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Abstract
Traditional approaches to modeling and verification of systems based on model checking of linear-time
properties are usually propositional in nature (e.g., LTL). However, many real-world applications, such
as business process management and knowledge-base-driven systems, handle data that intrinsically
requires first-order formalisms. Recently, the LTLf Modulo Theory (LTLfMT) has been introduced to
model and verify such systems. LTLfMT extends LTLf by replacing propositions with first-order formulas
over arbitrary theories, à la SMT. LTLfMT satisfiability is solved with the symbolic tableau modulo theories
approach and implemented in the state-of-the-art BLACK satisfiability checker, relying on out-of-the-box
SMT solvers. This paper recaps such recent developments and discuss open research directions.
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1. Introduction

Since the seminal work by Pnueli [1] on the one hand, and by Clark and Emerson [2, 3] on
the other, the use of specification languages for expressing temporal properties over hardware
and software systems has become of prominent importance in computer science. Specifically,
traditional model checking techniques [4] focus on the problem of automatically checking
whether the hardware or software models of interest meet some given specification represented
by some formulae expressed in a suitable formalism. The most common of such languages is
surely Linear Temporal Logic (LTL) [1]. LTL is interpreted over infinite traces, but its finite-trace
counterpart, LTLf [5], has also recently gained traction in AI and business process modeling [6],
where reasoning over finite traces is more natural since the real execution of a (business) process
within a modern organization is assumed to be always finite.

In the context of traditional model checking, the models under investigation are intrinsically
finite-state: the underlying assumption is that real-world systems can be abstracted by a finite
representation of their control-flow, disregarding any other source of infiniteness that can arise
from the presence of the actual data being manipulated (such as the values of program variables).
This abstraction allows one to employ explicit and exhaustive search procedures in the finite
space of all configurations [7].

OVERLAY 2022: 4th Workshop on Artificial Intelligence and Formal Verification, Logic, Automata, and Synthesis,
November 28, 2022, Udine, Italy
$ gianola@inf.unibz.it (A. Gianola); gigante@inf.unibz.it (N. Gigante)
� https://gianola.people.unibz.it/ (A. Gianola); https://www.inf.unibz.it/~gigante/ (N. Gigante)
� 0000-0003-4216-5199 (A. Gianola); 0000-0002-2254-4821 (N. Gigante)

© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:gianola@inf.unibz.it
mailto:gigante@inf.unibz.it
https://gianola.people.unibz.it/
https://www.inf.unibz.it/~gigante/
https://orcid.org/0000-0003-4216-5199
https://orcid.org/0000-0002-2254-4821
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org


This assumption matches with the expressive power of formalisms such as LTL and LTLf ,
which have in common one limitation: they can be employed to only represent transition
systems whose states are finitely many and are characterized by evaluating propositional atoms.

However, in real-world scenario the propositional nature of LTL and LTLf can be problematic:
for instance, this is the case when modeling data-aware processes [8, 9, 10, 11], These are systems
whose execution is heavily influenced by the interaction with a persistent data storage such as
a relational database: the data storage can modify the behavior of the system, and, vice versa,
the system itself can manipulate and update the content of the data storage. In these contexts,
one would like to express actions and constraints that depend on the content of the database,
which is an inherently first-order, relational model [12].

There is a plethora of similar situations where the data component comes to the picture,
turning the systems to the infinite-state case . For instance, one can consider the use case of
data-aware planning, i.e., planning problems [13] where conditions of actions depend on the
content of a relational database. In addition, in the context of business process management
applications, some authors have argued for the usefulness of the problem of structured reinforce-
ment learning [14], where learning agents operate in an environment where they have access to
an explicit structure representing what they know about the world. This explicit structure can
be given, for example, by relational data representing the background knowledge of the agents
that they can exploit both during and after the learning process, or by some hard constraints
that the entire system must satisfy also during learning.

In order to match the expressiveness needed for modeling and reasoning about such scenarios,
a new logic called LTLf Modulo Theories (LTLfMT) was recently introduced [15]. This logic
extends LTLf by replacing propositional symbols with first-order formulas over an arbitrary
theory, in the spirit of Satisfiability Modulo Theories (SMT) [16]. While LTLfMT is easily seen to
be undecidable in general, for decidable theories it is semi-decidable, i.e., a positive answer can
always be obtained for satisfiable instances, while reasoning might not terminate over unsatisfi-
able ones. Given the complexity of the problems and scenarios such as those mentioned above,
where reasoning is inherently undecidable anyway, being able to solve satisfiable instances is a
compromise worth studying.

The satisfiability checking problem for LTLfMT is solved by using the symbolic tableau modulo
theory (STMT) approach [15]. A one-pass and tree-shaped tableau [17, 18], where any accepted
branch corresponds to a model of the formula, is symbolically traversed by means of suitable
SMT encodings. This approach allows one to reason on LTLfMT by exploiting recent (and
future) advancements in SMT solving techniques. The approach has been implemented in
the state-of-the-art BLACK tool [19, 20], which builds on top of well-established and highly
performing SMT solvers such as Z3 [21] and cvc5 [22], showing promising results [15].

In this paper, we describe LTLfMT and discuss the recent results related to this logic, we
describe how interesting infinite-state systems can be expressed and verified, and we outline
interesting future research directions that this approach naturally opens.



2. LTLf Modulo Theories

LTLfMT extends LTLf by replacing proposition letters with first-order formulas over arbitrary
theories, à la Satisfiability Modulo Theories (SMT).

Instead of going into the details of syntax and semantics, let us discuss a few examples:

𝑥 = 0 ∧ ((○𝑥 = 𝑥+ 1) U 𝑥 = 42)

𝑥 = 0 ∧ G(○∼𝑥 > 𝑥 ∧ ∃𝑦(𝑥 = 𝑦 + 𝑦))

Intuitively, the first formula says that the variable 𝑥 starts at zero, then increments at each
time step (○∼𝑥 = 𝑥+ 1), until it reaches the value 42 (. . . U 𝑥 = 42).

The second formula states that the variable 𝑥 similarly starts at 0, and that in any time point
(G(. . .)), the value of 𝑥 increases (○∼𝑥 > 𝑥), and is an even number (∃𝑦(𝑥 = 𝑦 + 𝑦)). In other
words, 𝑥 forms a monotonically increasing sequence of even numbers.

The term constructors ○∼𝑥 and ○𝑥 are a crucial feature. They both represent, in a different
way, the value of 𝑥 at the next time point. The difference lies in how these terms behave at
the end of the finite trace. When a first-order formula contains some ○𝑥, the next state is
required to exist, while it is not required to exist if it contains only ○∼𝑥 terms. This replicates
the difference between the tomorrow and weak tomorrow temporal operators in LTLf [5, 23].
Note that replacing ○∼𝑥 with ○𝑥 in the second formula would make it unsatisfiable, since each
time point would require the next one, which is impossible in a finite-trace semantics.

The syntax of LTLfMT is based on arbitrary first-order formulas over a given theory, including
quantified formulas, with the restriction that the only temporal operators that can appear inside a
quantified formula are tomorrow (X) and weak tomorrow (̃︀X). First-order variables and next/weak
next constructors can be freely combined into arbitrary first-order terms involving function
symbols and constants. The semantics of LTLfMT is defined over finite sequences of standard
first-order models over the formula’s vocabulary. Each function symbol and relation can either
be rigid, i.e., fixed over time, or not, i.e., time-evolving.

Satisfiability of LTLfMT is easily seen to be undecidable in general, but semi-decision pro-
cedures can be provided. In particular, LTLfMT can be semi-decided by a symbolic tableau
modulo theory (STMT) approach [15]. Given an LTLfMT formula 𝜑, a one-pass and tree-shaped
tableau [17, 18] is symbolically traversed in a breadth-first fashion by means of an SMT encoding
that represents all the accepted branches of the tree of at most length 𝑘. If such a formula
is satisfiable for some 𝑘 > 0, a model is found. Otherwise, 𝑘 is incremented. Unsatisfiable
formulas may cause this procedure to loop infinitely, as expected for a semi-decidable problem.
This procedure has been implemented in the state-of-the-art BLACK1 satisfiability checker [15].

3. Modeling and Verification

LTLfMT specifications can be verified against knowledge-base-driven dynamic systems rep-
resented by symbolic transition systems whose transitions depend on the first-order states.

1https://www.black-sat.org
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These systems can be directly expressed as LTLfMT formulas (similarly to how standard finite-
state transition systems can be expressed in LTL) and the model-checking problem of LTLfMT

specifications over such systems can be reduced to a LTLfMT satisfiability check.
Such models can be employed to approach a diverse variety of real-world data-driven scenarios

including data-aware business processes [8, 24, 25], database-driven [26, 27] and ontology-driven
systems [28, 29, 30], and, in general, any class of first-order-definable infinite-state systems.

Our framework is the first approach capable of representing such an ample set of different
systems, while handling general linear-time temporal properties (i.e., not only safety or reacha-
bility objectives). Moreover, not only we leverage state-of-the-art SMT solving techniques, but
we do so in a robust software tool (BLACK) that is engineered to be ready for real-world usage.

4. Future directions

Many future directions are opened by the introduction of LTLfMT and our approach. From a
modeling perspective, it is important to classify precisely the kinds of systems discussed in
the literature that can be handled by our approach, comparing the efficiency of BLACK with
existing tools, such as VERIFAS [27] or MCMT [8, 31, 32]. From an algorithmic perspecive, it is
of primary importance to look for particular fragments of LTLfMT, and/or particular underlying
theories, that can result either into a decidable reasoning task, or in more efficient algorithmic
techniques. This may include safety/cosafety fragments, particular restrictions to the use of
quantifiers (such as the Barneys-Schönfinkel or Rabin classes), restrictions to specific cases of
uninterpreted functions/relations (e.g., acyclic relational models), and so on.

While we focused on the satisfiability problem, the realizability problem is of foremost interest
as well. This is the problem of deciding whether there exists a strategy to play a game against an
adversary environment in such a way that an LTLfMT formula can be guaranteed to be satisfied.
This problem, in the case of LTLf specifications, is already very hard (2EXPTIME-complete).
In the case of LTLfMT, should it still be semi-decidable, it would open the doors to a large
variety of applications in the context of the synthesis of infinite-state systems, rather than of
their verification.

Then, applications of LTLfMT outside the verification field, and more oriented toward artificial
intelligence, are natural developments. In particular, while LTLf can naturally express STRIPS
automated planning problems [33], LTLfMT may be employed to approach a novel class of
data-aware planning domains. In these models, agents can employ actions whose preconditions
depend on the state of a full-fledged relational database, an ontology-based knowledge base, or
complex first-order definable data structures (such as lists, trees, graphs, etc.), and whose effects
actively modify such data containers.

By reducing such data-aware planning problems to LTLfMT satisfiability, one may leverage
existing reasoning tools such as BLACK to solve them. Moreover, should LTLfMT realizability
turn out to be semi-decidable as well, fully observable nondeterministic (FOND) data-aware
planning domains could be handled as well. A practically applicable approach to data-aware
FOND planning is one of the most promising long-term goal of this line of research.
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