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Abstract
Embodied artificially intelligent agents teaming with humans in industrial environments must be safe and
trustworthy, their behaviour predictable, and their rationale explainable. In addressing these extremely
wide requirements, we take the knowledge representation angle. Adopting Gärdenfors’s Conceptual
Space framework, learnt concepts are represented as regions across inherently interpretable quality
dimensions, while classification of instances proceeds using a simple derivative model assuming fuzzy
category membership. In our use case from the manufacturing domain, the quality dimensions consist of
physical properties retrievable from the agent’s sensors and utilisation properties from crowdsourced
commonsense knowledge. This heterogeneous property decomposition approach allows for flexible
concept acquisition and manipulation, particularly useful for industrial settings often characterised by
highly specific artefacts and thus data scarcity, which may impact the effectiveness of the state-of-the-art
data-hungry — and typically opaque — computer-vision based approaches.
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1. Introduction and Context

Artificial intelligence (AI) is used across various industry domains, where it achieves state-of-
the-art performance in various specific applications, approaching or surpassing human-level
performance on cognitive tasks (e.g., [1, 2]).

Sometimes AI is employed in applications where its impact on human safety must be consid-
ered, such as embodied AI agents cooperating with humans in performing physical tasks and
AI embedded on board an aircraft or a spacecraft. This consideration is particularly relevant for
the aerospace domain, where AI may be used across multiple stages of the products’ life cycle,
most notably manufacturing and operations stages, for example:

• Manufacturing

– Optimisations by means of scheduling resources for minimising makespan (the time
taken to work from start to finish);

– Automated visual inspection of components and anomaly detection;
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– Planning task execution for embodied AI agents cooperating with humans on the
shop floor;

– Naturally cooperating with humans using natural language for receiving commands
and reporting events;

– Hybrid modelling of systems combining first principles from domain theory and
data-driven optimisation approaches;

• Operations:

– Cognitive assistance and natural language interaction in the cockpit to ease the
pilot’s task and increase safety;

– Automated decision making in fleet management;
– Space and defence operations involving extremely reliable semantic interpretations

of images and videos.

High-performing AI systems, often based on deep neural network models (deep learning),
tend to be black boxes in that their internal knowledge, rationale, and decision making may
not be readily interpretable to the human users and subjects. Even based on this very limited
set of examples of AI usage in the aerospace industry it is clear that the impact of AI systems’
decisions may be catastrophic if misdesigned. Thus, a question arises of AI trustworthiness
and certifiability. These questions have been a matter of extensive research (e.g., a multi-year
consortium programme run by DARPA [3]) and legislation processes conducted by top-level
governing bodies in aerospace and other industries, as well as society in general.

Explainable AI (XAI) is a discipline within the AI research field recognised as one of the
cornerstones of AI trustworthiness. In fact, the European Commission’s High Level Expert
Group on Artificial Intelligence identifies explainability (or explicability) as one of the four
ethical principles fundamental for trustworthiness of AI, the other three being respect for
human autonomy, prevention of harm, and fairness [4]. Furthermore, the Group specifies
seven key requirements that are to be addressed throughout an AI product’s lifecycle, from
which ‘transparency’, ‘accountability’, and ‘human agency and oversight’ are ones clearly
related to explainability. These guidelines are upheld by the European Union Aviation Safety
Agency (EASA), focussing on certifiability challenges that black-box AI models impose, echoing
explainability as one of the three main components of trustworthy AI [5], and fully recognising
human-centricity in its AI Roadmap [6].

Endowing an AI system with explainability implies providing interpretable explanations
of the system’s rationale and outputs [7, 8]. Explanation appropriateness [9] depends on the
application context (e.g., time criticality, computing resource constraints) and the role of the
human user [10, 11]. Namely, a developer will have different requirements from explainability
to help them debug a system from requirements of a pilot, who may need to understand the AI
system’s recommendation in a very time-critical manner, or a certifier, who may have weeks at
their disposal to properly understand the system’s decision making rationale and endorse it for
use in operation.

Much of the extant work in XAI focuses on post-hoc explainability, i.e., providing expla-
nations of an already existing black-box AI system a posteriori. Some of the more popular
techniques in this family of techniques include, among others, feature importance analysis



(e.g., SHAP [12], LIME [8]), saliency maps [13], and surrogate modelling by using a simpler,
inherently interpretable model, like linear regression or decision trees, to explain the system’s
behaviour.

On the other hand, taking explainability into account in the design phase of the AI sys-
tem’s life-cycle leads to them being more intrinsically (or inherently) explainable. It is worth
noting that we do not consider intrinsic explainability as equivalent to algorithmic or model
transparency (e.g., [7]). Instead, in the current work we take an approach towards more in-
trinsically explainable AI by focusing on the artificial agent’s knowledge representation and
its interpretability and understandability for the human. We model the agent’s knowledge by
complementarily combining information obtained by the agent’s sensors and openly available
general knowledge sources to achieve a high level of knowledge representation flexibility. This
will be of particular importance in the settings where pure statistical learning may struggle to
capture relevant concepts due to scarcity of available data for rare and specific objects, and in
turn to provide a human-understandable account of its rationale and predictions.

2. Knowledge Representation and Inference of (Embodied) AI
Agents

An AI agent interacting with human operators or users, particularly if embodied, must be aware
of its environment to ensure safe operation. For instance, it should be able to detect and interpret
physical objects and categorise events taking place in its surroundings. Interpretability of the
embodied AI agent’s knowledge content and acquisition processes arguably affords higher
trustworthiness of such a system and facilitates its certifiability.

When modelling an artificial agent’s knowledge, a classical, long-standing dilemma is en-
countered regarding the trade-off between the connectionist (neural) and symbolic knowledge
representation. The neural modelling excels in learning from statistical regularities inherent
in the input data, while these models struggle with concept combinations and interpretabil-
ity of the resulting knowledge representation. The symbolic view models knowledge using
interpretable symbols, amenable for formal logical calculations and syntactic manipulations
generating concept combinations, while struggling with mechanistic modelling of concept
acquisition processes.

As a naturally intelligent mind indisputably excels at all the above qualities, AI has been in
search of the right level of knowledge representation that incorporates and successfully models
these qualities in a theoretically sound and computationally amenable manner.

2.1. Conceptual Level of Knowledge Representation

The Conceptual Space theory [14, 15] proposes the conceptual level of knowledge representation,
which is situated between the symbolic and neural representation levels. It adopts basic tenets
of cognitive semantics, thus acknowledging that the meaning itself is realised within the
agent’s reasoning system rather than objective and external to the agent. It takes into account
empirically founded phenomena such as prototype-based concept organisation [16, 17, 18] and
schematicity [19].



A conceptual space is a geometric space spanned by quality dimensions. Quality dimensions
group into integral groups constituting quality domains. Examples of quality domains are colour,
size, and taste, while examples of integral quality dimensions are hue, saturation, and brightness
(of colour). Properties (e.g., green) are convex regions of quality domains, concepts (e.g., apple)
are intersections — again, convex — of relevant properties, while individual objects are points
in the space, characterised by specific values of pertinent quality dimensions. When properties
to describe a concept are languageable, it is possible to remark that such a conceptual space
represents an inherently interpretable conceptual knowledge representation of a reasoning
agent.

As this representation is geometrically organised, it is possible to compare objects and
quantify their similarities employing well-established distance metrics, such as Euclidean or
Manhattan. Comparison of instances in the space of quality dimensions overcomes a typical
pitfall in pure distributional semantic approaches, where it is sometimes a challenge to discern
between similarity (e.g., aeroplane–rocket) and relatedness (e.g., aeroplane–pilot). Concept
combination is modelled by overlapping space regions, while space transformation operations
are defined for accounting for metaphor and metonymy. It is worth noting that, taking into
account the cognitive motivation of the theoretical framework, quality dimensions are seen
as essentially cognitive constructs that model the conceptual structure consistently with the
cognitive semantics tenets. Euclidean space may sometimes not be the most appropriate
model; instead, the polar coordinate system is sometimes more suitable (e.g., for colour; see
[14]). Consequently, when operationalising the framework special attention should be paid to
choosing the correct set — and structure [20] — of quality dimensions, bearing in mind some
may not be languageable, especially in case of abstract concepts (e.g., love, idea, strength).

In the context of AI trustworthiness, the Conceptual Space framework adds to interpretability
in multiple ways. On the one hand, a conceptual space can be seen as an interpretable knowledge
representation level as the space itself is typically spanned by languageable (or at least inter-
pretable) quality dimensions. This should be of high usability for a developer of such a system
for debugging it and identifying its vulnerabilities, or an examiner (e.g., certifier) who will want
to understand the AI agent’s contained knowledge as input to its endorsement for operation
in an environment involving humans. On the other hand, it can be viewed as an interpretable
‘checkpoint’ in neuro-symbolic mapping. Namely, sensory information is abstracted to the
geometrically organised space via pertaining quality dimensions, while arbitrary symbols are
grounded onto concepts represented as convex regions of the space.

There are already a few implementations of Conceptual Spaces (e.g., [21]) as well as quite a
few applications in various domains [22]. While some of them proved promising for particular
use cases, we found a previously conceived simple model for typicality quantification serves
the current use case adequately.

3. Classification and Typicality Model

We draw inspiration from Gärdenfors’s original framework and propose to use a simple model
aimed at formalising interpretable classification of artefacts in the manufacturing domain. We
employ the property decomposition approach in representing concepts and assume the graded



Figure 1: Left: Illustration of the membership functions 𝜇 for a continuous quality dimension 𝑚𝑎𝑠𝑠
across three example concepts. Prototypical instances are assumed to bear prototypical value of the
property. Right: Illustration of a nominal quality dimension 𝑝𝑟𝑜𝑐𝑟𝑒𝑎𝑡𝑖𝑜𝑛 for the 𝐵𝑖𝑟𝑑 concept.

membership of their instances, i.e., we do not adopt the Aristotelian view on categorisation
governed by necessary and sufficient conditions; instead, we represent categories as fuzzy
sets [23]. Therefore, instances are members of categories to various degrees expressible by a
real-valued membership function, while also taking into account different property weights.

Concretely, the model, called µw-model [24], is based on the prototype theory [16]. It uses
two parameters to classify an instance (e.g., a concrete object) and quantify its typicality: the
membership function (𝜇) and the property weight (𝑤). The membership function 𝜇 is defined
for distribution of values for each quality dimension of a concept, while the property weight 𝑤
is defined per quality domain for a specific concept.

Fig. 1 illustrates the membership function 𝜇 for a continuous and a nominal quality dimension.
Its distributions clearly indicate how typical an instance would be with respect to values of each
of these properties. For example, a dolphin instance is a typical fish with respect to shape, but
an untypical one with respect to procreation (Fig. 1 right). In fact, this exemplifies the impact of
lexical definition constraints and theories that may supersede similarity-based classification
(see, e.g., [25]). These constraints are learnt explicitly with the aim of consensual definitions
amongst the community for efficient communication [26] and are beyond the scope of the
current work focussing on a limited domain.

The weights 𝑤 allow us to quantify the importance of different quality domains for the
typicality of instances across concepts. For example, colour is an important diagnostic property
for many natural kinds [17], especially those that do not have a high variability thereof across
the specimens; conversely, colour tends to be less conceptually central (e.g., [27]) for artefacts
since many can be painted arbitrarily.

Both of these parameters are learnt from the agent’s supervised experience in the environment,
which entails obtaining labels of instances from the domain expert. Concretely, the distributions
over property values utilised by the 𝜇 parameter are learnt in a frequentist manner across
labelled instances characterised by quality dimension values extracted from own sensors or
retrieved from knowledge bases (see § 4). The property weights 𝑤 pondering these properties in
classification are learnt in a theory-based manner, using causal status hypotheses [28, 29]. For
instance, relying on the notion of conceptual centrality [27], it has been empirically proven that
the property weight is inversely proportional to its mutability and variability across concept
instances [30]. For example, colour is more conceptually central (thus bears higher weight



𝑤) for orange than for apple because the orange concept has lower mutability and variability
of colour across its instances than the apple one. Formal systematic quantification of the µw-
model’s parameters are beyond the scope of this paper; however, for theoretical development
and empirical findings please consult the above references.

The µw-model allows for quantification of an instance’s typicality with respect to a concept.
Specifically, an instance is represented as a vector whose dimensions are the quality dimensions
spanning the conceptual space, while each coefficient is the membership function value pondered
by the root of the normalised weight, namely:

−→𝑟𝐶(𝑐) =
∑︁
𝑖

√︃
𝑤𝑖(𝐶)∑︀
𝑗 𝑤𝑗(𝐶)

𝜇𝐴𝐶
𝑖
(𝑞) · −→𝑒𝑖 (1)

where 𝑖 denotes a quality dimension (e.g., height), −→𝑒𝑖 are basis vectors spanning the space, 𝑗 is
a quality domain (e.g., taste), 𝑞 is an instance, 𝑞𝑖 is the value of the quality dimension 𝑖 for that
instance (e.g., 51 cm), 𝑤𝑖(𝐶) is the weight of the quality dimension 𝑖 for the concept 𝐶 , and
𝜇𝐴𝐶

𝑖
(𝑞) is the typicality measure of the instance 𝑞 for the concept 𝐶 with respect to the quality

dimension 𝑖 (e.g., the representativeness of ‘this tiger-striped ball’ for the concept tiger with
respect to the quality dimension texture; which would be high for this dimension, but extremely
low for virtually any other dimension).

The typicality of an instance in the frame of the context is represented as the second norm of
the vector from Eq. 1, namely:

𝑅𝐶(𝑐) = ‖−→𝑟𝐶(𝑐)‖ =

√︃∑︁
𝑖

𝑤𝑖(𝐶)∑︀
𝑗 𝑤𝑗(𝐶)

𝜇2
𝐴𝐶

𝑖
(𝑞) (2)

The concept for which its representativeness (Eq. 2) is the highest is calculated in the straight-
forward way:

𝐶𝑎𝑡(𝑐) = max
𝐶

𝑅𝐶(𝑐) (3)

Such non-binary classification output allows for exploration into the predictor’s rationale and
intrinsically interpretable factors that influenced the prediction.

4. Crowdsourced Knowledge Component

Humans possess a vast amount of reusable knowledge components — based on the commonsense
knowledge — consisting of empirically acquired high-level hypotheses imposing constraints on
the interpretation of situations and tasks at hand [31, 20]. Understandably, such knowledge is
elusive for AI agents and its acquisition and formulation is anything but trivial. Without it, an
agent is left with imperfect priors to rely on, stemming from its modest experience with the
very constrained domain environment it is typically embedded in.

Fortunately, there are openly available knowledge bases comprising general and connotative
knowledge in a structured form, thus computationally amenable for the AI agent. These
knowledge bases are typically ontologies [32], hierarchies [33], or other types of knowledge



graphs. They are generally obtained through manual or semi-automatic specification of concepts
and their interrelationships, sometimes with the aid of crowdsourcing.

ConceptNet [34] is an openly available resource comprising general knowledge obtained
from extant manually crafted knowledge bases (e.g., Wiktionary, OpenCyc [32]) and dedicated
large-scale crowdsourcing campaigns. The resulting multilingual knowledge graph contains 8
million nodes (concepts — words or syntagms) and 21 million edges (relations between concepts).
What makes it particularly interesting is that there are only 36 different relations, making the
resource semantically parsimonious as well as reasonably tidy and manageable. Authors have
validated the soundness of ConceptNet’s inherent semantics by combining then-state-of-the-
art word embeddings with ConceptNet using a modified version of the so-called retrofitting
technique [35], demonstrating that distributional semantics endowed with input from general
knowledge graphs yield higher performance on a standard linguistic task of word relatedness
quantification.

Given the context of human-machine interaction in an operational environment such as
manufacturing, incorporating commonsense knowledge (concretely, about artefact utilisation)
is a crucial input for modelling the knowledge module of an AI agent teaming with the human
operator. This is particularly important in use cases where artefacts are quite specific and
training the agent to classify objects based solely on computer vision-based machine learning
techniques may be difficult due to insufficient training data, and mistaking an object’s purpose
due to incorrect similarity-based object classification may prove detrimental.

ConceptNet’s knowledge contained among relations such as UsedFor, MadeOf, or PartOf
addresses this very problem successfully. These properties will have significant weights in the
context of representativeness measurement using the µw-model (see § 3).

5. Manufacturing Domain Use Case

Whilst robotics are not unfamiliar within a factory setting, they are often relied upon for repeti-
tive tasks, such as drilling, or assembly. Their strength and precision make them ideally suited
to these highly constrained applications, and are showing key improvements in productivity
[36]. In the mid-term future it is expected that humans shall be accompanied by embodied arti-
ficially intelligent agents, which will team with humans in performing various tasks, in order to
optimise execution times and reduce non-productive time, for example, to make hand-held tools
available where needed and when needed, to assist the human in repetitive tasks, to alert the
human of possible deviations and risks in execution, etc. More recent developments in robotics,
and human-robot interaction, allow additional utility through the use of collaborative robots,
or ‘cobots’. These ‘cobots’ will be able to assist in faster, safer, and higher quality completion of
industrial activities.

To extend the environment awareness of cobots, we need to ensure recognition of new objects
that both offer powerful performance, as well as clear, understandable explanations for the
outcomes of machine classifications. We model the artificial agent’s knowledge interpretably
using the Conceptual Space framework [14] to ensure performant recognition of previously
unseen objects, while at the same time helping to build trust and confidence in the system
(from a system developer, certifier, and operator perspective) and reduce cognitive loadings of



Figure 2: The artificial agent wants to classify a new object (upper right image) and extracts its physical
and utilisation properties. The table (below) illustrates the 𝜇 and 𝑤 values for the ‘Drill’ concept.
Although the new object is physically similar to the learnt ‘Drill’ prototype (upper left image shows
a typical instance of ‘Drill’), it will not be classified as one due to incompatibility of the utilisation
property bearing the highest weight.

explanation consumers. For instance, a system which can classify something as a drill because it
has a similar size, colour, and shape as previously seen drills, and, crucially, utilisation properties
indicating the unseen item is used for drilling, allows for an interpretable classification from
the system — i.e., ‘I believe this is a drill as it looks similar to other drills I’ve seen in the past, and
it is used for drilling’. Conversely, an object that bears surface similarities to previously seen
drill instances yet is perceived to be used for riveting should instead be classified as a riveter,
reflected by expectation that utilisation properties of industrial artefacts are more important for
their classification than their surface properties (Fig. 2).

This has the additional benefit of helping tackle the data scarcity problem — particularly
in environments which are non-typical — where data-hungry computer vision algorithms are
starved of their normal surfeit of images.

5.1. From Object Detection to Property Decomposition

Within the context of our research, the current industrial setup does not readily allow for
deployment of cobots on the factory floor, so we have instead relied on a simulated environment
to provide training data and to gain feedback and validation of the proposed methodologies. The
Webots Open Source Robotics Simulator [37] was used to create, in the first instance, a simple
‘playground’ environment with a controllable e-puck robot [38] equipped with a simple sensor
package, including standard vision sensor (i.e., a camera) as well as a time-of-flight sensor.



Figure 3: Simulated industrial use case environment. We start with the simple case with simulated
idealised objects (upper left), such as ‘Red Sphere’, ‘Wooden Cube’, etc. The robot encounters these objects
treated as prototypes and extracts ground-truth property values available from the simulator (‘colour’,
‘shape’, ‘composition’), used as the basis for learning the conceptual space by Voronoi tessellation.
Having validated the data pipeline and knowledge representation modelling, we moved towards the
more ecologically valid manufacturing simulated environment (upper middle), where quality dimensions
include physical properties like ‘size’, ‘texture’, ‘composition’, and utilisation properties. Generally,
every instance’s quality dimension values are used as input for membership quantification per various
concepts of interest. The spider charts (lower) show example membership values per quality dimensions
across four artefact concepts for two example observations, one in orange, the other in red. Together
with the quality domain weights (currently arbitrated, in the future quantified via empirical hypotheses,
see § 3 and § 6), these membership values make up the vector representation of the instance, as per
Eq. 1. The bar chart (upper right) represents the typicality of the two example instances across the four
observed concepts, calculated via Eq. 2.

Throughout the simulation environment are a number of different objects. In the first iteration
of the environment (Fig. 3), these were simplistic idealised example objects, such as a ‘Green
Ball’ or ‘Red Cube’, to allow for ‘easier’ recognition. As the environment develops, additional
objects are introduced, which are either ‘off the shelf’ or custom created, to represent real-world,
ecologically relevant, objects such as a hammer or screwdriver.

Within the simulation environment we attach additional custom properties to the objects (e.g.
stripy texture). That way ground truth values can be gained from the simulation environment,
such as colour, texture, utilisation properties, etc. This, along with the provided labels of the
encountered objects, provides a baseline from which to learn the conceptual representation.
Concretely, a conceptual space is learnt by Voronoi tessellation [39] around prototypes1. In the

1It is worth noting that, apart from prototype-centric categorisation, literature also suggests exemplar-based concept



simple introductory use case the idealised objects are considered to already be prototypes in
order to expedite the proof-of-concept space construction, while in the more complex cases
prototypes are calculated as centroids of the acquired labelled instances at training time.

As the robot is controlled throughout the world, the field-of-view of the camera is calculated,
and any objects which come into sight then trigger the robot controller to submit the current
image to our API, alongside the ground truth properties relating to the object.

During real-world implementation, we would anticipate that the capturing of images and
detection of objects would be carried out using state-of-the-art object detection algorithms.
However, as these are not the focus of our research, we utilise ground truth data and imagery
directly from the simulation environment, while the property detectors are a matter for other
active AI research . This has the added benefit of allowing the user to select the most appropriate
algorithm for their particular use case.

Once submitted to the API, a number of property detectors are applied to extract properties of
the observed object. These take two broad categories of detectors: physical property detectors;
and utilisation property detectors. Basic physical properties can be inferred from the sensors
on the robotic platform. Examples of properties we have experimented with include:

• Texture – using Concept Activation Vectors [41] to determine distinctive textural proper-
ties of an object, e.g. stripey, smooth, etc.;

• Colour – using simple computer vision approaches to determine the dominant colour of
the object. Colour is represented within the HSB colour space;

• Shape – building on work by Lucas Bechberger to define the shape of the object with just
a few properties [42];

• Size – determined by a depth-aware camera.

Utilisation properties, evocative of affordances [43], are properties which require additional
transformation to derive. Sources for these could include:

• Task recognition through computer vision techniques to determine which tasks (if any)
are being carried out in the observed video stream, e.g. ‘hammering’ or ‘drilling’;

• Crowdsourced knowledge base, providing information on uses of particular entities within
its knowledge graph.

In the current stage of our research we use the latter for extracting the utilisation properties.
Concretely, we use ConceptNet’s (see § 4) API2 to acquire crowdsourced values for the UsedFor
property of various manufacturing artefacts (e.g., drill). Each response (e.g., ‘drilling holes in
things’) is accompanied by the weight, reflecting the reliability of the source. Due to the nature
of free-form submissions, messiness of the corresponding response cannot be avoided (e.g.,
there is a separate response entry for ‘drilling holes in things’ and ‘drill a hole in something’),
which means we cannot copy the weight values to our 𝜇𝑤-model context. Instead, we group all
responses with similar semantics, such as the examples above, and run the softmax function

organisation [40], which may be a matter of future work.
2http://api.conceptnet.io (accessed on 23 March 2022)

http://api.conceptnet.io


𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛
𝐸𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡

𝑉 𝑖𝑟𝑡𝑢𝑎𝑙
𝑆𝑒𝑛𝑠𝑜𝑟𝑠

𝐴𝑃𝐼
𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦
𝐸𝑥𝑡𝑟𝑎𝑐𝑡𝑜𝑟𝑠

𝐼𝑛𝑡𝑒𝑟𝑝𝑟𝑒𝑡𝑎𝑏𝑙𝑒
𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛

Figure 4: High-level data flow from simulated environment to interpretable classification system.

across all weights of semantically different items to acquire the quantity that we use to ground
the membership function3 for this utilisation property. Concretely, we get

𝜇𝐴𝐷𝑟𝑖𝑙𝑙
𝑈𝑠𝑒𝑑𝐹𝑜𝑟

(𝑡ℎ𝑖𝑠_𝑜𝑏𝑗𝑒𝑐𝑡_𝑏𝑒𝑖𝑛𝑔_𝑢𝑠𝑒𝑑_𝑓𝑜𝑟_𝑑𝑟𝑖𝑙𝑙𝑖𝑛𝑔_ℎ𝑜𝑙𝑒𝑠) = 0.9999997

which is a reasonable quantity. This and other quality dimensions’ membership values, along
with dimension weights, make up the representativeness vector (Eq. 1), from which we measure
the instance’s typicality across concepts (Eq. 2) and determine in which one its representativeness
is the highest (Eq. 3, visualised in Fig. 3).

Through this approach we aim to move from an object detection approach to a property
detection based approach, and provide a sample pipeline (Fig. 4) for how this can be implemented
within a simulated environment. The majority of this pipeline, from the API onward, will then
allow for the implementation of state-of-the-art property detectors. Similarly, the simulation
environment could be substituted with real-world cobots with real-world sensors maintaining
the same interfaces throughout.

5.2. Qualitative Validation

As an industrial implementation, we have had to seek validation from future end users across
a number of different stakeholders, showing that the system has a grounding in reality and
could form the basis of a deployed industrial system. Validation must be sought at a strategic
level — that our proposal fits in with the strategic direction being taken by the company. In our
context, this has involved engaging directly with technical roadmap owners, who have strategic
oversight of AI and Robotics. Feedback from these stakeholders confirms that our approach is
compatible with a vision of the future industrial set up.

Consideration has also been given to how classification results are returned to users in a
meaningful way. Fortunately, the inherently explainable nature of the classification process
can make simple explanations relatively easy, e.g. ‘This is a drill because it is the right size and
shape and is used for drilling’. Visualisations can also be of assistance. One approach taken is
the use of a spider (or radar) chart (see Fig. 3). Each of the axes (from 0 to 1) represents one the
dimensions of a concept, with 0 being ‘not at all typical’ to 1 being ‘prototypical’. Therefore,
it is possible to map different observations on this space and the larger the area of overlap
between the observation and the prototype the higher the typicality of the instance with respect
to that class. A user can have a quick insight into how ‘well matched’ the observation is and
gain confidence in the system.

3Somewhat counterintuitively, what is called ‘weight’ in the ConceptNet system is semantically closer to the
membership function 𝜇 of the µw-model than the weight parameter 𝑤. See § 3 for details.



6. Conclusion and Future Work

We focus on (embodied) artificially intelligent agents teaming with humans in industrial environ-
ments. In this context, we propose a flexible knowledge representation building block aimed at
increasing the agent’s environment awareness, its operational predictability, and explainability
of its rationale, ultimately leading to increased trustworthiness of the AI system, thus paving
the way to its certifiability.

We pursue a heterogeneous knowledge modelling approach, relying on physical proper-
ties acquirable by equipped sensors and utilisation properties obtained from openly available
crowdsourced commonsense knowledge bases. These properties are represented on a common
representation model drawing inspiration from Gärdenfors’s Conceptual Space framework. The
model is defined by two parameters: one is the membership function in the context of fuzzy set
theory (quantified frequentistically across different properties); the other represents the weight
of the property (quantifiable based on empirically confirmed hypotheses in the area of cognitive
semantics, which is a matter of upcoming work).

Moving from computer vision-based object recognition to interpretable classification engen-
dered by the property decomposition approach of entity representation is particularly relevant
and useful in applications characterised by data scarcity, i.e., when not many images of highly
specific objects exist (as is the case in our industry) to train a classifier based on (convolutional)
neural networks. Apart from flexibility, inherent interpretability of components constituting
the knowledge representation formalism allows for model inspection by a developer, rigorous
examination by a certifier, and output understandability for an operator using or cooperating
with the AI.

Authors fully recognise that the described work represents a limited use case, which opens
many avenues for future research in the context of knowledge representation and inference
modelling in (embodied) AI agents teaming with humans, and we need to call on the latest
research in the field (e.g. [44]).

Humans as intelligent agents are remarkably successful in learning concepts from very scarce
data [45]. The mechanics and phenomenology of it is of high interest to cognitive science,
cognitive neuroscience, computational neuroscience, and artificial intelligence [45, 46]. The
challenge is to model effortless and reliable processing leading to acquisition of core concepts
and accompanying intuitive theories (e.g., in physics and psychology) as well as generic causal
structures [47]. Unsupervised learning approaches, like autoencoders, are very relevant when
it comes to knowledge representation and concept learning. A successful model contains a
compressed representation of environment phenomena still retaining the right information
necessary for a faithful reconstruction. Some promising generative models are based on Bayesian
reasoning in the context of hierarchies and structures of hypotheses and associated inductive
constraints [20]. An artificial agent’s successful acquisition and manipulation of core concepts
arguably makes its behaviour more predictable, its rationales more interpretable, and it itself
more trustworthy.

Generic causal structures of hyper-hypotheses governing the acquisition and manipulation
of the core concepts give rise to interdependencies among quality domains, which has been
omitted from this paper so far, instead representing quality dimensions via orthogonal basis
vectors. Property correlations are an important part of concepts’ structures (e.g., [48]) as it



has been empirically demonstrated that people effortlessly acquire systematic correlations [49,
50, 51, 52]. For example, the colour of fruit is an indication of its taste and ripeness. These
covariations are particularly immanent to natural kinds and pertaining theoretical developments
deal with causality and hint at the philosophical notion of psychological essentialism, stating that
observable features are only a guidance to the true nature of objects [53, 54]. For artefacts, which
can arguably take arbitrary property values, it makes sense to focus attention on affordances
stemming from an object’s physical properties, which is of particular relevance for the industrial
domain (e.g., a large hand-held object with a steel flat tip is likely used to hit nails).

Apart from (physical) objects, newer work in the Conceptual Space theory looks at modelling
events via force and result vectors [55, 56]. It is a promising research stream and particularly
relevant for the current industrial domain with human-AI teaming. An interesting challenge to
tackle will be interpretability evaluation of quality dimensions representing force patterns that
the event-based extension of the Conceptual Space framework suggests.

An interpretable representation of objects and events would make a good basis for a declarative
knowledge module of a cognitive architecture [57, 58] used for cognitive modelling typical
for scenarios involving cognitive assistance (e.g., [59]), particularly task modelling, behaviour
deviation detection, and cognitive load quantification. While using subsymbolic formalisms for
declarative knowledge representation is not novel (e.g., [25, 60]), their utilisation and validation
are yet to be demonstrated in industrial environments and highly critical applications involving
AI.

Finally, it is important to reiterate that explainability, albeit undeniably important in human-
centric applications, is but one pillar of AI trustworthiness and certifiability. Responsible and
ethical design of AI is a sine qua non for such use cases. Other notable research areas compatible
with explainability are robustness and learning assurance, and fairness and non-discrimination
[4, 5, 6]). Clearly, the path towards AI trustworthiness is complex and multi-faceted, and will be
difficult to address without interdisciplinary research, ideally conducted jointly by industry and
academia.
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