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Abstract
Measuring the distance between ontological elements is fundamental for ontologymatching. String-based
distance metrics are notorious for shallow syntactic matching. In this exploratory study, we investigate
Wasserstein distance targeting continuous space that can incorporate various types of information.
We use a pre-trained word embeddings system to embed ontology element labels. We examine the
effectiveness of Wasserstein distance for measuring similarity between ontologies, and discovering and
refining matchings between individual elements. Our experiments with the OAEI conference track and
MSE benchmarks achieved competitive results compared to the leading systems.
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1. Introduction

Semantic and structural heterogeneity is widespread among ontologies. To bridge the het-
erogeneity, almost all ontology matching systems [24, 11, 17] need to evaluate the distances
between ontological elements. String-based distance metrics have dominated the field [6].
However, string-based distance metrics are notorious for shallow syntactic matching. It is also
challenging to determine which string similarity measures to use and how to effectively combine
them in matching systems [6]. Aligning elements across different ontologies essentially involves
measuring the semantic similarity/distance of the ontological elements representing items in
the underlying domains. Recently, word embeddings [22] have been used to successfully encode
syntactic and semantic word relationships. As a result, word embeddings have displayed excel-
lent performance in applications for cross-lingual word alignment [14]. Ontology matching
techniques have also been created using embeddings, with embedding vectors predominantly
utilized as inputs in supervised [23, 16] or distantly supervised [7] machine learning models.
While machine learning is effective in making use of ontology embeddings, a significant

effort is required to gather training instances. Although some systems directly use the cosine
similarity between embedding vectors [18] for deriving candidate matchings, the embeddings
are first retrofitted through tailored training instances. In practice, the present top matching
algorithms are largely unsupervised and rely only upon existing ontology and external sources.
Motivated by the desired property of unsupervised learning, we posit the following question: If
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ontology elements can be readily encoded as embedding vectors, can we use them in an unsupervised
fashion for ontology matching?

To research the question, we formulate ontology matching as an optimal transport problem
from a source ontology embedding space to a target ontology embedding space. Optimal Trans-
port (OT) [27] has been applied to various alignment applications including word embeddings
alignment [12], sequence-to-sequence learning [9], heterogeneous domain alignment [8], and
graph comparison and matching [21]. A desired advantage of OT-based approach is unsu-
pervised learning. The OT solution establishes optimal mappings and a shape-based distance
called Wasserstein distance between distributions. In this study, we explore the effectiveness of
Wasserstein distance for ontology matching. Our inquiry focuses on answering the following 3
questions:

1. How effective is Wasserstein distance for measuring similarity between (blocks of) ontologies?
2. How effetive is the coupling matrix accompanying a Wasserstain distance for deriving

alignments between individual ontological elements?
3. How effective is Wasserstain distance for refining matching candidates?

The rest of the paper presents our research and is organized as follows. Section 2 introduces
optimal transport and Wasswerstein distance. Section 3 describes the ontology embeddings
used in this study. Section 4 measures ontology similarity in Wasswerstein distance. Section
5 derives matching candidates. Section 6 refines matching candidates. Section 7 presents our
experiment and results. Section 8 comments on the results. Section 9 discusses related work,
and finally, Section 10 concludes the paper with future directions.

2. Optimal Transport and Wasserstein Distance

Optimal transport (OT) [27] originated as a solution to the problem of transporting masses
from one configuration onto another with the least effort. OT had deep connections with
major economic problems, for example, in logistics, production planning, and network routing,
etc. Since then, optimal transport has been generalized from practical concerns to powerful
mathematical tools for comparing distributions. In particular, given two point sets modeled as
two discrete distributions, optimal transport is an effective approach for discovering a minimum
cost mapping between the two sets. Considering the set of embedding vectors of an ontology as
a set of points, we can apply optimal transport to discover a minimum cost mapping between
two sets of ontology embeddings.

Formally, given two sets of ontology embeddings X = {x𝑖 ∈ ℝ𝑑, 𝑖 = 1..𝑛} and Y = {y𝑗 ∈ ℝ𝑑, 𝑗 =
1..𝑚}, where each embedding is represented as a vector x𝑖 or y𝑗 ∈ ℝ𝑑. Let 𝜇 = ∑𝑛

𝑖=1 𝑝(x𝑖)𝛿x𝑖
be the probability distribution defined on the set X, where 𝛿x𝑖 is the Dirac at the point x𝑖 and
𝑝(x𝑖) is a probability weight associated with the point x𝑖. Similarly, let 𝜈 = ∑𝑛

𝑗=1 𝑞(y𝑗)𝛿y𝑗 be the
probability distribution defined on the set Y, where 𝛿y𝑗 is the Dirac at the point y𝑗 and 𝑞(y𝑗)
is a probability weight associated with the point y𝑗. Usually, we consider uniform weights,
e.g., 𝑝(x𝑖) =

1
𝑛 , for 𝑖 = 1..𝑛, and 𝑞(y𝑗) =

1
𝑚 , for 𝑗 = 1..𝑚. However, if additional information is

provided, 𝑝(x𝑖) and 𝑞(y𝑗) can incorporate the information as non-uniform distributions. Optimal



transport (OT) defines an optimal plan for mass transportation and a distance between the two
distributions.
Specifically, let C = [𝑐(x𝑖,y𝑗)]𝑖,𝑗 be a ground cost matrix with 𝑐(x𝑖,y𝑗) measuring a ground

distance between the individual embeddings x𝑖 and y𝑗. Let T = [𝑇 (x𝑖,y𝑗)]𝑖,𝑗 be a matrix of a
transport plan (or couplings) with 𝑇 (x𝑖, y𝑗) specifying how much mass will be transported from
point x𝑖 to point y𝑗. Let Π(𝜇, 𝜈) be the set of all feasible transport plans defined as:

Π(𝜇, 𝜈) def= {T ∈ ℝ𝑛×𝑚+ |T1𝑛 = 𝜇,T⊤1𝑚 = 𝜈} (1)

where 1𝑛 and 1𝑚 are all one vectors, T1𝑛 = 𝜇 and T⊤1𝑚 = 𝜈 are marginal constraints on feasible
plans. The Optimal Transport problem is to find the map T ∶ X → Y, where

T = argmin
T∈Π(𝜇,𝜈)

𝑛
∑
𝑖=1

𝑚
∑
𝑗=1

𝑐(x𝑖,y𝑗) ⋅ 𝑇 (x𝑖,y𝑗), s.t.,T1𝑛 = 𝜇,T⊤1𝑚 = 𝜈 (2)

The map T is also called coupling matrix. It gives rise to a distance measure between the two
distributions called Wasserstein distance defined as:

𝑊(𝜇, 𝜈) def= min
T∈Π(𝜇,𝜈)

⟨C,T⟩= min
T∈Π(𝜇,𝜈)

𝑛
∑
𝑖=1

𝑚
∑
𝑗=1

𝑐(x𝑖,y𝑗) ⋅ 𝑇 (x𝑖,y𝑗) (3)

The optimization problem can be efficiently solved by replacing the objective with an entropy
regularized objective such as in the sinkhorn algorithm [27].

Paper Accepted_Paper Author Subject_Area
Document 0.51 0.35 0.49 0.38 0.33

Writer 0.62 0.50 0.37 0.53 0.33
Topic 0.67 0.60 0.64 0.58 0.33
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(a): The Ground Costs   between the embedding points
of a source and target ontology and their associated distributions  and .

(b): The Optimal Transport Couplings   and

Wasserstein Distance = =0.47

Optimal Transport

Source SourceTarget Target

Figure 1: Optimal Transport Problem between a Source and Target Ontology

Example 1 Figure 1 illustrates the configuration of the optimal transport problem between a source
and target ontology. The source ontology has 3 concepts: Document, Writer and Topic. The target
ontology has 4 concepts which are: Paper, Accepted_Paper, Author and Subject_Area. The table in
Figure 1 (a) shows the Euclidean distances as the ground costs between the embeddings of the source
and target ontology concepts. The points in both the source and target embedding sets are uniformly



distributed, as reported in the last column 𝜇 and the last row 𝜈. By solving Equation (2), the table in
Figure 1 (b) displays the optimal transport couplings between the points in the source and target
embedding spaces. Notice the couplings are feasible because they satisfy the following marginal
constraints: T1𝑛 = 𝜇 and T⊤1𝑚 = 𝜈. By solving the Equation (3), the Wasserstein distance between
the two embedding sets is 0.47 given the ground costs and the couplings.

3. Ontology Embeddings and Matching

Ontology embedding is the problem of encoding ontological elements as numerical vectors.
Various methods have been proposed for representing individual components in an ontology
as embeddings. For example, translational-based methods [5, 19] and graph neural networks
(GNN) [15] encode an ontology based on its graph structure. Text-enhanced methods for
ontology embeddings [20, 26, 2, 28, 29] encode lexical words of ontology elements. Logic-aware
methods [25, 10] incorporate logical constraints into ontology embeddings. It is attempting to
encode ontologies using the above methods and directly apply optimal transport for discovering
mapping. However, simply applying these embeddings for ontology matching is negatively
impacted by the lack of registration problem [1]. Specifically, these embeddings were mainly
developed for applications concerned with a single ontology, for example, link prediction [13].
The embedding spaces of two independent ontologies may mismatch due to different dimensions
or various rotations and translations. As a result, there may not exist a distance or the direct
geometric locations between the points in the embedding spaces may not reflect their underlying
genuine relationships. This is a significant issue for optimal transport-based approach which
needs a meaningful ground cost.

We will study the problem of matching the embeddings incorporating structural and logical
information in future work. In this exploratory study, we focus on the ontology embeddings
corresponding to the labels of the ontology elements, for example, the ‘rdfs:label’ of a concept.
we apply the pre-trained language model, fasttext [4], to encode the labels of the set of ontology
concepts, object and datatype properties. Using the same pre-trained language model to
encode the labels of different ontologies will alleviate the lack of registration problem, because
the resultant embeddings are in the same embedding space. We will show that OT on label
embeddings already produce promising results. For each element, we first normalizes the
element’s label via a sequence of standard text processing steps. If necessary, the labels are
augmented with synonyms. We then split the normalized label into individual words which in
turn are fed into the pre-trained language model to obtain their corresponding word embeddings.
For the element, we obtain its embedding by computing the average of the set of embeddings
or use the entire set of the embeddings of the individual words for next-step processing.

4. Wasserstain Distance for Measuring Ontology Similarity

Prior to applying optimal transport and Wasserstein distance for ontology matching, we first
analyze some properties of Wasserstein distance for capturing ontology similarity. A desirable
property is that Wasserstein distance should closely correlate with ontology similarity. That
is, the more similar two ontologies are, the shorter the Wasserstein distance between them is.



0.02 0.04 0.06 0.08 0.10 0.12
Jaccard Similarity between the Conference Ontologies based on the Given Reference Matchings

0.78

0.80

0.82

0.84

0.86

0.88

W
as

se
rs

te
in

 S
im

ila
rit

y 
be

tw
ee

n 
th

e 
Co

nf
er

en
ce

 O
nt

ol
og

ie
s

y=0.74*x+0.78

Figure 2: Regression plot between Wasserstein similarity (𝑒−𝑤𝑑) and Jaccard similarity based on the
given matching references for the conference ontologies

Quantitatively measuring the similarity between two ontologies is a very challenging problem.
One option is to count the minimum number of graph edit operations to transform one graph
to another. It is known that graph edit distance is NP-hard and it depends on a set of graph edit
operations. Another option is the Jaccard Index on sets. If matchings between ontologies are
available, we can define the Jaccard similarity between ontologies as follows:

𝐽𝑎𝑐(𝒪𝑆, 𝒪𝑇) =
|𝑀|

|𝒪𝑆| + |𝒪𝑇| − |𝑀|
,

where 𝒪𝑆 and 𝒪𝑇 are source and target ontologies, |𝒪𝑆| and |𝒪𝑇| return the number of concepts
in each ontology, 𝑀 is the set of matchings between 𝒪𝑆 and 𝒪𝑇, and |𝑀| gives the number of
matchings.
The OAEI Campaign provides a list of ontology matching tasks each with a set of curated

matching references. In particular, the Conference track contains 21 matching cases among 7
conference ontologies. For each case, we compute: (1) its Jaccard similarity based on the given
matching references, and (2) the Wasserstein distance between the ontology embeddings. We
convert a Wasserstein distance, 𝑤𝑑, to a Wasserstein similarity, 𝑤𝑠 as 𝑤𝑠 = 𝑒−𝑤𝑑. Figure 2 shows
the regression plot between the Wasserstein similarities and Jaccard similarities. Furthermore,
we calculated the Pearson correlation coefficient (PCC) between the two sets of similarities
defined as 𝜌 = 𝑐𝑜𝑣(𝑋 ,𝑌 )

𝜎𝑋𝜎𝑌
. The PCC is 0.77, indicating Wasserstein distance is highly correlated

with the Jaccard coefficients when matchings between two ontologies are known. As a result,
Wasserstein distance exhibits the desirable property for capturing ontology similarity. We can
then leverage this good property for developing algorithms that derive and refine matchings
using optimal transport as presented below.



5. Deriving Matching Candidates from Global Coupling Matrix

Given a source 𝒪𝑆 and a target 𝒪𝑇 ontology, we first apply optimal transport globally to the
ontologies for generating a set of candidate matchings. We then compute contextual local
Wasserstein distances to refine the matchings by filtering out false positives.

In this section, we describe the building blocks for deriving matching candidates globally. Let
X = {x𝑖 ∈ ℝ𝑑, 𝑖 = 1..𝑛} be the source ontology concept embeddings and Y = {y𝑗 ∈ ℝ𝑑, 𝑗 = 1..𝑚} be
the target ontology concept embeddings. The optimal transport problem defined in Equation (2)
requires as input ground costs C = [𝑐(x𝑖, y𝑗)]𝑖,𝑗 and probability distributions 𝑝(x𝑖) and 𝑞(y𝑗). For
label embedding spaces, we use the Euclidean distances as the ground costs. For the probability
distributions, we estimate non-uniform weights using the shortest distances between source
and target concept embeddings. In particular, for a source point x𝑖 ∈ X, let 𝑑𝑖 = min𝑚𝑗=1 𝑐(x𝑖, y𝑗)
be the shortest distance from x𝑖 to all embedding points in the target space. The distribution
𝑝(x𝑖) will be inversely proportional to 𝑑𝑖 for 𝑖 = 1..𝑛. In other words, the greater the shortest
distance from a source point to all target points, the less the weight associated with the source
concept. Similarly, we estimate non-uniform probability distribution 𝑞(y𝑗) associated with the
target concepts using the shortest distances from target points to source points.

The solution, T = [𝑇 (x𝑖, y𝑗)]𝑖,𝑗, 𝑖 = 1..𝑛, 𝑗 = 1..𝑚, is a coupling matrix between every source and
target embedding point. We test the following two methods for deriving candidate matchings
from the coupling matrix:

• Mutual Nearest Neighbor (MNN): for a x𝑝 ∈{x𝑖 ∈ ℝ𝑑, 𝑖 = 1..𝑛}, find y𝑞 ∈{y𝑗 ∈ ℝ𝑑, 𝑗 =
1..𝑚}, such that, 𝑇 (x𝑝,y𝑞) = max{𝑇 (x𝑝,y𝑗), 𝑗 = 1..𝑚} and 𝑇 (x𝑝,y𝑞) = max{𝑇 (x𝑖,y𝑞), 𝑖 =
1..𝑛}.

• Top-K Targets (TopK): for a x𝑝 ∈{x𝑖 ∈ ℝ𝑑, 𝑖 = 1..𝑛}, find 𝑘 targets {y𝑞1 ,y𝑞2 , ..,y𝑞𝑘} ⊂
{y𝑗 ∈ ℝ𝑑, 𝑗 = 1..𝑚}, such that, 𝑇 (x𝑝,y𝑞𝑧) ≥ max{𝑇 (x𝑝,y𝑗), 𝑗 ≠ 𝑞1..𝑞𝑘}, for 𝑧 = 1..𝑘.

Example 2 In Figure 1(a), the shortest distances from the source concepts to the targets concepts
are 𝑑Document = 0.35, 𝑑Writer = 0.37, and 𝑑Topic = 0.58. Taking inverses of the distances
and normalizing them gives rise to a non-uniform source distribution 𝜇 = {𝑝(Document) =
0.39, 𝑝(Write) = 0.37, 𝑝(Topic) = 0.24}. We can estimate the target probability distribution in
the same way. After solving the optimal transport problem, we obtained the coupling matrix for
the optimal transportation as shown in Figure 1(b). By applying MNN, we obtain the following
correspondences: Document⇝Accepted_Paper, Write⇝Author, Topic⇝Paper. By applying TopK
(K=2), we obtain a different set of correspondences each of which contains a set of potential target
concepts for each source as follows:
Document⇝{Accepted_Paper, Subject_Area},
Write⇝{Author, Paper},
Topic⇝{Paper, Subject_Area}.

Our experimental results (see Section 7) demonstrated that the global matching candidates
(through MNN and TopK) outperformed most of the SOTA systems in terms of the recall metrics.
To improve its overall F1 measures, we develop refinement steps presented in next section.
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Figure 3: Illustration of computing local Wasserstein Distance (localWD) between the local contexts
of a source concept ‘Presentation’ and a target concept ‘Paper_Presentation’. The computation starts
with computing the pairwise Wasserstein distance (pairWD) between each pair of triples in the contexts
(a). It then computes the localWD using the pairWDs as the ground costs (b).

6. Refining Matching Candidates by Local Wasserstein Distances

We refine the candidate matchings by using Wasserstein distances between the local contexts
of source and target ontology elements. The local context of an element contains the triples
involving the element, including the subClassOf relationships connecting to the element’s
parents and children, object property, and datatype property. For each matching candidate,
we retrieve the local contexts of the source and target concepts. We then compute the local
Wasserstein distance (localWD) between the local contexts by the following steps. First, compute
the pairwise Wasserstein distance (pairWD) between each pair of triples in the contexts. The
ground costs for computing the pairWDs are the Euclidean distances between the embeddings of
the individual elements in the triples. Second, compute the local Wasserstein distance between
the contexts by using the pairWDs as ground costs.

Example 3 Figure 3 illustrates the two-step procedure for computing the localWD for a matching
candidate Presentation⇝Paper_Presentation. We first extract the local context of the source concept
Presentation as a set of triples, 𝑐𝑜𝑛𝑡𝑒𝑥𝑡(Presentation) = {𝑆1, 𝑆2, 𝑆3}, as follows:
𝑆1:(Presentation, subClassOf, Conference_Event),
𝑆2:(Presentation, hasSpeaker, Conference_Contributor),
𝑆3:(Presentation, isAbout, Accepted_Paper).
Similarly, we extract the local context of the target concept Paper_Presentation as a set of triples,
𝑐𝑜𝑛𝑡𝑒𝑥𝑡(Paper_Presentation) = {𝑇1, 𝑇2, 𝑇3}, as follows:
𝑇1:(Paper_Presentation, subClassOf, Program_Event),
𝑇2:(Paper_Presentation, hasPresenter, Registered_Author),
𝑇3:(Paper_Presentation, hasPaper, Paper).
Given these two local contexts, we compute the pairwise WDs between the two sets of triples
as illustrated in Figure 3(a) (where only 𝑆1⇝𝑇1, 𝑆2⇝𝑇2, and 𝑆3⇝𝑇3 are shown). Finally, we
use the pairWDs as ground costs to compute the localWD between 𝑐𝑜𝑛𝑡𝑒𝑥𝑡(Presentation) and
𝑐𝑜𝑛𝑡𝑒𝑥𝑡(Paper_Presentation) as illustrated in Figure 3(b).



After computing the local WDs for all matching candidates, we refine the candidate matchings
using the localWDs as a main factor. We describe the set of experiments and results in next
section.

7. Experiment and Results

Setting Up. We name the process of deriving matching candidates from global coupling matrix
as OTMapOnto_global. We add a suffix _mnn or _topK to it to indicate whether the candidates
are derived by mutual nearest neighbors or top-K targets. In our experiments, we derive a
large set of candidates by top-20 targets for refinement (thus, OTMapOnto-global_top20 in the
following tables illustrating the results). We name the process of refining matching candidates
through local Wasserstein distances as OTMapOnto_refinement. We evaluate these processes
on the Conference track 1 and MSE benchmark2 in the OAEI Campaign. The code and Jupyter
notebooks for the experiments is here3.
In the refinement process, we create interactions among localWDs, string-based distances,

and embedding-based Euclidean distances. The interactions are performed by multiplication.
We then examine any enhancements brought by the localWDs in comparison to only string-
based distances, embedding-based Euclidean distances, and their interactions. We compare the
following cases:

• String-based Levenshtein distances/similarities (string-based distance)
• Interactions between the string-based distances and localWDs (string-context-distance)
• Euclidean distances between the averaged embeddings of labels
• Interactions between the Euclidean distances and localWDs
• Wasserstein distances between the embeddings of labels
• Interactions between the label Wasserstein distances and localWDs
• Interactions among string-based distances, Euclidean distances, label Wasserstein dis-
tances, and localWDs

We converted each distance metric 𝑥, to a similarity metric in [0, 1] by taking 𝑒−𝑥. We run
through thresholds from 0 to 1 in a step of 0.01 to find the best performance. Our experimental
results show that the interactions between the string-based distances and localWDs (string-
context-distance) achieve the best performance among all distance metrics. In the following
tables, we specifically report on the values related to the string-context-distance metric.
Evaluation onConference Track. There are 21matching cases among 7 conference ontologies.
We adopt the main reference alignment rar2 with class only case (M1) for evaluation. Table
1 contains the rar2-M1 results of the OAEI 2021 Campaign, plus the rar2-M1 results of
OTMapOnto_global_mnn, OTMapOnto_global_top20, and OTMapOnto_refinement. The
results show that the matching candidates derived from the global coupling matrix through
either MNN or Top-K achieved high recall but low precision. With the refinement, OTMapOnto
achieved the best precision and a compatible F1 measure compared to the best tools in the
campaign.

1http://oaei.ontologymatching.org/2021/conference/index.html
2https://github.com/EngyNasr/MSE-Benchmark
3https://github.com/anyuanay/otmaponto_django



Matcher Threshold Precision Recall F1
AML 0 0.76 0.66 0.71
OTMapOnto-refinement 0.30 0.89 0.59 0.70
GMap 0 0.70 0.67 0.68
LogMap 0 0.78 0.60 0.68
Wiktionary 0 0.78 0.57 0.66
FineTOM 0 0.73 0.58 0.65
TOM 0.86 0.82 0.52 0.64
ATMatcher 0 0.69 0.59 0.64
ALOD2Vec 0.29 0.79 0.54 0.64
edna 0 0.82 0.51 0.63
LogMapLt 0 0.78 0.52 0.62
StringEquiv 0 0.83 0.48 0.61
LSMatch 0 0.83 0.48 0.61
AMD 0 0.81 0.48 0.60
KGMatcher 0 0.83 0.45 0.58
Lily 0.24 0.62 0.52 0.57
OTMapOnto-global_mnn 0 0.24 0.73 0.36
OTMapOnto-global_top20 0 0.007 0.96 0.013

Table 1
Evaluation on OAEI 2021 conference track ordered by f1 in descending order. The shaded value is the
best in its category.

Evaluation on MSE Benchmark. The MSE benchmark contains 3 matching cases between
3 materials science and engineering ontologies: MaterialInformation, MatOnto, and EMMO
(European Material Modeling ontology). We downloaded the two leading ontology matching
systems AML4 and LogMap5 for comparison. The results are presented in Table 2. The table
shows OTMapOnto_refinement achieved the best F1 performance for all 3 test cases.

8. Discussion

We name our system as OTMapOnto [3]. Our experimental results showed OTMapOnto system
achieved promising results. Most significantly, for the MSE benchmarks, OTMapOnto with
refinements outperformed the two leading matching systems that have been consistently the
top 2 in previous OAEI campaigns in many tracks. OTMapOnto also outperformed almost all of
the systems participating in the OAEI 2021 Conference track. This exploratory study provided
positive answers to our exploration questions listed in Introduction. First, Wasserstein distance
is effective in capturing semantic similarity between ontologies. Second, the coupling matrix
returned by the optimal transport solver contains most of the correct matchings but with many
spurious ones. Both sets of candidates derived through mutual nearest neighbors (MNN) and
Top-K targets (TopK) achieved the best recall results. We also observed this phenomenon in

4https://github.com/AgreementMakerLight/AML-Project
5https://github.com/ernestojimenezruiz/logmap-matcher



Test Case Matcher Precision Recall F1

Case 1
OTMapOnto-refinement 0.78 0.30 0.44
OTMapOnto-global_mnn 0.23 0.39 0.29
AML 0.80 0.17 0.29
LogMap 1.00 0.04 0.08
OTMapOnto-global_top20 0.001 0.78 0.002

Case 2
OTMapOnto-refinement 0.31 0.54 0.39
OTMapOnto-global_mnn 0.54 0.26 0.35
AML 0.82 0.21 0.34
LogMap 0.87 0.20 0.32
OTMapOnto-global_top20 0.01 0.57 0.02

Case 3
OTMapOnto-refinement 0.98 0.87 0.92
AML 0.96 0.87 0.91
LogMap 0.93 0.84 0.88
OTMapOnto-global_mnn 0.67 0.86 0.75
OTMapOnto-global_top20 0.007 0.97 0.014

Table 2
Evaluation on MSE benchmark ordered by f1 in descending order in each case. The shaded value is the
best in its category.

several tasks in the OAEI 2021 Campaign [3], where the results had lower precision and higher
recall compared to other systems. Finally, we found that using local Wasserstain distances
between the contexts of the source and target concepts of a candidate greatly helps filter out
many false positives. The final overall performance metrics are better or compatible to the
SOTA results.

In discussing these results, it is important to note that this exploratory study only considered
the embeddings of concept labels generated by a pre-trained model. In future work, we will
develop ontology embeddings capturing additional ontology information including structural
and logical components. For large scale ontologies, the 𝑛 × 𝑚 matrices associated with optimal
transport are unscalable. It is quite evident that we need to break down the ontologies into
smaller chunks for computing the optimal transport couplings. In moving forward, we will first
partition the embeddings into clusters. Using Wasserstein distances to measure the similarities
of pairs of clusters, we will aim to find candidate matchings from the pairs of clusters that are
most similar.

9. Related Work

AML [7] and LogMap [17] are two leading classical matching systems based on symbolic
structures. Nkisi-Orji et al. in [23] developed an embedding-based supervised machine learning
method. Kolyvakis et al. in [18] presented an approach that applied the Stable Marriage
algorithm for deriving candidate matchings based on the cosine similarity between retrofitted
embedding vectors. Chen et al. in [7] proposed a distantly supervised method that combines
embedding-based extensions with classical systems such as AML and LogMap. More recently, He



et al. in [16] described a transformer-based ontologymatching system, BERTMap. Alvarez-Melis
et al. in [1] proposed a method that first encodes hierarchical data in hyperbolic spaces and then
applies optimal transport to the hyperbolic embeddings for deriving correspondences. However,
the performance for ontology matching is limited when only the hyperbolic embeddings of
ontological hierarchies were considered.

10. Conclusion

We explored the effectiveness of the Wasserstein distance metric defined by optimal transport
process for ontology matching. Our study showedWasserstein distance is effective in measuring
the similarity between ontologies. The experimental results showed the Wasserstein distance-
based approach outperformed almost all the cases in the test data. We plan to test the approach
on a wide range of ontology matching applications. In addition, for source and target ontology
embedding spaces without ‘registration’, that is, they do not have well-defined ground distance
between them, we will extend to Gromov Wasserstein distance metric [12] which measures
how distances between pairs of concepts are matched across ontologies.
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