
Explainable Interpretation of Low-Level Process
Traces via Abstract Argumentation⋆

(Discussion/Short Paper)

Bettina Fazzinga1, Sergio Flesca2, Filippo Furfaro2 and Luigi Pontieri3,∗

1DIMES - University of Calabria, Via P. Bucci, 87036 Rende, Italy
2DICES - University of Calabria, Via P. Bucci, 87036 Rende, Italy
3ICAR-CNR, Via P. Bucci, 87036 Rende, Italy

Abstract
Monitoring and analyzing process traces (i.e. event sequences) is an important task in modern companies
and organizations. Focusing on scenarios where there is an abstraction gap between trace events and
reference business activities, we here consider the interpretation problem of translating the current event
generated by an ongoing trace into the step of the activity instance it corresponds to. We briefly discuss
how this problem can be encoded into an Abstract Argumentation Framework (AAF), which allows for
computing and exploring event interpretations by solving instances of the AAF acceptance problem.

Keywords
Business Process Intelligence, Log Abstraction, Abstract Argumentation

1. Introduction

Process Mining methods help better understand and enact business processes by supporting
various analysis tasks over process traces, i.e. sequences of execution events, e.g. process-model
discovery, log-to-model conformance analysis, runtime detection/prediction/recommendation.
However, these methods usually assume each event to map to a well-understood “high-level”
activity, which is not always the case in practice. As an instance, when the activities are
performed in a lowly-structured way, trace events just represent low-level actions [2] with no
clear reference/mapping to the activities. An example of this kind is presented below, for a toy
hospital scenario where careflow process traces are gathered, which consist of events describing
exams and checks performed by medical staff.

Example 1. Suppose that a trace Φ = 𝑒1, 𝑒2, 𝑒3, 𝑒4 is given, where 𝑒1, 𝑒2, 𝑒3 and 𝑒4 refer to events
(precisely, event types) Blood sample taken, Blood pressure measurement, Temperature mea-
surement, and Cannula insertion, respectively. Assume that it is known that the first three events
can be performed during any of the high-level activities 𝐴1=pre-hospitalization, 𝐴2=pre-surgery,

PMAI@IJCAI22: International IJCAI Workshop on Process Management in the AI era, July 23, 2022, Vienna, Austria
⋆
Extended Abstract: the original work [1] was published on journal Information Systems in January 2022.

∗Corresponding author.
Envelope-Open bettina.fazzinga@unical.it (B. Fazzinga); flesca@dimes.unical.it (S. Flesca); furfaro@dimes.unical.it (F. Furfaro);
luigi.pontieri@icar.cnr.it (L. Pontieri)

© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:bettina.fazzinga@unical.it
mailto:flesca@dimes.unical.it
mailto:furfaro@dimes.unical.it
mailto:luigi.pontieri@icar.cnr.it
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

𝐴3 =post-surgery, while 𝑒4 can be performed only during activity 𝐴2. To reconstruct/monitor
patient histories, one needs to interpret such a trace in terms of activity executions. However, due to
the many-to-many event-activity mapping, even if trace Φ described a completed process instance,
multiple interpretations could exist for Φ, like: 𝐼1𝐼1𝐼1 ≡ “𝑒1, 𝑒2, 𝑒3 is the sequence of steps produced by
an instance of 𝐴1 and 𝑒4 is the unique step of an instance of 𝐴2”; and 𝐼2𝐼2𝐼2 ≡ “𝑒1, 𝑒2 and 𝑒3, 𝑒4 are
the step sequences produced by instances of 𝐴1 and of 𝐴2, respectively”. □

Such an abstraction gap limits the usefulness of process discovery methods, and impedes
using standard conformance-checking ones. Thus, supervised log abstraction methods were
proposed recently [2], which try to interpret log traces automatically as executions of given
high-level process activities, leveraging domain knowledge. However, these methods suffer
from two limitations: (𝑖) they map each (low-level) event 𝑒 to just one activity, discarding
alternative interpretations of 𝑒; (𝑖𝑖) they do not provide explanations for their results.

In [1], we defined a framework that supports interactive explorative analyses of any low-
level trace Φ, which allow the user to obtain answers and explanations for Interpretation
Queries over Φ. Technically, the underlying event-interpretation problem is encoded into
an Abstract Argumentation Framework (AAF) (see Section 2), so that both interpretation queries
and associated explanations are computed by solving instances of the AAF acceptance problem.
This extended abstract summarizes some major features of the framework introduced in [1].

2. Background and problem statement

AAF basics An AAF can be viewed as a graph where nodes and edges model arguments and
attacks from an argument to another, respectively. Given argument set 𝑆 and argument 𝛼, we
say that “𝑆 attacks 𝛼” (resp., 𝛼 attacks 𝑆) if there is an argument 𝛽 in 𝑆 such that 𝛽 attacks 𝛼
(resp., 𝛼 attacks 𝛽). Given arguments 𝛼, 𝛽 such that 𝛼 attacks 𝛽, an argument 𝛾 is said to “defend
𝛽” if 𝛾 attacks 𝛼. Argument set 𝑆 is said to “defend 𝛽” if 𝑆 contains some argument defending
𝛽. Argument 𝛼 is acceptable w.r.t. 𝑆 if every argument attacking 𝛼 is attacked by 𝑆, while 𝑆 is
conflict-free if there is no attack between its arguments. Different semantics have been proposed
to identify “reasonable” sets of arguments, called extensions [3], in an AAF. In particular, a
set 𝑆 ⊆ 𝐴 is said to be an admissible extension iff 𝑆 is conflict-free and all its arguments are
acceptable w.r.t. 𝑆. An admissible extension that is maximal (w.r.t. ⊆) is a preferred extension.
Acceptance of an argument 𝛼 in an AAF 𝐹 can be stated under both skeptical and credulous
perspectives. In particular, adopting the preferred semantics (as in [1]), 𝛼 is credulously accepted
(resp., skeptically accepted), if it belongs to at least one (resp., every) preferred extension of 𝐹.

The interpretation problem Given an ongoing trace Φ, as soon as a new event 𝑒curr appears
in Φ, we want to interactively support the analyst in obtaining (𝑎) answers to Interpretation
Queries on the alternative valid interpretations of 𝑒curr , and (𝑏) explanations for certain interpre-
tations considered not valid, where interpretation validity descends from well-structuredness
properties and given domain knowledge (described later on). Roughly speaking, basic interpre-
tation queries allow for asking whether 𝑒curr can be viewed as a step of an instance of a given
activity 𝐴, possibly stating conditions on the activity lifecycle (e.g.,“is 𝑒curr the initial step of an

instance of 𝐴?” or on the activity occurrence (e.g., “is 𝑒curr a step of the 2nd instance of 𝐴?”). Any
such a query can be evaluated under skeptical semantics, in order to know whether the proposed
interpretation is the unique valid one for 𝑒curr . Moreover, enumeration queries ask for all valid
interpretations of 𝑒curr satisfying the conditions required.

Two kinds of domain knowledge are considered in the above-described problem: (𝑖) the list
of high-level activities in terms of which events must be interpreted, along with the candidate
type-level mappings between these activities and log events; (𝑖𝑖) a declarative process model
consisting of activity constraints, including temporal rules of the forms 𝑀𝐶𝑗 ∶ 𝐴 ⇒𝑇 𝐵1| … |𝐵𝑘
(must-constraint) and 𝑁𝐶𝑖 ∶ 𝐴 ⇒𝑇 ¬𝐵 (not-constraint), for any given activities 𝐴, 𝐵, 𝐵1, … , 𝐵𝑘
and time period 𝑇 ∈ [1..∞], and their respective time-symmetric versions (i.e., positive and
negative “precedence” constraints). 𝑀𝐶𝑗 (resp., 𝑁𝐶𝑖) means that an instance 𝐴 must (resp.,
cannot) be followed by an instance of one of the activities 𝐵1, … , 𝐵𝑘 (resp., of activity 𝐵) in 𝑇
steps. In Example 1, one could use such a constraint to model known behaviors like that 𝐴2 is
always preceded by 𝐴1 immediately; if also knowing that 𝐴1 must start with Blood sample taken
and end with Blood pressure measurement, this allows for discarding interpretations like 𝐼1.

3. Overview of the Solution Approach

The core problem of computing valid (w.r.t. domain knowledge) interpretations of events in
a trace Φ is modelled as a dispute via an ad hoc AAF 𝐹(Φ) = ⟨ Arg, Att ⟩, on top of which
interpretation queries and explanation requests can be answered. 𝐹(Φ) is built incrementally by
adding arguments of the following kinds (and attacks between them) as a new step of Φ arrives:
1) Interpretation arguments of the form ⟨𝑒𝑖, 𝐴, 𝑋 , 𝑗⟩, where 𝐴 is an activity label, 𝑗 is a positive
integer and 𝑋 ∈ { first, intermediate, last, first&last} indicates a life-cycle execution stage for 𝐴.
Such an argument encodes the interpretation of 𝑒𝑖 as a step of type𝑋 of the 𝑗-th execution instance
of activity 𝐴. Interpretation 𝐼1 in Example 1 can be encoded via interpretation arguments
⟨𝐴1, 𝑓 𝑖𝑟 𝑠𝑡 , 1⟩⟨𝐴1, 𝑖𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒, 1⟩⟨𝐴1, 𝑙𝑎𝑠𝑡 , 1⟩⟨𝐴2, 𝑓 𝑖𝑟 𝑠𝑡&𝑙𝑎𝑠𝑡, 1⟩.
2) Undermining arguments of five different forms: (𝑖) NotInterpreted 𝑖, meaning that no inter-
pretation has been chosen for step Φ[𝑖]; (𝑖𝑖) NotEnoughExecutions𝛼, where 𝛼 = ⟨𝑒𝑖, 𝐴, 𝑋 , 𝑗⟩ with
𝑋 ∈ {first, first&last}, meaning that 𝛼’s interpretation of 𝑒𝑖 as the start of the 𝑗-th instance of
𝐴 contrasts with interpreting no previous step as the start of the (𝑗−1)-th instance of 𝐴; (𝑖𝑖𝑖)
NotStarted𝛼, where 𝛼 = ⟨𝑒𝑖, 𝐴, 𝑋 , 𝑗⟩with 𝑋 ∈ {intermediate, last}, meaning that 𝛼’s interpretation
of 𝑒𝑖 as a non-initial step of the 𝑗-th instance of 𝐴 contrasts with interpreting no previous step
as the start of the 𝑗-th instance of 𝐴; (𝑖𝑣) NotEnded(𝑗, 𝐴), where 𝑗 is an instance counter and 𝐴
an activity, meaning that the trace has terminated and some event was interpreted as the initial
step of the 𝑗-th instance of 𝐴, but no event has been interpreted as the last step of this instance;
(𝑣) 𝑀𝐶 𝑖𝑞, descending from some must-constraint 𝑀𝐶𝑞 ∶ 𝐴 ⇒𝑇 𝐵1| … |𝐵𝑘, and meaning that the
𝑖-th event of Φ cannot be interpreted as the final step of an instance of 𝐴, for no subsequent
event (in 𝑇 steps) has been interpreted as the start of an instance of some 𝐵𝑖.

Fig. 1 sketches an excerpt of the AAF resulting from processing a partial trace Φ = 𝑒1, … , 𝑒6.
Clearly, the AAF includes several conflicting event interpretations, encoded by interpretation
arguments with mutual attacks, e.g.: 𝛼′ and 𝛼″ (representing alternative interpretations of the
same event), 𝛼′ and 𝛽″ (interpreting distinct events as first steps of the first instance of 𝐴), and

NotInterpreted4NotInterpreted3
NotInterpreted5

�''=< e4, A, first, 1>

�'=< e3, A, first, 1>

NotEnoughExecutions�'

�'=< e5, A, last, 1>

NotStarted�'

�''=...
�'=< e4, A, first, 2>

�''= ...

�'=< e6, C, first, 1>

MC1

�'''=< e6, A, intermediate, 1>

5

�''=< e3, B, last, 1>

NotInterpreted6

... ...

Figure 1: A portion of 𝐹(Φ) (edges with two arrows represent pairs of mutual attacks)

𝛾 ′ and 𝛿‴ (where 𝛿‴ interprets 𝑒6 as a step of an instance interpreted as closed by 𝛾).
As an example of how the AAF ensures activity counters to be consistent, consider NotE-

noughExecutions𝛽′ , which attacks 𝛽′ and it is counter-attacked by 𝛼′.
Importantly, the AAF enforces the choice of an interpretation for each trace step. In particu-

lar, it contains exactly one argument NotInterpreted𝑥 for each step 𝑒𝑥, that is attacked by the
interpretation arguments over the same step 𝑒𝑥 and that attacks the interpretation arguments
over the immediately preceding and following steps 𝑒𝑥−1 and 𝑒𝑥+1.

The AAF also ensures that activity instances can be prolonged only if previously started. For
example, in Fig. 1, 𝛾 ′ interprets 𝑒5 as a non initial step of the first instance of 𝐴 and is attacked
by NotStarted′𝛾, and is defended from this attack by 𝛼′ and 𝛽″, that interpret some previous
steps as the starting steps of the same instance of 𝐴.

All the constraints in the given declarative process model are enforced as well. For instance,
in Fig. 1, the must-constraint 𝑀𝐶1 ∶ 𝐴 ⇒1 𝐶 (triggered by argument 𝛾 ′ over step 5) is encoded
by the undermining argument 𝑀𝐶51 and the attacks (𝑀𝐶51 , 𝛾 ′) and (𝛿′, 𝑀𝐶51).

Further attacks are included to guarantee that ∅ is the only admissible extension of 𝐹(Φ)
iff there is no valid interpretation of Φ (i.e. trace behavior deviates from the process model).
This is the case of self-attacks on all NotInterpreted 𝑖 and the special attack from NotInterpreted1
towards each argument of type NotEnoughExecutions, NotStarted, NotEnded.

It was proven in [1] that there is a biunivocal correspondence between the set of valid
interpretations of Φ and the set of preferred extensions of 𝐹(Φ), so one can reason on the
interpretations of the current event 𝑒curr by deciding the acceptance of interpretation arguments
over 𝑒curr . Details on the computation of the AAF 𝐹(Φ) and of answers to interpretation queries
and associated explanation requests can be found in [1].

References

[1] B. Fazzinga, S. Flesca, F. Furfaro, L. Pontieri, Process mining meets argumentation: Ex-
plainable interpretations of low-level event logs via abstract argumentation, Information
Systems 107 (2022). doi:https://doi.org/10.1016/j.is.2022.101987 .

[2] S. J. van Zelst, F. Mannhardt, M. de Leoni, A. Koschmider, Event abstraction in process
mining: literature review and taxonomy, Granular Computing 6 (2021) 719–736.

[3] P. M. Dung, On the acceptability of arguments and its fundamental role in nonmonotonic
reasoning, logic programming and n-person games, Art. Int. 77 (1995) 321–358.

http://dx.doi.org/https://doi.org/10.1016/j.is.2022.101987

	1 Introduction
	2 Background and problem statement
	3 Overview of the Solution Approach

