
Predicting missing annotations in Gene Ontology with
Knowledge Graph Embeddings and True Path Rule
Özge Erten1,*, Shervin Mehryar1, Remzi Çelebi1 and Christopher Brewster1,2

1Institute of Data Science, Maastricht University, Paul-Henri Spaaklaan 1, 6229 GT, Maastricht, Netherlands
2Data Science Group, TNO, Kampweg, Soesterberg, Netherlands

Abstract
Gene Ontology (GO) and its Annotations (GOA) provide a controlled and evolving vocabulary for gene products
and gene functions widely used in molecular biology. GO & GOA are updated and maintained both automatically
from biological publications and manually by curators. These knowledge bases however are often incomplete
for two reasons: 1) Research in biological domain itself is still ongoing; 2) The amount of experimental evidence
might not be yet sufficient to validate annotations. In this paper, we address the gap in evidence between gene
products and their annotations by making link predictions using Knowledge Graph Embedding (KGE) methods.
Through the application of the True Path Rule (TPR) in the training stage of KGE, we were able to improve the
performance of traditional KGE methods. We report two experimental scenarios with GO and GO Chicken
Annotation datasets to show the contribution of embedding TPR to prediction accuracy.

Keywords
Link prediction, True path rule, Knowledge graph embeddings, Predicting Gene Ontology Annotations

1. Introduction

One successful application of KGs and ontologies in bio-medicine is the Gene Ontology (GO). In
particular, the Gene Ontology Consortium has used ontologies, namely the Gene Ontology and its
Annotations (GOA), to provide a common vocabulary for gene functions since 1998. GO&GOA support
biological studies and experiments such as gene enrichment analysis by providing a hierarchical
gene function semantic model. Moreover, as new biomedical information emerges, these ontologies
are updated on a monthly basis. Despite regular updates, GO remains incomplete because of the
inherent complexity of biological domain, and the large size of data which can not be validated easily
or rapidly. As a result, several approaches have been developed to address the incompleteness issue
in KGs. One of several approaches is to use Knowledge Graph Embeddings (KGEs) to predict the
missing links, and this will be our focus in this paper [1, 2, 3].

This paper aims to improve the prediction performance of KGEs for the purpose of GO annotations
by using the True Path Rule (TPR) used by the Gene Ontology. Namely, TPR is a natural outcome of
the hierarchical structure of GO, and it declares:"If a gene function can annotate a gene product, the
ancestral classes of that gene function can also annotate that gene product. However, if a gene function
can not annotate a gene product, then it can not be annotated by the descendant classes of that gene
function.". We propose a methodology for training KGEs that incorporates TPR to make the learned
embeddings more suitable for inference rules [4].

Previous work by Valentini [5] has formulated the gene function prediction issue as a hierarchical
classification problem based on the True Path Rule. This study introduces an ensemble algorithm
based on TPR with three main steps. The first step is that a group of classifiers makes a local decision

SWAT4HCLS 2023: The 14th International Conference on Semantic Web Applications and Tools for Health Care and Life Sciences,
February 13–16, 2023, Basel, Switzerland
*Corresponding author.
$ o.erten@maastrichtuniversity.nl (Ö. Erten); shervin.mehryar@maastrichtuniversity.nl (S. Mehryar);
remzi.celebi@maastrichtuniversity.nl (R. Çelebi); christopher.brewster@maastrichtuniversity.nl (C. Brewster)

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:o.erten@maastrichtuniversity.nl
mailto:shervin.mehryar@maastrichtuniversity.nl
mailto:remzi.celebi@maastrichtuniversity.nl
mailto:christopher.brewster@maastrichtuniversity.nl
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

for each GO class in the graph. The second step is that if the classifier assigns a positive label for a
class, the parent classes also have that label, but negative labels do not propagate from the bottom
up. The third step is that if it is labeled with a negative label for a class, it also assigns all of its child
classes to negative labels. Positive labels do not affect the lower classes in the GO hierarchy. In the
experiments, TPR based ensemble performs better than other ensemble algorithms.

Kulmanov et al.[6] describe how ontologies can be used to provide background knowledge in
machine learning-based semantic similarity tasks. The distance similarity or the similarity of belonging
to a particular subject between the elements in representative learning plays an important role in
model training. To observe this similarity contribution, they evaluate various ontology embedding
techniques. One of the experiments was done by adding GO semantics with TPR to two neural
network-based methods, and the both experimental results show an increase in prediction scores.

In this work, we defined two experimental designs with a dataset that consists of GOA versions
from 2018 to current (2022). The GOA versions are considered and treated as pairs. For the training
set, both experiments use the earlier version in the pair as well as the subsumption classes in GO.
The newer version is used for differentiating comparison with the prior version and detecting newly
added annotations. The testing and validation datasets in the first scenario take into account only
those captured, newly added annotations. The second scenario adds implicit annotations that are
captured in the GO hierarchy by TPR to the test and validation sets.

2. Methodology

KGEs are the vector embeddings learned from a set of triples describing facts in a KG. KGEs can
subsequently be used to perform reasoning tasks such as link prediction and entity classification.
Typically, KG embedding methods embeds entities and relations onto a vector space directly where
each triple (head entity, relation, tail entity) in the KG is assigned a score based on its validity. The
sum of scores (i.e. loss) for positive and negative triple set is optimized during training. In this paper,
we applied the KGE methods to GO and its Annotations to predict missing or future annotations.
To further capture and embed the TPR, we generate and incorporate samples using the TPR in the
training data [7].

In detail, we formulate the task as follows: Given a KG 𝒢 represented with a relation 𝑟 between
entities 𝑒1 and 𝑒2. First, the optimal vector embeddings are learned for all entities and relations.
The corresponding vector space can also be denoted by the following relation: 𝑒2⃗ = 𝑒1⃗ + �⃗�, and it
represents single triples in the ontology in the form (𝑒1, 𝑟, 𝑒2) ∈ 𝒢. Then, the following criterion is
used to learn the embeddings for link prediction with given a set 𝒮 of triples representing facts in the
KG:

𝐿tri =
∑︁

(𝑠,𝑟,𝑜)∈𝒮

||�⃗�+ �⃗� − �⃗�||2, (1)

where as before, �⃗�, �⃗�, and �⃗� are vector representations in R𝑑 corresponding to head entity, relation,
and tail entity in the ontology. These representations are learned using the triples in the data and
embedded as a 𝑑-dimensional vector similar to the process in TransE [8]. Our contribution is adding
samples following the TPR as shown in Figure 1 to the set 𝒮 . Essentially, we distinguish between direct
gene product-and-function relations and higher level gene product-and-function relations. In the first
scenario, embeddings are learned using the TransE model on existing triplets in the dataset. In the
second scenario, we enrich the training data with additional samples from gene products inheriting
their first-level ancestry functions as well as second-level ancestry functions. These additional samples
serve to improve embedding qualities and we refer to this method as TransE+TPR. The detail on
dataset creation and the different scenarios are given in the next section, and the code is accessible
on our Github: https://github.com/ozyygen/predict-KGE-TPR.

https://github.com/ozyygen/predict-KGE-TPR

3. Dataset

We generate four datasets by using GOA versions from 2018 to current (2022). Each dataset contains
a version pair that is selected with one year window length. We use the prior version to generate the
training set, and the latter for generating the testing and validation sets. Namely, each set contains
triples consist of a gene product as head, a gene function as tail, and the type in which the gene
function annotates that gene product as relation. Additionally, we add "is a" and "part of" semantic of
gene functions and TPR-inferred annotations from GO into the training set. In Table 1, triple counts
for each dataset are given for training, testing and validation sets.

Table 1
Datasets triple counts

GOA18-19 GOA19-20 GOA20-21 GOA21-22
Train set 48.924 35.304 29.332 24.948

Valid set scenario-1 3.457 593 871 831
Valid set scenario-2.1 14.310 7.051 4.797 2.869
Valid set scenario-2.2 29.241 16.106 10.304 5.829

Test set scenario-1 3.458 593 872 830
Test set scenario-2.1 14.310 7.052 4.797 2.868
Test set scenario-2.2 29.241 16.106 10.304 5.829

4. Experimental Design

In this work, two experimental designs were studied for KGE methods across four versions and
three scenarios. Figure 1 shows training, testing and validation split on a toy data. Node 8, 9,10, 11,
representing gene functions, annotate X1, X2, X3 and X4 gene products respectively in the figure.
Solid red line denotes the first version relations between gene products and gene functions, and
dashed red lines represent relations for the second version of the dataset [2].

Scenario 1: Two consecutive versions of GOA were used to generate the dataset for training the
embedding model. Specifically, the prior version was used to generate the training set. We also
added the related GO subsumption classes and TPR-inferred annotations in the training set in order
to enrich semantic information in the KG. The test and validation sets were created with the latter
version of the pair by randomly splitting the triples (annotations) into a test set and a validation set
by a ratio of 0.5. We excluded the triples that contain a new gene product or a new gene function
which were not present in the prior version. This scenario is denoted by sc-1.

Scenario 2: In Scenario 2, we used the same training set with Scenario 1, but we extended Scenario
1 test set with the implicit relations obtained from the TPR. We added relations that can be infered
by TPR to the test set. We infer these relations by applying the following rule; if a gene product
is annotated by a gene function in the training set, then the gene product need to be annotated by
the ancestral classes of that gene function. The objective of this addition is to observe whether our
method can predict the implicit links inferred by the TPR.

To observe the effect of the TPR at the different level depth, we designed Scenario 2.1 and Scenario
2.2 with two different super classes depth:

• Scenario 2.1: In this scenario, we generated implicit annotations with TPR using the first
level ancestors of gene functions. This scenario is denoted by sc-2.1.

• Scenario 2.2: For this scenario, we considered second level ancestors of gene functions in
addition to the first level ancestors. This scenario is denoted by sc-2.2.

Figure 1: Sample train, test and validation sets. Numbered blue nodes and their relations denote a sample
GO hierarchy, and pink boxes denote gene products (X1, X2, X3, X4). The three scenarios generate different
test sets. Scenario 1 will generate a test set which contains the newly added annotations in the second version
(X3-8 and X4-10, denoted by dashed red line). In addition to these annotations, Scenario 2.1 test set will also
include the implicit links (X3-6 and X4-7, denoted by dashed blue line) between gene products of the test data
and the super classes of gene functions at one upper level. Scenario 2.2 will further add annotations from the
second upper classes of gene functions (X3-3 and X4-3, denoted by dashed yellow line). The test set is then
split into a test set and a validation set by a ratio of 0.5.

5. Result and Conclusion

We conducted experiments with TransE and TransE+TPR to find out the efficacy of TPR into the link
prediction accuracy. The results are shown in Table 2.

We repeated the experiments with different time windows and scenarios. Four datasets help to
observe whether the train, test and validation set triple count has an effect on predictions. Scenario
1 does not have any inferred annotations. For Scenario 2, we added TPR-inferred GO semantic to
compare the scores with scenario-1. The table has two methods for four dataset with three scenarios.
Accordingly, TransE Hit@10 scores show hierarchical semantic addition in dataset does not have a
significant impact on improving prediction accuracy. On the contrary in TransE+TPR method, the
rule contribute increasing the accuracy.

Specifically, we implement TransE and TPR and evaluate on different GOA datasets. The dataset is
enriched with TPR-inferred annotations and GO subsumption classes. The results show significant
increase in the accuracy when rules are applied during training process. Particularly, in the best
case scenario the proposed method performance in terms of Hits@10 is at average 0.6275± 0.0814
in comparison to average Hits@10 of 0.1037± 0.0094 from TransE. This approximately 0.52 gain
in performance is attributed to the importance of hierarchical information captured by the model
through TPR samples, as explained in the previous section.

Table 2
Link prediction scores for TransE and TransE+TPR

Scenario
TransE TransE+TPR

MRR Hits@10 MRR Hits@10

GOA18-19
sc-1 0.0321 0.0933 0.2552 0.5857

sc-2.1 0.0397 0.0981 0.1347 0.4186
sc-2.2 0.0505 0.1098 0.1692 0.6100

GOA19-20
sc-1 0.0478 0.1433 0.1971 0.4849

sc-2.1 0.0338 0.0927 0.2021 0.6800
sc-2.2 0.0438 0.1080 0.1967 0.6609

GOA20-21
sc-1 0.0518 0.1439 0.1807 0.4738

sc-2.1 0.0441 0.1132 0.2340 0.7066
sc-2.2 0.0501 0.1376 0.1589 0.5674

GOA21-22
sc-1 0.0396 0.1126 0.1387 0.3762

sc-2.1 0.0426 0.0990 0.1669 0.5207
sc-2.2 0.0466 0.1149 0.1711 0.5700

Even though TransE+TPR method achieved the highest accuracy scores for Scenario 2 almost each
dataset, further study requires to determine the optimal depth for hierarchical class addition of GO
semantic to receive the best prediction accuracy. Also, distinguishing annotations based on evidence,
such as types of experiments or automatically generated, then treating them accordingly might have
an impact on prediction accuracy. Furthermore, we think that training a KGE with several versions
of the data will enhance the effectiveness of the KGE in link prediction. Lastly, the training-test split,
which takes into account gene traits such orthology, can be used to test link prediction stability. We
leave these topics open to be covered in future work.

References

[1] J. A. Blake, Ten quick tips for using the gene ontology, PLoS computational biology 9 (2013)
e1003343.

[2] G. O. Consortium, The gene ontology resource: 20 years and still going strong, Nucleic acids
research 47 (2019) D330–D338.

[3] M. Wang, L. Qiu, X. Wang, A survey on knowledge graph embeddings for link prediction,
Symmetry 13 (2021) 485.

[4] Y. Zhao, J. Wang, J. Chen, X. Zhang, M. Guo, G. Yu, A literature review of gene function prediction
by modeling gene ontology, Frontiers in Genetics 11 (2020) 400.

[5] G. Valentini, True path rule hierarchical ensembles, in: International Workshop on Multiple
Classifier Systems, Springer, 2009, pp. 232–241.

[6] M. Kulmanov, F. Z. Smaili, X. Gao, R. Hoehndorf, Semantic similarity and machine learning with
ontologies, Briefings in bioinformatics 22 (2021) bbaa199.

[7] Y. Dai, S. Wang, N. N. Xiong, W. Guo, A survey on knowledge graph embedding: Approaches,
applications and benchmarks, Electronics 9 (2020) 750.

[8] A. Bordes, N. Usunier, A. Garcia-Duran, J. Weston, O. Yakhnenko, Translating embeddings for
modeling multi-relational data, Advances in neural information processing systems 26 (2013).

	1 Introduction
	2 Methodology
	3 Dataset
	4 Experimental Design
	5 Result and Conclusion

