risks. Hyperledger Fabric
is also suitable for building environments where digital identities are of essential relevance,
thanks to a joint collaboration among organizations that aims at defining certificate authorities.

A certificate authority is a trusted entity issuing digital certificates for the Hyperledger
Fabric’s participants. We can distinguish two main types of certificate authority (in short, CA):

« The TLS CA that releases TLS certificates. TLS [9] is a transport layer security protocol
that exploits complex cryptographic security measures to guarantee secure communi-
cations through the network. TLS certificates are used in Hyperledger Fabric to secure
communications among the entities of the Hyperledger Fabric. Although TLS CAs are not

mandatory to build a working instance of the network, they are strongly recommended
since they permit to reduce the success rate of cyber-attacks.

« Enrollment CAs release certificates for different types of identities and roles on the network:
such certificates allow entities to join Hyperledger Fabric by attesting their identities.
As a permissioned blockchain, Hyperledger Fabric requires that entities are authorized
beforehand to join the network: these certificates enable entities to see transactions or
to perform some specific operations, such as executing smart contracts or adding new
identities to the network.

A correct set-up of CAs is one of the necessary condition to guarantee both a secure deploy-
ment of the Hyperledger Fabric instance, hence of the ledger, and a network satisfying the
organization’s needs. This process can result particularly risky due both to the high number of
steps that have to be executed through a command-line interpreter and to the files that must be
manually edited. For this reason, affordable tools that minimize the risk of errors are of critical
importance.

4. Manual instantiating of Hyperledger Fabric

After recalling how Hyperledger Fabric is manually instantiated, in this section, we present a
demonstration of how the Hyperledger Fabric GUI significantly simplifies this procedure.
To instantiate Hyperledger Fabric, as a first step it is required to install and download the
Hyperledger Fabric binary files and prepare a hierarchy of folders, as depicted in Figure 1.
Then, the certificate authorities must be deployed by typing in the shell the following two
commands, the first one for registering the CA administrator in the database and the second
one to enroll it:

1. ./fabric-ca-client register -d —id.name [USERNAME]
—id.secret [SECRET] -u [CA_URL] -mspdir [CA_ADMIN]
—id.type [ID_ROLE] -tls.certfiles [TLS_CERT]

2. ./fabric-ca-client enroll -d -u
https://[ENROLL_ID]:[ENROLL_SECRET] @[CA_URL]:[PORT]
—-mspdir [MSP_FOLDER] —csr.hosts [CSR_HOSTNAME] —tls.certfiles [TLS_CERT]

The first command requires the username and the password of the administrator of the CA,
the URL of the server, the directory where to store the CA, the role of the administrator, and
the TLS certificate for enabling secure communications. The second command requires the
username and the password of the identity to be added, the address of the CA server, and the
related port.

Moreover, the registration and enrollment processes require the configuration of the trusted
entity (here omitted for space reasons). Such configuration is carried out by editing the configu-
ration files associated with each certificate authority. Since there are two types of certificate
authority, and there can be more than one certificate authority, the user is called to manually
edit a certain number of files.

For security reasons, it is recommended that users first create the TLS certificate authority.
Then, once the administrator of the TLS CA is enrolled, the TLS CA can be started by executing

Fabric

Y

fabric-ca-server-ca fabric-ca-client fabric-ca-server-tls

[[ca_name] } [fabric—ca—clien% ﬂs-root-cert]

Y\
[tll-ca H ca_afmin Hintcafdmin] [ca_afmin H intcaladmin]

|
PN
[signcerts] { keystore }
| !
[cert.pem] { key.pem }

Figure 1: Folder hierarchy required to start up a Hyperledger Fabric instance

the related shell binary file. At this point, the TLS CA is listening on the port specified by the
user and is ready to release the TLS certificates, and from now on the user can create all the
desired root enrollment CA.

The instantiating process for the root enrollment CA is similar to the one described above, but
requires different configuration files. Moreover, the administrator of the enrollment CA requires
the TLS CA. Therefore, there are four requests to be formed in this case: two requests for the
release of the TLS certificate and two more request for the enrollment of the administrator
identity.

In order to release the TLS certificate, a registration and enrollment request must be sent to
the TLS CA server, by providing the administrator credentials. Once the administrator’s TLS
certificate is obtained, the root enrollment CA can be initialized. Subsequently, the administrator
can be enrolled by specifying the TLS CA certificate obtained so far. Henceforth, the user can
deploy all the desired intermediate enrollment CAs, according to the configuration provided in
the previous steps. To deploy an intermediate CA, it is required an additional registration and
enrollment request for each CA. In this case, a total of six requests are required: two requests
for obtaining the TLS certificate, two requests for enrolling the intermediate CA administrator
to the root CA, and two requests for enrolling it to the intermediate CA. Moreover, the setup of
the configuration files must be coherent with each other, otherwise unexpected behaviors may
occur. Finally, in addition to the configuration files to edit and the registration and enrollment
requests to perform, some environment variables must be set as well, to store the paths of the
binary files in the machine. Note that when an incorrect request is performed (for instance, if
the user provides an incorrect domain for the TLS certificates), all the subsequent steps need to

be executed again, resulting in a considerable waste of time. Moreover, all the files generated
during the deployment phase are to be arranged in a specific order.

5. Hyperledger Fabric GUI

To simplify and speed up the deployment of Hyperledger Fabric, as well as to minimize user
errors that can arise from a manual deployment, we developed a tool called Hyperledger Fabric
GUI, which automatizes the creation of three certificate authorities, two of Enrollment type and
one of TLS type, with a minimum user effort. The tool is released as a web application that
connects the user with the Hyperledger Fabric instance through the Secure Shell (SSH) protocol
(see Figure 2).

The application, written in PHP, requires only that users provide the Hyperledger Fabric
instance connection information to initialize it. Secure communication is established between
the application and the instance thanks to the SSH protocol. The SSH protocol, which nowadays
replaces Telnet, has been conceived to provide the user with the means for accessing a remote
server through port 22, guaranteeing confidentiality and security. The SSH credentials are
securely submitted via the HTTPS protocol to the web application in order to establish a
connection with the remote machine and are neither stored, nor used anymore. Then, the
application executes on the remote servers three different scripts that are customized by users
through the web interface, one for each certificate authority:

« the first script creates the TLS certificate authority, which is required to start up a
Hyperledger Fabric instance;

« the second script creates the root enrollment certificate authority; finally,

« the third script creates the intermediate certificate authority.

Initially, the three scripts contain placeholders, namely fragments of text (non-syntactically
belonging to the script language) that is suitably replaced by script code once the user is
invoked to decide how such substitution must be performed. Specifically, users provide a set of
parameters through the web interface that replace the script placeholders once they are checked
for correctness. Then, the scripts are performed in sequence so that the related certificate
authorities can be installed. For example, Figure 3 shows a script with placeholders (on the top)
and the resulting script (on the bottom) once the placeholders have been replaced.

The resulting scripts are then executed on the remote server, thus completing the instantiating
of Hyperledger Fabric with no additional effort from users.

The graphic component of the web application consists of two distinct sections organized on
two subsequent pages. The first section (see Figure 4) is devoted to the connection information
that allows the application to connect with the remote server, and where the Hyperledger Fabric
instance should be installed. This information includes the IP address, the port number (by
default, the SSH port is identified by the number 22), the username and password used to access
the host.

The second section is focused on setting up the placeholders of the three scripts (see Figure
5). This step is done through four main subsections. The first step requires the input of the host

Hyperledger Fabric GUI

< > —»
generates

Scripts with

Runnable Scripts

Web Application placeholders

g2

T access

sends scripts

Hyperledger Fabric SSH
User Instance

Figure 2: General view of the Hyperledger Fabric GUI

name of the target host, while the remaining three are devoted to the certificate authorities as
follows.

TLS certificate authority section. This section is devoted to the creation of the TLS cer-
tificate, namely the certificate that enables secure communication channels through the
network. The user is called to provide (a) the username and the password of the TLS CA
administrator, (b) the port number the TLS CA server will listen on, and (c) the name and
an alias name for the TLS CA server. The port number must be unique and must not be
used by any other process.

Enrollment certificate authority section. This section requires the information of the
enrollment certificate authority that releases the certificates responsible for the assignment
of identities. The user is called to input (a) the username and password of the enrollment
CA administrator, (b) the port number the enrollment CA will listen on, (c) the name
of the enrollment CA, and (d) the so-called “Validity domain of the certificates issued
by CA”. The latter field contains all the host names for which the certificates released
by the authority are valid. The user can also use the “*” symbol to indicate a set of
domains. For instance, 156.146.180.* denotes all the hosts whose IP address starts
with 156.146.180. The last field is devoted to the CA’s tree height, namely, how long
the chain of trust can be. By inputting the value 0. the enrollment CA cannot have
children, hence the only authority able to release certificates is the root. By default, such
a value is set to 1.

Intermediate enrollment certificate authority section. This section is analogous to the
previous one and concerns the intermediate enrollment certificate authorities. The height
of the CA tree is omitted in this section because it can be inferred from the previous one.

5 #Go into home directory
6 cd $HOME
7
8

#Hyperledger Fabric Home variable
9 HFH=Hyperledger_Fabric_Network/Fabric

10

11 #create the required folders and download the binary

12 work

13 y rk/Fabric

14 curl --output-dir ./Hyperledger_Fabric_Network/ -sSLO https://raw.githubusercontent.com/hyperledger/fabric/main/scripts/install-fabric.sh & chmod +x Hyperledger_Fabri
15 ./Hyperledger_Fabric_Network/install-fabric.sh docker samples binary

t
16 mkdir $HFH/fabric-ca-client

17 mkdir $HFH/fabric-ca-client/orgl-ca && mkdir $HFH/fabric-ca-client/tls-ca && mkdir $HFH/fabric-ca-client/tls-root-cert
18 mkdir $HFH/fabric-ca-server-tls

20 #copy the binaries into the related folders

21 b N ork/fabric-samples/bin/fabric-ca-client $HFH/fabric-ca-client
22 ork/fabric-samples/bin/fabric-ca-server $HFH/fabric-ca-server-tls
23

24 #initialize the network
25 ./$HFH/fabric-ca-server-tls/fabric-ca-server init -b [TLS_INIT_ADMIN_USER]:[TLS_INIT_A

{IN_PASSWD]

27 #edit the configuration file of the tls ca server
28 sed -i 's/port: 7054/port: [TLS_CA_SERVER_PORT]/' ./$HFH/fabric-ca-server-tls/fabric-ca-server-config.yaml #changes Listening port of the tls ca server
29 sed -z -i 's/# Enable TLS (default: false)\n enabled: false/# Enable TLS (default: false)\n enabled: true/' ./$HFH/fabric-ca-server-tls/fabric-ca-se

config.yanl

30 *s/# Name of this CA\n name:/# Name of this CA\n name: [TLS_CA_NAME]/' ./$HFH/fabric-ca-server-tls ic-ca-server-config.yaml

31 s/ hosts:/ hosts:\n - [TLS_CA_SERVER_HOSTS]/' ./$HFH/fabric-ca-server-tls/fabric-ca-server-config.yaml

32 's/ ca:\n usage:\n - cert sign\n - crl sign\n expiry: 43806h\n caconstraint:\n isca: true\n
33

34 #remove the old certificate and the msp folder

35

36 rm -r ./$HFH/fabric-ca-server-tls/msp
37 rm ./$HFH/fabric-ca-server-tls/ca-cert.pem

39 #start the TLS CA Server

#Go into home directory
cd $HOME

#Hyperledger Fabric Home variable
9 HFH=Hyperledger_Fabric_Network/Fabric

11 #create the required folders and download the binary
12 mkdir Hyperledger_Fabric_Net
13 mkdir Hy er_Fabric_)

ork/Fabric

14 cd Hyperledger_Fabric_Network
15 curl -sSLO https://raw.githubusercontent.com/hyperledger/fabric/main/scripts/install-fabric.sh & chmod +x install-fabric.sh
16 ./install-fabric.sh samples binary

17 cd $H
18 mkdir $HFH/fabric-ca-client

19 mkdir $HFH/fabric-ca-client/CA && mkdir $HFH/fabric-ca-client/tls-ca & mkdir $HFH/fabric-ca-client/tls-root-cer
20 mkdir $HFH/fabric-ca-server-tls

22 #copy the binaries into the related folders
23 cp Hyperledger_Fabric_Network/fabric-samples/bin/fabric-ca-client $HFH/fabric-ca-client
24 cp Hyper Fabric_Network/fabric-samples/bin/fabric-ca-server $HFH/fabric-ca-server-tls

26 #initialize the network
27 cd $HFH/fabric-ca-server-tls

28 ./fabric-ca-server init -b tls_admin:tls_pass
29

30 #edit the configuration file of the tls ca server

31 sed -i 's/port: 7054/port: 8501/' fabric-ca-server-config.yaml #changes listening port of the tls ca server

32 sed -z -i 's/# Enable TLS (default: false)\n enabled: false/# Enable TLS (default: false)\n enabled: true/' fabric-ca-server-config.yaml #activates the TLS protocol
33 sed -i -z 's/# Name of this CA\n name:/# Name of this CA\n name: TLS_CA/' fabric-ca-server-config.yaml

34 sed -i -z 's/ hosts:/ hosts:\n - alternative/' fabric-ca-server-config.yaml #This Line is still to be fixed
35 sed -i -z 's/ ca:\n usage:\n - cert sign\n - crl sign\n expiry: 4380eh\n caconstraint:\n isca: true\n
36

37 #remove the old certificate and the msp folder

38

39 rm -r msp
40 rm ca-cert.pem

42 cd $HOME
Figure 3: An example of script with placeholders (on the top) and the corresponding script after the
placeholder substitution (on the bottom)

It is worth observing that the port numbers provided for the CA must differ from each
other. Additionally, the user does not have to arrange all the files necessary for the deployment
process, or to declare the environmental variables, or to modify any configuration file: all these
tasks are automatically performed by HFG. Moreover, in order to create a new instance of the
Hyperledger Fabric, the old instance can be removed and the tool executed again with the new
parameters.

5.1. Work in progress

Hyperledger GUI has been recently used for the configuration of EtnaLedger [10], a work-in-
progress project aiming at building an affordable and scalable Hyperledger Fabric network for

Hyperledger Fabric: graphic user interface

Tool for configuring and initializing Hyperledger Fabric network

Please fill the following fields in order to connect to the target host

Ip address or hostname of the target server
Port number
Username

Password

connect to the server

Figure 4: The first section of the Hyperledger Fabric GUI

the Italian public administration and enterprises. The network is organized into three main
levels. The first level is managed by the University of Catania, which is responsible for adding
the principal authorities, constituted by the partner organizations. The second level is made up
of the principal authorities that are allowed to enroll any participants in the network. The last
level is formed by the contributors enrolled by the EtnaLedger partners: contributors such as
small, medium, and large enterprises are allowed to publish smart contracts, use the blockchain
to run their own business, or even act as validating nodes, depending on their means.

6. Conclusions and future directions

In this contribution, we presented a tool for easing and speeding up the process of instantiating
Hyperledger Fabric in a secure way. The tool utilizes a GUI to reduce the potential for errors for
users in editing and configuring the Hyperledger Fabric instance, and resetting the configuration
in case of unrecoverable errors. The tool, called Hyperledger Fabric GUI, is framed in a more
rich context that includes many feature enhancements since it aims at being a means for fully
managing multiple instances of Hyperledger Fabric. Among future extensions of HFG, we
shall consider the introduction of an SQL database to store the settings of all the Hyperledger
Fabric components such as peers, MSPs, and channels. We also intend to include a set of
tools for monitoring the state of the network together with the capability to restore previous

Hyperledger Fabric: graphic user interface

Tool for configuring and initializing Hyperledger Fabric network

ssh connection was successful

Please, fill in the following fields, providing the information in order to set up the network

Target host

hostname of the target machine

TLS Certificate Authority

Username of the TLS CA admin
Password of the TLS CA admin

Port number of the TLS CA server

Figure 5: The second section of the Hyperledger Fabric GUI

configurations. Moreover, we shall take into account the integration with the Interplanetary
File System (IPFS) protocol [11] in order to enable Hyperledger Fabric smart contracts with
capabilities for managing files. Finally, an integration of Hyperledger Fabrics with ontological
model as in [12, 13] is on-going.

References

[1] The Hyperledger Foundation, The Hyperledger Project, https://www.hyperledger.org/,
2015.

[2] The Linux Foundation, The Linux Foundation, https://www.linuxfoundation.org/, 2000.

[3] V. Spinello, D. F. Santamaria, The Hyperledger Fabric GUIL, https://github.com/vinc-
00/Hyperledger-Fabric.git, 2022.

(4] The Hyperledger Foundation, Hyperledger Caliper,
https://www.hyperledger.org/projects/caliper, 2015.
[5] The Hyperledger Composer Project, Hyperledger Composer,

https://hyperledger.github.io/composer/latest/index.html, 2017.
[6] F.Corradini, A. Marcelletti, A. Morichetta, A. Polini, B. Re, F. Tiezzi, Engineering trustable

choreography-based systems using blockchain, in: C. Hung, T. Cerny, D. Shin, A. Bechini
(Eds.), SAC ’20: The 35th ACM/SIGAPP Symposium on Applied Computing, online event,
[Brno, Czech Republic], March 30 - April 3, 2020, ACM, 2020, pp. 1470-1479. doi:10. 1145/
3341105.3373988.

[7] The Hyperledger Foundation, Hyperledger Architecture, Volume I, https:
//www.hyperledger.org/wp-content/uploads/2017/08/Hyperledger_Arch_ WG_Paper_1_
Consensus.pdf, 2017.

[8] The Hyperledger Foundation, Hyperledger Architecture, Volume II, https:
//www.hyperledger.org/wp-content/uploads/2018/04/Hyperledger Arch_ WG_Paper_2_
SmartContracts.pdf, 2018.

[9] T. Dierks, E. Rescorla, The Transport Layer Security (TLS) Protocol Version 1.2, RFC 5246
(2008) 1-104.

[10] University of Catania, Etnaledger: HyperLedger Fabric for Public Administration and
Enterprises, https://www.dmi.unict.it/santamaria/projects/etnaledger/call.pdf, 2023.

[11] Protocol Labs, The Interplanetary File Systems (IPFS), 2013. https://ipfs.io.

[12] D. Cantone, C. F. Longo, M. Nicolosi-Asmundo, D. F. Santamaria, C. Santoro, Ontological
Smart Contracts in OASIS: Ontology for Agents, Systems, and Integration of Services, in:
In Camacho et al. (eds.), Intelligent Distributed Computing XIV, Studies in Computational
Intelligence 1026, Chapter 22, 2022, pp. 237-247. doi:10.1007/978-3-030-96627-0\

22.

[13] G. Bella, D. Cantone, C. Longo, M. Nicolosi-Asmundo, D. F. Santamaria, Blockchains
through ontologies: the case study of the Ethereum ERC721 standard in OASIS, in: In D.
Camacho et al. (eds.), Intelligent Distributed Computing XIV, Studies in Computational
Intelligence 1026, Chapter 23, 2022, pp. 249-259. d0i:10.1007/978-3-030-96627-0\

23.

http://dx.doi.org/10.1145/3341105.3373988
http://dx.doi.org/10.1145/3341105.3373988
https://www.hyperledger.org/wp-content/uploads/2017/08/Hyperledger_Arch_WG_Paper_1_Consensus.pdf
https://www.hyperledger.org/wp-content/uploads/2017/08/Hyperledger_Arch_WG_Paper_1_Consensus.pdf
https://www.hyperledger.org/wp-content/uploads/2017/08/Hyperledger_Arch_WG_Paper_1_Consensus.pdf
https://www.hyperledger.org/wp-content/uploads/2018/04/Hyperledger_Arch_WG_Paper_2_SmartContracts.pdf
https://www.hyperledger.org/wp-content/uploads/2018/04/Hyperledger_Arch_WG_Paper_2_SmartContracts.pdf
https://www.hyperledger.org/wp-content/uploads/2018/04/Hyperledger_Arch_WG_Paper_2_SmartContracts.pdf
http://dx.doi.org/10.1007/978-3-030-96627-0_22
http://dx.doi.org/10.1007/978-3-030-96627-0_22
http://dx.doi.org/10.1007/978-3-030-96627-0_23
http://dx.doi.org/10.1007/978-3-030-96627-0_23

	1 Introduction
	2 Related Works
	3 Preliminaries
	4 Manual instantiating of Hyperledger Fabric
	5 Hyperledger Fabric GUI
	5.1 Work in progress

	6 Conclusions and future directions

