CEUR-WS.org/Vol-3330/Paper—-02-QUASOQ.pdf

A Composite Discover Method for Gadget Chains in Java

Deserialization Vulnerability

Zhaojia Lai!, Haipeng Qu™* and Lingyun Ying?

'Ocean University of China, Qingdao, China
2QI-ANXIN Techlology Research Institute, Beijing, China

Abstract

The Java deserialization vulnerability is the most dangerous and widely affected. Since this vulnerability was proposed,
numerous security practitioners have studied it and developed related detection and defence tools. The discovery of the
program’s potential gadget chains is the most effective defensive measure. Previously, gadget chains have relied on manual
search. Automating discover gadget chains is essential for Java security. However, there are no practical tools to achieve this.

So, we propose a new composite discovery method that generates the corresponding byte streams based on the static
analysis results and performs deserialization detection. Our innovation combines serialization protocols and reflection
mechanisms to generate objects dynamically and implement attack injection and detection. The evaluation verified its
effectiveness, where we found 52 available gadget chains in Apache Commons Collections.

Keywords

Java security, static analysis, dynamic verification

1. Introduction

Java serialization is a mechanism for converting an object
to a byte stream, which significantly expands the abil-
ity of Java programs to transfer objects in networks[1]
and provides the condition for RMI(Remote Method
Invocation)[2]. Java deserialization is the reverse of
Java serialization. It reconstructs a byte stream to an
objects[3]. However, this process could trigger some
magic methods that can spontaneously call other meth-
ods, perhaps even another magic method. Magic methods
make up the gadget chain[4].

An attacker can construct a byte stream to control the
method call chain during deserialization and trigger dan-
gerous methods. It could cause a privilege escalation, in-
formation disclosure, and RCE(remote code execution)[5].
In addition, this vulnerability is also widely spread. It has
dramatically affected many well-known programs such
as Weblogic, Jboss, etc[6]. The total of Java deserializa-
tion vulnerabilities in CVE(Common Vulnerabilities &
Exposures) is increasing yearly. In 2021, up to 17% of Java-
related CVEs are related to Java deserialization. Most of
such vulnerabilities are high-risk due to RCE(eg.CVE-
2021-36981[7], CVE-2021-35464[8]).

Although there are already programs[9, 10, 11] to de-
tect and intercept such attacks, we prefer to detect po-

QuASoQ 2022: 10th International Workshop on Quantitative Ap-
proaches to Software Quality, December 06, 2022, virtual
* Corresponding author

edomichelan@stu.ouc.edu.cn (Z. Lai); Quhaipeng@ouc.edu.cn
& Redomichelan@ du.cn (Z. Lai); Quhaipeng@ouc.ed
(H. Qu); yinglingyun@gqianxin.com (L. Ying)
® 0000-0002-3402-1438 (Z. Lai)
© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License

Attribution 4.0 International (CC BY 4.0).

[=22=1 CEUR Workshop Proceedings (CEUR-WS.org)

tential gadget chains during the development process
to maintain the security and stability of the software.
However, there is no good solution for it.

Gadget Inspector[12] is a tool based on static taint
analysis. It uses a very efficient method of symbolic exe-
cution, which generates call graphs efficiently. However,
the lack of static analysis and search strategies makes it
very prone to false positives and negatives. In practice,
it is challenging to generate an effective gadget chain.

Rasheed proposed[13] a Fuzzer based on static analysis
bootstrap, which guides Fuzzer to generate byte stream
through the heap access path. This method relies heavily
on the initial results of static analysis. The problem of too
few static analysis results and the byte stream’s structural
variation will lead to unsatisfactory results. Although it
will not produce false positives, it will still produce many
false negatives.

Therefore, we propose a novel approach to discovering
gadget chains. This approach follows the static analy-
sis of Gadget Inspector to obtain the gadget chains to
be verified. We still use symbolic execution to generate
call graphs in this work. These call graphs can be ab-
stracted into a collection of <caller, callee array>. The
gadget Inspector produces false negatives because it uses
a breadth-first search algorithm (BFS) to traverse the call
graph. This BFS does not consider that multiple gadget
chains may share nodes, which leads to only one of the
multiple gadget chains passing through the same node
will be searched. Therefore, We use a depth-first search
algorithm that traverses a single node multiple times to
avoid this problem.

To remove the false positives in the static analysis,
We propose a matching dynamic verification mechanism

10

mailto:Redomichelan@stu.ouc.edu.cn
mailto:Quhaipeng@ouc.edu.cn
mailto:yinglingyun@qianxin.com
https://orcid.org/0000-0002-3402-1438
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org

We propose a matching dynamic verification mechanism
based on the Java serialization protocol and reflection
mechanisms. This dynamic verification can dynami-
cally generate the object corresponding to each gadget
chain. This method, called GCGM(Gadget Core Growth
Method), collates a class list based on the gadget chain
and generates an object bottom-up according to the gad-
get core. The implementation of GCGM relies on the
Java reflection mechanism, which can get all methods
and properties based on a class name. The objects dy-
namically generated by GCGM will be serialized and
injected with malicious behaviour to generate a byte
stream, which the deserialization portal can verify read-
Object().
Our contributions are as follows:

« We have improved the search algorithm of Gadget
Inspector to reduce false negatives.

+ We propose a dynamic verification to remove
false positives based on Java serialization protocol
and reflection.

2. Related Work

This section will introduce the gadget chain in Java deseri-
alization vulnerability and some detection efforts. These
efforts can be divided into two types, fingerprinting-
based detection, and active discovery detection.

2.1. Gadget Chain

The Java deserialization vulnerability and the first gadget
chain were discovered and proposed by Chris Frohoff[14].
In the Java deserialization vulnerability, the gadget chain
is the method call chain from the deserialization entry
method readObject() to the command execution method
exec()[12].

Java deserialization recovers a byte stream into a Java
object[3]. This complex refactoring process may trig-
ger some magic methods. A magic method will call an-
other method, even another magic method. For example,
HashMap.put() is a magic method because it can automat-
ically call HashMap.hash(). The successive calls of these
magic methods form a gadget chain. The byte stream
determines the gadget chain. An attacker can construct
a byte stream to control the direction of the gadget chain
to trigger some specific methods to achieve remote code
execution.

2.2. Fingerprinting-based Detection

Since many security researchers have discovered many
gadget chains manually, fingerprinting-based detection

11

implemented by integrating these gadget chains is an
efficient detection method.

Ysoserial[14] is a detection program that integrates a
large number of gadget chains. It can quickly generate
payloads for specific Java libraries to detect Java deserial-
ization vulnerabilities. Marshalsec[15] is a tool similar to
Ysoserial, which supports a broader range of libraries but
cannot discover gadget chains. The Java Deserialization
Scanner[16] can confirm the effectiveness of this strategy.
It is a plug-in for the well-known penetration testing tool
Burp Suite. It can use Ysoserial to generate payloads for
penetration testing of targets for deserialization vulnera-
bilities.

However, fingerprinting-based detection can only de-
tect the presence of known gadget chains in the program,
but not unknown gadget chains in the program.

2.3. Active Discovery Detection

Discovering unknown gadget chains in a program is suit-
able for software security.

Haken’s proposed Gadget Inspector[12] in 2017 is the
first to enable the active discovery of gadget chains.

Its implementation relies on the following two key
steps:

1. Generate passthrough dataflow and passthrough
callgraph using symbolic execution.

2. Search gadget chains in the passthrough call-
graph by BFS(Breadth First Search).

Gadget Inspector is an effective tool because it discovers
some new gadget chains in the evaluation. However, it
produces many false positives and false negatives. False
positives are because it is a static analysis tool that does
not generate results in the actual deserialization process.
False negatives are because its search algorithm does not
consider the possibility of multiple gadget chains having
common nodes.

In 2020, Rasheed[13] proposed a hybrid analysis strat-
egy to avoid false positives. It uses static analysis results
as a guide for fuzzing. The advantage is that it does not
make false positives because it will execute a trampo-
line method and observe if the dynamic sink method is
triggered. To get more results, it used fuzzing to mutate
the byte stream. However, the byte stream of Java serial-
ization is highly structured, which makes fuzzing chal-
lenging to perform effectively. This strategy of hybrid
analysis provides new ideas for gadget chain discovery,
but from its evaluation, it makes a lot of false negatives.

3. Propose Approach

This section proposes a new active discovery detection
strategy to reduce false positives and negatives. It is

implemented in two steps: static analysis and dynamic
verification.

Firstly, the static analysis makes many gadget chains.
This step is similar to Gadget Inspector, but we optimize
the search algorithm to get as many gadget chains as pos-
sible to reduce false negatives. The dynamic verification
dynamically generates the corresponding byte stream
based on each gadget chain. These byte streams trigger
the detector during deserialization, while false positives
cannot complete this process.

3.1. Gadget Core

Our work relies on the fact that multiple gadget chains
in the target program may have common vital nodes. We
call such vital nodes gadget core. A gadget chain can be
abstracted as source->gadget core->sink. The subchain
gadget core->sink is called the core chain. The subchain
source->gadget core is called the edge chain.

In a target program, gadget core is always sparse, core
chain is always unique. So we simplify the discovery of
the gadget chain to the discovery of the subchain edge
chain.

Figure 1 shows a gadget chain of the ACC(Apache
Common Collection) library. With the introduction of the
gadget core, the search for gadget chain can be simplified
to the edge chain(HashSet.readObject()->LazyMap.get()),
whitch saves a lot of costs.

3.2. Static Analysis

Static analysis is a technique for fast white-box testing.
Generally, it includes static tainted analyses and static
symbolic execution. Static analysis techniques are com-
monly used in method call chain searches[17]. The sym-
bolic execution algorithm used by Gadget Inspector[12]
is good enough, and we rely on it for our work.

Our static analysis is divided into the following steps:

1. Obtain the class information and method infor-
mation of the target program.

2. Generate call graph by symbolic execution.

3. Search all the edge chain.

In the first stage, all the class information, method
information, and inheritance relationships of the target
class will be obtained. This work will be implemented by
ASM library[18], an excellent Java byte stream manipu-
lation tool.

After that, we use the symbolic execution of the Gadget
Inspector to obtain the call relationship for every method.
These call relationships make up the call graph. This call
graph is stored as a collection of <caller, callee array>.

In the last step, we want the search algorithm to dis-
cover all the edge chain. Figure 2 shows a typical call
graph with four gadget chains. Gadget Inspector can

only find two chains because it can only visit E and F
once.

Therefore, we propose a DFS(Depth First Search).

This DFS has two key parameters. One is the
MTV(maximum time of visits) per node, and the other
is the MCL(maximum chain length) in the search. The
MTV setting allows DFS to search as many gadget chains
as possible by visiting a node multiple times in a search.
MCL limits the search depth, preventing DFS from search-
ing too long and meaningless gadget chains. It backtracks
when loops are encountered, when chain lengths exceed
limits and when the visit times to a node exceed the limit.
The DFS keeps a temporary chain in the search, saves
the temporary chain to the result, and backtracks when
the search reaches the sink method (gadget core).

This strategy ensures we get as many results as possi-
ble without timeouts or memory overflows.

3.3. Dynamic Verification

In this work, we dynamically generate byte streams and
deserialize them to verify availability based on each gad-
get chain. Our work relies on the Java serialization
protocol[19] and the Java reflection[20].

3.3.1. Gadget Core Growth Method

Java reflection allows the program to load the Class ob-
ject based on a class name[20]. The Class object contains
the metadata of the class, including all the methods and
properties. This mechanism and the proposal of the gad-
get core led to the design of GCGM (Gadget Core Growth
Method).

The GCGM will generate an object for each edge chain
based on the static analysis results, which works as fol-
lows:

1. Get the manually constructed gadget core object
as current object according to the gadget chain,
which does not contain malicious behaviour.

2. Get the class name of the node above current
object in the gadget chain as clazz.

3. Use reflection to get the constructor of clazz.

4. Call the constructor of clazz with the current
object as an argument to construct a new object.

5. Set new object to current object.

6. Repeat steps 2-5.

The pseudocode for this method is shown in Algo-
rithm1:
3.3.2. Deserialization Verification

The GCGM allows us to generate objects dynamically
based on an edge chain. The ultimate goal of dynamic

12

| TiedMapEntry.getValue() l

N

| ChainedTransformer.transform() l

| LazyMap.get()

| InvokerTransformer.transform() |

| Method.invoke() |

NativeMethodAccessorImpl.inv
oke()

| Java.lang.Runtime.exec() l

private void readObject(java.io.ObjectInputStream s) {
for (int i=0; i<size; i++) {
E e = (E) s.readObject();
map.put(e, PRESENT);

}
}
| HashSet.readObject()
| HashMap.put() l static final mtt Eash(object key) {
inth;
return (key == null) ? 0 : (h = key.hashCode()) ~ (h
>>> 16);
| HashMap.hash() }
| TiedMapEntry.hashCode() }\\ public V getvalue({
return map.get(key);
}

Gadget Core

public Object get(Object key) {
if (Isuper.map.containsKey(key)) {
Object value = this.factory.transform(key);
super.map.put(key, value);
return value;
Yelse {

return super.map.get(key);

4

public Process exec(String command) throws I0Exception {
return exec(command, null, null);
}

Figure 1: A classic gadget chain in ACC. LazyMap.get() could be a gadget core.

(o8]

Y

Figure 2: A typical call graph.

verification is to determine whether the corresponding

byte stream of this object can trigger the sink method
during the deserialization process. We design a unique
verification method based on the serialization protocol
in this work. This work is based on the highly structured
nature of serialized byte stream.

Figure 3 shows the comparison of two serialized byte
streams. The left of the image shows the byte stream
corresponding to a gadget chain, and the right shows
the byte stream corresponding to the corresponding edge
chain. The difference is the byte stream corresponding to
the core chain. This allows us to modify the byte stream
to add incomplete edge chain to the gadget chain.

Figure 4 illustrates our workflow, which has the fol-
lowing steps.

1. Get the results of static analysis, preprocessing
each edge chain.

2. Pass the edge chain into GCGM as the parameter
to generate the corresponding edge object.

13

Algorithm 1 Gadget Core Growth Mehtod

Input: zo: an edge chain from static analysis; Core: a core object of gadget chain parser, which contains information
about a gadget core.
Return: an object generated by GCGM;

1: set CurrentObject = Core.getCoreObject(zo);
2: set ClassList = Core.getClassList(zo);
3: for i = 0; i<ClassList.length();i++ do
4 CurrentClassName = ClassList[i];
Constructor = Re flection.getConstrctor(CurrentClassName);
Fields = Re flection.getFilds(CurrentClassName);
Types = Reflection.getClass(C'urrentObject) + Reflection.getInterface(CurrentObject)
for Field in Filds do
for T'ype in T'ypes do
10: if Fliled=Type then
11: NewObject = Constructor.newlnstance();
12: set NewObject.Field = CurrentObject;
13: CurrentObject = NewObject;
14: end if
15: end for
16: end for
17: end forreturn CurrentObject;

Y ® N

901 03 00 62 46 60 6A 6C G 61 64 46 51 63 74 6F 72 49 00 69 74 66 72 65 73 68 6F GC 64 78 70 3F A o2 2|01 03 00 02 46 00 oA 6C 6F 61 64 45 61 63 7a 6F 72 49 06 49 74 68 72 65 73 68 6F GC 64 78 70 3F A
440 00 00 00 00 00 oc 77 s . ne. 140 60 60 60 00 00 6C 77 03 00 00 60 10 0P 00 00 ©1 73 72 00 34 G 72 67 26 61 70 61 63 68 65 2

GE 73 74 61 6E 74 54 72 61 6E 73 66 6F 72 GD 65 72 58 76 90 11 41 62 51 94 02 60 @1 4C 60 89 _on:
53 6F BE 73 74 61 6t 74 71 09 7€ 00 03 78 70

TEBE ARG G G Aaae M TR
A 6176 61 IE 6C 61 6F 67 26 4E 75 6D 62 65 72 86
01737160 76 00 00 3¢ 40 @0 00 60 09 60 AC 77 08
6C 75 65 76 61 6c 75 65 78

S JavaTang Tnteger 3 %76
1 wa. Lo :

8R2
888

an illegal command that cannot be executed by
Runtime.exec().
4. Serialize the edge object and the probe object into
e byte stream.
M 5. Inject the illegal command of the probe object
) into the byte stream of the edge object by modify-
ing the byte stream.
6. The acquired byte stream is deserialized, the ille-
gal command will be triggered, and the detector
will catch a specific exception.

ACED

Figure 4: The Process in Dynamic Validation.

4. Evaluate

3. Generate the probe object by passing the core

chain as an argument. This probe object contains To evaluate the effectiveness of our method, we designed

feasibility, inefficiency, comparison, and versatility ex-

14

BadAttribute c "
ExpExceptio oncurren
pERoEp Flat3Map ashMap Flat3Map
ConcurrentSk
Flat3Map Hashtable ipListMap EnumMap H TreePath

TiedMapEntr
y

LazyMap

Figure 5: A Growth Tree in ACC,including 7 gadget chains

periments.

Experimental Environment: The experiments were
implemented on an Intel(R) Core(TM) i3-10100 CPU @
3.60GHz with 16GB of RAM on Windows 10.21H1. Gad-
get Inspector(DFS) and Gadget Catcher were run in Java
8 (release JDK 8u302).

Experimental Setup: In the feasibility experiment,
we will execute the method in the test set and determine
the availability of the technique based on the results. In
the inefficiency experiment, we will observe the impact
of two critical parameters of the method on the efficiency
and results by modifying these two parameters. In the
comparison experiment, we will compare the discovery
of our tool with some other methods mentioned so far.
In the versatility experiment, we will make discoveries
on some other libraries.

Test Set: The following libraries will be used for the
test set in this section.

» Apache Commons Collections 3.1
« Commons Beanutils 1.92

+ Apache Commons Collections4 4.0
« Jython Standalone 2.5.2.

4.1. Results and Discussion

Feasibility Experiment: LazyMap will be set as a gad-
get core in ACC. With default settings, a total of 52 gad-
get chains were discovered. Our results not only hit all
three chains in ysoserial that are suitable for the JDK ver-
sion of CommonsCollections5, CommonsCollections6, and
CommonsCollections7 but also found many other gad-
get chains, which fully verified the correctness of our
strategy. A growth tree is made with some discovered
results in Figure 5, the root node is the gadget core, and
the page node is the outer class capable of triggering the
readObject() methods.

Efficiency Experiment: In this experiment, we verify
MTV(the maximum times of visits to a node) to optimize
default settings.

Table 1
The Result of Efficiency Evaluation Experiment

MTV Static Analysis Dynamic Verification

Time Cost(s) Result | Time Cost(s) Result
50000 862 365724 3673 52
10000 386 74844 125 28
5000 183 37626 58 24
1000 87 7567 8 13
500 51 3816 <1 11
Null > 3d / / /

Table 2

The Result of Camparion Experiment

Discovery Strategy Results Valid Results Time Cost(min)

Gadget Inspector 4 0 <2
Hybrid Analysis 1 1 <20
Composite Discover 52 52 >60

Table 1 shows the results of the efficiency experiments.
This result shows that the number of experimental results
and the time cost are positively related to MTV. At an
MTV of 50,000, it is possible to obtain over 360,000 results
in static analysis and 52 gadget chains after dynamic
calibration, when the time spent is about 1 hour. The
rule that can be summarized is that when MTV is set
more significant, more results can be obtained, but the
time overhead is also more; when MTYV is infinite, the
results cannot be obtained in the expected time.

Comparison Experiment:

In this experiment, we use the ACC library as the test
set. Table 2 shows the three strategies’ search results and
the valid results, Where the results of Gadget Inspector
are from our experiments. The experimental results of
the hybrid analysis strategy are from the original article.
It shows the effectiveness of our discovery strategy over
the other two discovery strategies.

In addition, we also performed a simple runtime com-
parison. Gadget Inspector, a static analysis tool, was able
to produce results in two minutes, the hybrid analysis
approach was able to get results in 19 minutes, while our
method took more than 1h when the MTV was set to
50,000.

Versatility Experiments: We are also trying to use
our strategy for gadget chain discovery for some other
libraries. In this experiment, we found a new gadget
chain in ACC4 by combining the static analysis results
shown in Figure 6. This new gadget chain is not currently
included in ysesorial and can be judged as a new gadget
chain. In addition, the TransformingComparator() method
in this gadget chain can be used as a new gadget core to
implement the discovery of other types of gadget chains.
In our experiments, we initially verified the feasibility

15

HashSet.readObject()

‘ HashMap.put() ‘

‘ HashMap.hash() ‘

‘ TiedMapEntry.hashCode() ‘

‘ TiedMapEntry.getValue() ‘

‘ UlDefaults.get() ‘

TreeMap.get()

transformingComparator.
compare()

‘ ChainedTransformer. ‘
transform()

InstantiateTransformer.
transform()

‘ Java.lang.Runtime.exec() ‘

public V get(Object key) {
Entry<K,V> p = getEntry(key);
return (p==null ? null : p.value);

final Entry<K,V> getEntry(Object key) {
if (comparator != null)
return getEntryUsingComparator(key);

}

final Entry<K,V> getEntryUsingComparator(Object key) {

@SuppressWarnings(“unchecked")

Kk = (K) key;
Comparator<? super K> cpr = comparator;
if (cpr !=null) {

Entry<K,V> p = root;

while (p !=null) {

int cmp = cpr.compare(k, p.key);

public int compare(final | obj1, final I obj2) {
final O valuel = this.transformer.transform(obj1);
final O value2 = this.transformer.transform(obj2);
return this.decorated.compare(valuel, value2);

Figure 6: A new gadget chain with a new path to trigger gadget core.

Table 3
General experiments

library release gadget core
commons-beanutils 19.2 BeanComparator
commons-collections4 4.0 TransformingComparator
jython-standalone 25.2 Comparator

experiments of the three libraries in Table 3 and proved
that this gadget core could be applied to discover gadget
chains.

5. Conclusion

Based on the previous work, we have completed our anal-
ysis strategy. This strategy overcomes the common false
positives and negatives in gadget chain discovery. The
experimental results also prove the correctness and effi-
ciency of our design. We also have a massive advantage
in comparing with other strategies.

On the other hand, this strategy also has limitations
that rely on manual analysis. Finding a suitable gadget
core and building its validation strategy is necessary be-
fore analyzing a new library.

16

References
[1] T. Greanier, Discover the secrets of
the java serialization api, 2021. URL:

https://www.oracle.com/technical-resources
/articles/java/serializationapi.html.

[2] Docs.Oracle.com, Trail: Rmi (the java™ tutorials),
2020. URL: https://docs.oracle.com/javase/tutorial/
rmi/.

[3] Docs.Oracle.com, Objectinputstream (java platform
se 7),2011. URL: https://docs.oracle.com/javase/7/
docs/api/java/io/ObjectInputStream.html.

[4] M. Daconta, When runtime.exec() won’t, 2000. URL:
https://www.ikkisoft.com/stuff/Defending_agains
t_Java_Deserialization_Vulnerabilities.pdf.

[5] J. Forshaw, Are you my type?, 2012. URL:
https://media.blackhat.com/bh-us-12/Briefings/F
orshaw/BH_US_12_Forshaw_Are_You_My_Typ
e_WP.pdf.

[6] B. Stephen, What do weblogic, websphere, jboss,
jenkins, opennms, and your application have in
common? this vulnerability., 2015. URL: https://fo
xglovesecurity.com/2015/11/06/what-do-weblogi
c-websphere-jboss-jenkins-opennms-and-your-a
pplication-have-in-common-this-vulnerability.

[7] C.D. 2021, Cve-2021-36981(vulnerability in sernet

https://www.oracle.com/technical-resources/articles/java/serializationapi.html
https://www.oracle.com/technical-resources/articles/java/serializationapi.html
https://www.oracle.com/technical-resources/articles/java/serializationapi.html
https://docs.oracle.com/javase/tutorial/rmi/
https://docs.oracle.com/javase/tutorial/rmi/
https://docs.oracle.com/javase/7/docs/api/java/io/ObjectInputStream.html
https://docs.oracle.com/javase/7/docs/api/java/io/ObjectInputStream.html
https://www.ikkisoft.com/stuff/Defending_against_Java_Deserialization_Vulnerabilities.pdf
https://www.ikkisoft.com/stuff/Defending_against_Java_Deserialization_Vulnerabilities.pdf
https://media.blackhat.com/bh-us-12/Briefings/Forshaw/BH_US_12_Forshaw_Are_You_My_Type_WP.pdf
https://media.blackhat.com/bh-us-12/Briefings/Forshaw/BH_US_12_Forshaw_Are_You_My_Type_WP.pdf
https://media.blackhat.com/bh-us-12/Briefings/Forshaw/BH_US_12_Forshaw_Are_You_My_Type_WP.pdf
https://media.blackhat.com/bh-us-12/Briefings/Forshaw/BH_US_12_Forshaw_Are_You_My_Type_WP.pdf
https://foxglovesecurity.com/2015/11/06/what-do-weblogic-websphere-jboss-jenkins-opennms-and-your-application-have-in-common-this-vulnerability
https://foxglovesecurity.com/2015/11/06/what-do-weblogic-websphere-jboss-jenkins-opennms-and-your-application-have-in-common-this-vulnerability
https://foxglovesecurity.com/2015/11/06/what-do-weblogic-websphere-jboss-jenkins-opennms-and-your-application-have-in-common-this-vulnerability
https://foxglovesecurity.com/2015/11/06/what-do-weblogic-websphere-jboss-jenkins-opennms-and-your-application-have-in-common-this-vulnerability

(8]

(9]

(10]

(11]

(14]

(17]

verinice 1.22.2), 2021. URL: http://cve.mitre.org/cg
i-bin/cvename.cgi?’name=CVE-2021-36981.
C.D. 2021, Cve-2021-35464(vulnerability in forge-
rock am server 7.0), 2021. URL: http://cve.mitre.or
g/cgi-bin/cvename.cgi?name=CVE-2021-3546.
L. Carettoni, Defending against java de-
serialization vulnerabilities, 2016. URL:
https://www.ikkisoft.com/stuff/Defending_
against_Java_Deserialization_Vulnerabilities.pdf.
S. Cristalli, E. Vignati, D. Bruschi, A. Lanzi, Trusted
execution path for protecting java applications
against deserialization of untrusted data, in: In-
ternational Symposium on Research in Attacks, In-
trusions, and Defenses, Springer, 2018, pp. 445-464.
N. Koutroumpouchos, G. Lavdanis, E. Veroni,
C. Ntantogian, C. Xenakis, Objectmap: Detecting
insecure object deserialization, in: Proceedings of
the 23rd Pan-Hellenic Conference on Informatics,
2019, pp. 67-72.
I. Haken, Automated discovery of deserialization
gadget chains, Proceedings of the Black Hat USA
(2018).
S. Rasheed, J. Dietrich, A hybrid analysis to detect
java serialisation vulnerabilities, in: Proceedings
of the 35th IEEE/ACM International Conference on
Automated Software Engineering, 2020, pp. 1209—
1213.
C. Frohoff, G. Lawrence, ysoserial (a proof-of-
concept tool for generating payloads that exploit
unsafe java object deserialization.), 2015. URL:
https://github.com/frohoff/ysoserial.
M. Bechler, marshalsec, 2017. URL: https://github
.com/mbechler/marshalsec.
F. Dotta, Reliable discovery and exploitation of
java deserialization vulnerabilities, 2017. URL:
https://techblog.mediaservice.net/2017/05/reliable
-discovery-and-exploitation-of-java-deserializati
on-vulnerabilities.
Y. Li, T. Tan, Y. Zhang, J. Xue, Program tailor-
ing: Slicing by sequential criteria, in: 30th Euro-
pean Conference on Object-Oriented Programming
(ECOOP 2016), Schloss Dagstuhl-Leibniz-Zentrum
fuer Informatik, 2016.
E. Bruneton, R. Lenglet, T. Coupaye, Asm: a code
manipulation tool to implement adaptable systems,
Adaptable and extensible component systems 30
(2002).
Docs.oracle.com, Java serialization protocol, 2014.
URL: https://docs.oracle.com/javase/8/docs/platfor
m/serialization/spec/protocol.html.
Docs.oracle.com, Java reflection api, 2014. URL:
https://docs.oracle.com/javase/8/docs/technotes/g
uides/reflection/index.html.

17

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-36981
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-36981
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-3546
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-3546
https://www.ikkisoft.com/stuff/Defending_against_Java_Deserialization_Vulnerabilities.pdf
https://www.ikkisoft.com/stuff/Defending_against_Java_Deserialization_Vulnerabilities.pdf
https://www.ikkisoft.com/stuff/Defending_against_Java_Deserialization_Vulnerabilities.pdf
https://github.com/frohoff/ysoserial
https://github.com/frohoff/ysoserial
https://github.com/mbechler/marshalsec
https://github.com/mbechler/marshalsec
https://techblog.mediaservice.net/2017/05/reliable-discovery-and-exploitation-of-java-deserialization-vulnerabilities
https://techblog.mediaservice.net/2017/05/reliable-discovery-and-exploitation-of-java-deserialization-vulnerabilities
https://techblog.mediaservice.net/2017/05/reliable-discovery-and-exploitation-of-java-deserialization-vulnerabilities
https://techblog.mediaservice.net/2017/05/reliable-discovery-and-exploitation-of-java-deserialization-vulnerabilities
https://docs.oracle.com/javase/8/docs/platform/serialization/spec/protocol.html
https://docs.oracle.com/javase/8/docs/platform/serialization/spec/protocol.html
https://docs.oracle.com/javase/8/docs/technotes/guides/reflection/index.html
https://docs.oracle.com/javase/8/docs/technotes/guides/reflection/index.html

