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Abstract
The detection of the leading edge of a signal using a threshold value can be used as a method for estimating
the received time, which is not easily affected by reverberation or the sensor characteristics of the speaker
and microphone. When the noise level is relatively high compared with the signal, the threshold must
be set high to prevent false alarms, causing a systematic error in the received time estimation. The noise
can be suppressed by transmitting the signal multiple times and averaging the results; however, it is
necessary to wait for the reverberation to disappear after each transmission. Therefore, this measurement
is time consuming. In this study, we propose a noise suppression method that can be applied to cases in
which signals are transmitted multiple times without waiting for the disappearance of reverberation.
For the proposed method, an analysis of noise suppression performance was conducted, and the limits
of performance were provided under the given conditions. In addition, numerical experiments on the
performance of the received time estimation in a reverberant environment were conducted to compare
the proposed method with the conventional method and confirm the effectiveness of the proposed
method.
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1. Introduction

With the recent spread of mobile devices, indoor positioning techniques for these devices
have been extensively studied[1]. In this study, we discuss a positioning method that uses
the propagation time of acoustic signals. When using the propagation time, it is important to
estimate the received time of the acoustic signal. In indoor environments, reverberation and
the physical characteristics of speakers and microphones can cause large systematic errors in
the estimation of received time.

The detection of the leading edge of the signal with a threshold value can be used as a method
that is less sensitive to reverberation and sensor characteristics. In detection using thresholds,
it is necessary to set a threshold based on the noise level to avoid false noise detection. When
the signal-to-noise ratio is low, the threshold must be set high, the parts of the leading edge
of the signal are delayed, and a systematic error is caused in the estimation of the received

IPIN 2022 WiP Proceedings, September 5 - 7, 2022, Beijing, China
$ masanari@ist.hokudai.ac.jp (M. Nakamura)

© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:masanari@ist.hokudai.ac.jp
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org


time. Therefore, to reduce systematic errors with the desired probability of a false alarm, the
signal-to-noise ratio must be improved.

If the noise follows a white normal distribution, it can be suppressed by transmitting the
signal multiple times and averaging them. However, this method requires waiting for the
disappearance of the reverberation after each transmission. Therefore, it takes a long time to
send all the signals. This could be a problem, especially when positioning is required at many
locations.

In this study, we propose a noise suppression method that can be applied even when the
transmission time is set shorter than the reverberation time to reduce the time required for
signal transmission. By applying an orthogonal projection matrix that preserves the transmitted
signal component of the received signal, only the noise component is suppressed.

The contributions of this study are as follows:

• We devised a noise suppression method that can be applied when the transmission period
is set to less than the reverberation time.

• The relationship between the transmission period and the number of transmissions and
the noise suppression performance of the proposed method is discussed. The limitations
of the noise suppression performance of the proposed method under given conditions are
also provided.

• We conducted numerical experiments on the performance of received time estimation un-
der multiple reverberation conditions, and demonstrated the effectiveness of the proposed
method over the conventional method. In addition, we conducted numerical experiments
regarding the performance of received time estimation when the required transmission
time is changed, and discussed their relationship.

The remainder of this study is structured as follows. In Section 2, we describe conventional
methods for estimating the received time. In Section 3, we describe the proposed method and
discuss the relationship between the transmission period, number of transmissions, and noise
suppression performance. In Section 4, we discuss the results of the experiments comparing the
proposed method with conventional methods. Finally, in Section 5, we present our conclusions.

2. Related work

2.1. Observation model

First, we described the observational model discussed in this study. The start times of the
transmission and the transmission signal are set to 0 and 𝑠(𝑡), respectively. The signal length
was 𝑇 . A signal transmitted through a speaker is nonlinearly distorted, depending on the
physical properties of the speaker. This is expressed as follows:

𝑓(𝑡) = Θ𝑠(𝑠(𝑡)) (1)

𝑓(𝑡) and Θ𝑠(·) represent the signal distorted by the speaker and the characteristics of the
speaker that cause distortion, respectively.



In indoor environments, reverberation is caused by multiple delayed waves reflected on
walls, ceilings, and other surfaces. When this signal is observed using a microphone, nonlinear
distortion occurs at the microphone. Let ℎ(𝑡) and Θ𝑟(·) be the indoor impulse response and
microphone characteristics that cause distortions, respectively. The reverberation signal can be
expressed as follows:

𝑔(𝑡) = Θ𝑟((ℎ * 𝑓)(𝑡)) (2)

* is a convolution.
Let Δ𝑡 be the time required for propagation between the speaker and microphone. The

received signal can be expressed as:

𝑟(𝑡) = 𝑔(𝑡−Δ𝑡− 𝛿) + 𝑛(𝑡) (3)

𝛿 represents the clock offset between the transmitter and receiver. 𝑛(𝑡) is white normal noise.
If 𝛿 is known, the propagation time Δ𝑡 can be estimated from the received time. The distance

can be estimated by multiplying Δ𝑡 by the propagation velocity. Even if 𝛿 is not known, 𝛿 can
be eliminated if the transmission times of multiple speakers are known. Therefore, the distance
between the speaker and the microphone can be estimated.

2.2. Received time estimation by maximum peak detection

The matched filter is a well-known method for estimating the received time in noise[2]. In
the following, we explain the matched filter in the case where the transmission signal 𝑠(𝑡) is a
sinusoidal wave, as an example.

𝑠(𝑡) =

{︃
sin(2𝜋𝑓𝑡) 0 ≤ 𝑡 ≤ 𝑇

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(4)

𝑓 is frequency, which is a constant multiple of 1/𝑇 . The matched filter output is expressed as

𝑐(𝑡) =
1

𝑇

∫︁ ∞

−∞
𝑟(𝜏)𝑒(𝜏 − 𝑡)𝑑𝜏, (5)

𝑒(𝑡) =

{︃
exp(𝑗2𝜋𝑓𝑡) 0 ≤ 𝑡 ≤ 𝑇

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(6)

where 𝑒(𝑡) denotes the reference signal. For simplicity, 𝛿 is assumed as zero in this study. If there
is no influence of reverberation or sensor characteristics, the absolute value of 𝑐(𝑡) reaches its
maximum value, where 𝑡 = Δ𝑡. Therefore, in this case, the received time must be the time when
the absolute value of 𝑐(𝑡) is largest. In this paper, this method is referred to as the maximum
peak method. The maximum peak method is optimal when there is only white normal noise
and no reverberation or sensor characteristic influence[2], and it is used in various acoustic
positioning methods[3, 4, 5, 6, 7, 8, 9].

In a reverberant environment, as expressed in Eq. (5), the reference signal also responds
to the delayed waves. Therefore, there is an error in the received time estimation with the



maximum peak method when the delayed wave is superimposed on the direct wave or when
the delayed wave is larger than the direct wave.

The maximum peak method assumes that the direct waves of the received and reference
signals are coincident. However, in practice, because distortions occur depending on the sensor
(Eq. (1)), it has been reported that systematic errors can occur [10].

One way to avoid both the reverberation and distortion of the received signal is to measure
𝑔(𝑡) in advance and use this signal as a reference. However, because the delayed waves that
constitute reverberation and the sensor characteristics vary depending on the location of the
speaker and microphone, a large amount of premeasurement is required.

2.3. Received time estimation by leading-edge detection

2.3.1. False alarm probability and threshold

To avoid the effects of reverberation and sensor characteristics, detection of the leading edge of
the signal can be used to estimate the received time. Specifically, a threshold was set for the
absolute value of the matched filter output, and the first point at which it exceeded the threshold
was detected. From the matched filter equation (Eq. (5)), the time of the detected point is 𝑇
earlier than the received time. Therefore, the received time was the sum of the detected time
and 𝑇 . Hereafter, this method is referred to as the leading-edge method.

In this section, we discuss the probability of false noise detection. This is called the false-alarm
probability. When a matched filter is applied to white normal noise, the probability density
distribution of the absolute value of its output is a Rayleigh distribution. We describe the
Rayleigh distribution when a discretized matched filter is used because the process with discrete
data is discussed in Section 3 and later. Let 𝑁 denote the signal length 𝑇 converted to the
number of samples. Let 𝑇𝑠 denote the sampling period, and let 𝑇 be a consist multiple of 𝑇𝑠. In
this case, 𝑁 = 𝑇/𝑇𝑠. Let 𝜏 be the threshold; then, the false alarm probability 𝑃𝐹𝐴 is calculated
as follows:

𝑃𝐹𝐴 =

∫︁ ∞

𝜏

𝑥

𝐸2
exp

(︂
− 𝑥2

2𝐸2

)︂
𝑑𝑥 (7)

The Rayleigh parameter 𝐸 is computed using the power spectrum 𝜎2 of the white normal noise
as 𝐸2 = 𝜎2/2. Using the cumulative distribution function of the Rayleigh distribution, the above
equation can be expressed as 𝑃𝐹𝐴 = exp(−𝜏2/(2𝐸2)). Solving this for 𝜏 provides a threshold
that allows signal detection at a specified false-alarm probability as 𝜏 =

√︀
−2𝐸2 log(𝑃𝐹𝐴).

As can be observed from these equations, setting a large threshold 𝜏 reduces the false-alarm
probability. However, a larger threshold value caused a greater delay in the estimated received
time. Therefore, to reduce the systematic error in the received time with a sufficiently small
false-alarm probability, the signal-to-noise ratio of the received signal must be improved.

2.3.2. Improvement of signal-to-noise ratio by averaging

Let 𝑛1, 𝑛2, . . . , 𝑛𝑍 be samples that follow a white normal distribution with mean 0 and vari-
ance 𝜎2, and the variance of the average

∑︀𝑍
𝑖=1 𝑛𝑖/𝑍 is 𝜎2/𝑍 . Therefore, if the noise of the



received signal follows a white normal distribution, it can be suppressed by averaging multiple
transmitted signals. Hereafter, this method will be referred to as the averaging method.

In reverberant environments, if the averaging method is used with the transmission period set
to less than the reverberation time, the transmitted signal components will be corrupted during
averaging by the delay waves of reverberation. In this case, the received time cannot be properly
estimated. Therefore, to improve the signal-to-noise ratio, the signal transmission period should
be longer than the reverberation time. However, this requires a significant amount of time. In
the next section, we propose a noise suppression method that can improve the signal-to-noise
ratio even when the transmission period is set below the reverberation time to reduce the
required transmission time.

3. Proposed method

3.1. Transmission and reception model

In the proposed method, 𝑠(𝑡) is transmitted 𝐿 times in period 𝑇𝑑. Let 𝑁𝑑 denote the signal
transmission period 𝑇𝑑 converted to the number of samples. For simplicity, let 𝑇𝑑 be constant
multiples of 𝑇𝑠. In this case, 𝑁𝑑 = 𝑇𝑑/𝑇𝑠.

Let 𝑟 be the discrete data of the signal that is received and sampled and let 𝑁𝑟 be its length.
Let 𝑁𝑟 be sufficiently large. Subsequently, 𝑟 can be expressed as follows:

𝑟 =

𝐿∑︁
𝑙=1

⎡⎢⎢⎢⎢⎣
𝑂Δ𝑛−1

𝑂𝑁𝑑(𝑙−1)

𝐼𝑀
𝑂𝑁𝑑(𝐿−𝑙)

𝑂𝑁𝑟−𝑀−Δ𝑛+1−𝑁𝑑(𝐿−1)

⎤⎥⎥⎥⎥⎦ 𝑔 + 𝑛𝑟. (8)

From the explanation in Section 2.3.1, Δ𝑛 is the index of the sample closest to Δ𝑡 − 𝑇 and
rounded to the nearest (Δ𝑡− 𝑇 )/𝑇𝑠. Let 𝑔 = [𝑔1 𝑔2 . . . 𝑔𝑀 ]𝑇 be the sampling of Eq. (2) and
let 𝑀 be its length. 𝑇 in the upper-right corner of the symbol indicates transposition. 𝐼𝑀 is the
identity matrix of degree 𝑀 and 𝑂𝑖 denotes the zero matrix whose size is 𝑖×𝑀 . 𝑛𝑟 is a vector
of the noise components. Each element is assumed to follow a white normal distribution with a
mean of zero and a variance 𝜎2. In the following, it is assumed that 𝜎2 is known from the prior
measurements.

The noise suppression method detailed in Section 3.3 assumes that 𝑔1 is contained in the first
𝑁𝑑 elements of the vector to which the orthogonal projection matrix is applied. To satisfy this
assumption, the signal was cut out of 𝑟. Let 𝑦 denote the signal. Hereafter, the range from the
first to the 𝑁𝑑-th sample of 𝑦 is called the decision interval.

The signal cutout procedure is described in detail. First, a discrete matched filter is applied to
the received signal to determine the starting point of the signal cutout as 𝑐𝑖 = 𝑟𝑇𝑖,𝑖+𝑁−1𝑒/

√
𝑁 .

Here, 𝑟𝑖,𝑖+𝑁−1 is the cutout of 𝑟 from the 𝑖-th to the (𝑖+𝑁 − 1)-th.
Let Δ𝑛(1) be the index that exceeds threshold 𝜏 (1) for the first time in |𝑐𝑖|. Here, 𝜏 (1) is set

such that the false-alarm probability 𝑃
(1)
𝐹𝐴 is sufficiently small. Therefore, Δ𝑛(1) ≥ Δ𝑛. The

starting point of the signal cutout is Δ𝑛(1) − 𝑁𝑑 + 1, which allows 𝑔1 to be included in the



decision interval. In this case, the cut-out signal 𝑦 can be expressed as follows:

𝑦 = 𝐴𝑥+ 𝑛 (9)

𝐴 =
𝐿∑︁
𝑙=1

⎡⎢⎣𝑂′
𝑁𝑑(𝑙−1)

𝐼𝑀 ′

𝑂′
𝑁𝑑(𝐿−𝑙)

⎤⎥⎦ (10)

𝑥 =
[︀
0𝑧1 𝑔𝑇 0𝑧2

]︀𝑇 (11)

𝑥 denotes a vector with zeros before and after 𝑔. 𝑀 ′ denotes the length of𝑥. 𝑂′
𝑖 is the zero matrix

whose size is 𝑖×𝑀 ′. 𝑧1, 𝑧2 are 𝑁𝑑 − 1 + Δ𝑛(1) −Δ𝑛 and 𝑀 ′ −𝑀 −𝑁𝑑 + 1−Δ𝑛(1) +Δ𝑛,
respectively. The cutout length is 𝑀 ′ +𝑁𝑑(𝐿− 1), which includes all transmitted signals and
their reverberations. This equals the number of rows in 𝐴, and let 𝑅. 𝑛 is a part of 𝑛𝑟 that is
cut out of 𝑟 with the signal component.

Here, we discuss how to set the parameter𝑀 ′. The length𝑀 of 𝑔 contained in𝑥 is determined
by Θ𝑠(·), Θ𝑟(·), and ℎ(𝑡), and varies depending on the sensor characteristics and environment.
Therefore, 𝑀 is assumed to be unknown. In addition, because the starting point of the cutout is
Δ𝑛(1) −𝑁𝑑 + 1, the beginning of 𝑥 can contain fewer than 𝑁𝑑 zeros. Considering the above,
𝑀 ′ should be set to a value with some margin.

3.2. Noise suppression in the decision interval

In the proposed method, the orthogonal projection matrix 𝑃𝐴

𝑃𝐴 = 𝐴(𝐴𝑇𝐴)−1𝐴𝑇 (12)

was applied to 𝑦. To show that (𝐴𝑇𝐴)−1 exists, it is sufficient to show that 𝐴𝑇𝐴 has full rank,
which is proved in the Appendix. The result 𝑦′ can be expressed as follows:

𝑦′ = 𝑃𝐴𝑦

= 𝐴(𝐴𝑇𝐴)−1𝐴𝑇𝐴𝑥+ 𝑃𝐴𝑛

= 𝐴𝑥+ 𝑃𝐴𝑛 (13)

This equation shows that signal component 𝐴𝑥 can be retained without corruption. For the
noise component, let 𝑃𝐴𝑛 be 𝑛′, then, the 𝑖-th element of 𝑛′ can be expressed as 𝑛′

𝑖 = 𝑝𝑇
𝑖 𝑛

where 𝑝𝑖 refers to the 𝑖-th columns of 𝑃𝐴. Because 𝑛′ is a linear sum of white normal noise, 𝑛′
𝑖

follows a normal distribution, and its variance (𝜎′
𝑖)
2 is (𝜎′

𝑖)
2 = 𝑝𝑇

𝑖 𝑝𝑖𝜎
2. This implies that 𝑝𝑇

𝑖 𝑝𝑖

represents the noise suppression performance; if this value is less than one, a smaller threshold
value can be set with the same false alarm probability. In this case, as discussed in section 2.3.1,
the systematic error in the received time estimation can be reduced. The detailed process is
as follows: The threshold value 𝜏

(2)
𝑖 is calculated from a given false-alarm probability 𝑃

(2)
𝐹𝐴

and (𝜎′
𝑖)
2. The absolute value of the discrete matched filter output 𝑐′𝑖 = (𝑦′

𝑖,𝑖+𝑁−1)
𝑇𝑒/

√
𝑁 is

calculated, and detection is performed using the threshold 𝜏
(2)
𝑖 . 𝑦′

𝑖,𝑖+𝑁−1 is the cutout of 𝑦′

from the 𝑖-th to the (𝑖+𝑁 − 1)-th.
Let Δ𝑛(2) be the index of 𝑦′ first detected by the threshold 𝜏

(𝑖)
2 , then, the estimate of Δ𝑛 is

expressed as Δ𝑛(1) +Δ𝑛(2) −𝑁𝑑.



3.3. Relationship between transmission period, number of transmissions, and
noise suppression performance

In this section, we first show that to study the noise suppression performance of 𝑃𝐴 in the
decision interval, it is sufficient to investigate the diagonal components of (𝐴𝑇𝐴)−1. Next, we
show that the noise suppression performance can be expressed in a simple form using 𝐿, 𝑁𝑑,
and 𝑀 ′ under the given conditions, and we discuss the relationship between each parameter
and the noise suppression performance. In addition, the performance limits of the proposed
method under these conditions are discussed.

3.3.1. Analysis of 𝑃𝐴

𝑝𝑇
𝑖 𝑝𝑖 representing the noise suppression performance, is the 𝑖-th diagonal component of 𝑃 𝑇

𝐴𝑃𝐴.
Here, 𝑃𝐴 is a projective matrix and is symmetric. Hence, 𝑃 𝑇

𝐴𝑃𝐴 = 𝑃𝐴𝑃𝐴 = 𝑃𝐴. Therefore,
𝑝𝑇
𝑖 𝑝𝑖 is identical to the 𝑖-th diagonal component of 𝑃𝐴. Here, 𝐴 can be expressed as 𝐴 =

(𝐼𝑇1,𝑁𝑑
𝐾𝑇

0 )
𝑇 where 𝐼1,𝑁𝑑

is the first to 𝑁𝑑-th rows of the identity matrix of degree 𝑀 ′, and 𝐾0

is the (𝑁𝑑 + 1)-th and the later rows of 𝐴. Therefore, 𝑃𝐴 can be written as:

𝑃𝐴 =

(︂
𝐼1,𝑁𝑑

𝐾0

)︂
(𝐴𝑇𝐴)−1

(︀
𝐼𝑇1,𝑁𝑑

𝐾𝑇
0

)︀
=

(︂
(𝐴𝑇𝐴)−1

1,𝑁𝑑

𝐾0(𝐴
𝑇𝐴)−1

)︂(︀
𝐼𝑇1,𝑁𝑑

𝐾𝑇
0

)︀
. (14)

Thus, each element in the top-left 𝑁𝑑-by-𝑁𝑑 matrix of 𝑃𝐴 and (𝐴𝑇𝐴)−1 is identical. This
indicates that the noise suppression performance in the decision interval can be evaluated by
investigating the first to 𝑁𝑑-th diagonal components of (𝐴𝑇𝐴)−1.

𝐴𝑇𝐴 is a symmetric Toeplitz matrix, as follows:

𝐴𝑇𝐴 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑣1 𝑣2 𝑣3 · · · · · · 𝑣𝑀 ′

𝑣2 𝑣1 𝑣2
. . .

...

𝑣3 𝑣2
. . .

. . .
. . .

...
...

. . .
. . .

. . . 𝑣2 𝑣3
...

. . . 𝑣2 𝑣1 𝑣2
𝑣𝑀 ′ · · · · · · 𝑣3 𝑣2 𝑣1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(15)

All the elements of this matrix are integers and are represented as follows:

𝑣𝑚 =

{︃
𝐿− 𝑚−1

𝑁𝑑
((𝑚− 1) mod 𝑁𝑑) = 0 ∧ 𝐿 > 𝑚−1

𝑁𝑑

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
. (16)

Note that the inverse matrix of symmetric Toeplitz matrix can be obtained by the Trench
algorithm.



We then examine the diagonal components of inverse matrix (𝐴𝑇𝐴)−1. Let each of these
elements be defined as follows:

(𝐴𝑇𝐴)−1 =

⎛⎜⎜⎜⎝
𝑤1,1 𝑤1,2 · · · 𝑤1,𝑀 ′

𝑤2,1 𝑤2,2 · · · 𝑤2,𝑀 ′

...
...

. . .
...

𝑤𝑀 ′,1 𝑤𝑀 ′,2 · · · 𝑤𝑀 ′,𝑀 ′

⎞⎟⎟⎟⎠ . (17)

This matrix satisfies (𝐴𝑇𝐴)(𝐴𝑇𝐴)−1 = 𝐼 .
We consider the first diagonal component 𝑤1,1 of (𝐴𝑇𝐴)−1. For the first column of (𝐴𝑇𝐴)−1,

we assume that 1+𝑁𝑑(𝑖−1) (𝑖 = 1, 2, . . . , ⌈𝑀 ′

𝑁𝑑
⌉)-th rows are real numbers, and all other rows

are zero. ⌈·⌉ denotes the ceiling function. Here, in 𝑚-th rows of 𝐴𝑇𝐴, all columns except the
((𝑚− 1) mod 𝑁𝑑) + 1+𝑁𝑑(𝑖− 1))-th column are zero, and thus the inner product of the first
column of (𝐴𝑇𝐴)−1 and all rows except the (1 +𝑁𝑑(𝑖− 1))-th row of 𝐴𝑇𝐴 are zero. From the
above discussion, the product of 𝐴𝑇𝐴 and the first column of (𝐴𝑇𝐴)−1 can be expressed as:

𝐵𝐿
𝑄

⎛⎜⎜⎜⎜⎜⎝
𝑤1,1

𝑤1+𝑁𝑑,1

𝑤1+2𝑁𝑑,1

...
𝑤1+(𝑄−1)𝑁𝑑,1

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎝
1
0
0
...
0

⎞⎟⎟⎟⎟⎟⎠ (18)

𝐵𝐿
𝑄 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑣1 𝑣(1+𝑁𝑑) · · · · · · · · · 𝑣(1+(𝑄−1)𝑁𝑑)

𝑣(1+𝑁𝑑) 𝑣1 𝑣(1+𝑁𝑑) · · · · · · 𝑣(1+(𝑄−2)𝑁𝑑)

𝑣(1+2𝑁𝑑) 𝑣(1+𝑁𝑑) 𝑣1 · · · · · · 𝑣(1+(𝑄−3)𝑁𝑑)
...

. . .
. . .

. . .
...

...
. . .

. . .
. . .

...
𝑣(1+(𝑄−1)𝑁𝑑) · · · · · · 𝑣(1+2𝑁𝑑) 𝑣(1+𝑁𝑑) 𝑣1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
(19)

where 𝑄 = ⌈𝑀 ′/𝑁𝑑⌉.
When 𝑄 = 1, 𝑤1,1 = 1/𝐿 according to Eq. (18). 𝑄 becomes one only when the transmission

period 𝑁𝑑 is greater than 𝑀 ′, which corresponds to the averaging method.
When 𝑄 > 1, 𝑤1,1 is the (1,1) component of (𝐵𝐿

𝑄)
−1. Therefore, we investigate (𝐵𝐿

𝑄)
−1. In

the following, we impose the condition 𝐿 ≥ 𝑄− 1 ≥ 1 for 𝐿 and 𝑄. Then each element of 𝐵𝐿
𝑄

can be expressed as follows:

𝐵𝐿
𝑄 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

𝐿 𝐿− 1 · · · · · · 𝐿−𝑄+ 1

𝐿− 1 𝐿
.. .

...
...

. . .
. . .

. . .
...

...
. . . 𝐿 𝐿− 1

𝐿−𝑄+ 1 · · · · · · 𝐿− 1 𝐿

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(20)



Theorem 1. When 𝐿 ≥ 𝑄− 1 ≥ 1, the inverse matrix of 𝐵𝐿
𝑄 is as follows.

(𝐵𝐿
𝑄)

−1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝛽1 −0.5 0 · · · · · · · · · 0 𝛽2
−0.5 1 −0.5 0 · · · · · · · · · 0

0 −0.5 1 −0.5 0 · · · · · ·
...

...
. . .

. . .
. . .

. . .
. . .

...
...

. . .
. . .

. . .
. . .

. . .
...

... · · · · · · 0 −0.5 1 −0.5 0
0 · · · · · · · · · 0 −0.5 1 −0.5
𝛽2 0 · · · · · · · · · 0 −0.5 𝛽1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (21)

𝛽1 =
2𝐿−𝑄+ 2

4𝐿− 2𝑄+ 2
(22)

𝛽2 =
1

4𝐿− 2𝑄+ 2
. (23)

Proof. We show that Eq. (21) is 𝐵𝐿
𝑄(𝐵

𝐿
𝑄)

−1 = 𝐼 . For the first column of (𝐵𝐿
𝑄)

−1, the inner
product of the first row of 𝐵𝐿

𝑄 is

(2𝐿−𝑄+ 2)𝐿

4𝐿− 2𝑄+ 2
− 0.5(𝐿− 1) +

𝐿−𝑄+ 1

4𝐿− 2𝑄+ 2
= 1. (24)

The inner product of 𝐵𝐿
𝑄 with the 𝑖 (𝑖 = 2, 3, . . . , 𝑄)-th row is:

(𝐿− 𝑖+ 1)(2𝐿−𝑄+ 2)

4𝐿− 2𝑄+ 2
− 0.5(𝐿− 𝑖+ 2) +

𝐿−𝑄+ 𝑖

4𝐿− 2𝑄+ 2
= 0. (25)

For the 𝑖 (𝑖 = 2, 3, . . . , 𝑄 − 1)-th column of (𝐵𝐿
𝑄)

−1, the inner product of the 𝑖-th row of
𝐵𝐿

𝑄 is
− 0.5(𝐿− 1) + 𝐿− 0.5(𝐿− 1) = 1. (26)

For the inner product of the 𝑖 (𝑖 = 2, 3, . . . , 𝑄− 1)-th column of (𝐵𝐿
𝑄)

−1 and 𝑗 (𝑗 ̸= 𝑖)-th row
of 𝐵𝐿

𝑄, if 𝑖 > 𝑗,

−0.5(𝐿− 1 + 𝑖− 𝑗) + (𝐿− 2 + 𝑖− 𝑗)− 0.5(𝐿− 3 + 𝑖− 𝑗) = 0. (27)

If 𝑖 < 𝑗, then

−0.5(𝐿− 1 + 𝑖− 𝑗) + (𝐿+ 𝑖− 𝑗)− 0.5(𝐿+ 1 + 𝑖− 𝑗) = 0. (28)

We considered the 𝑄-th column of (𝐵𝐿
𝑄)

−1. Each of 𝐵𝐿
𝑄 and (𝐵𝐿

𝑄)
−1 is equal to the matrix

that inverts the row and column orders. Therefore, by the same reasoning as in the first column,
the inner product of the 𝑄-th column of (𝐵𝐿

𝑄)
−1 with the 𝑄-th row of 𝐵𝐿

𝑄 is 1, and the other
rows of 𝐵𝐿

𝑄 are 0, which concludes the proof.



Figure 1: Examples of noise suppression performance

This indicates that the noise suppression performance 𝑤1,1 can be expressed in the form 𝛽1
(Eq. (22)).

The above discussion is for the first column of (𝐴𝑇𝐴)−1, but holds for the second and
subsequent columns, and the value of each element can be calculated using (𝐵𝐿

𝑄)
−1. Therefore,

we can represent the noise suppression performance in the decision interval as 𝛽1 (Eq. (22)).

3.3.2. Relationship between 𝐿, 𝑄, and noise suppression performance

Figure 1 shows the results of calculating the (1,1) components of (𝐵𝐿
𝑄)

−1 for 𝐿 and 𝑄. First, as
mentioned in the previous section, 𝑄 = 1 corresponds to the averaging method, and the noise
suppression performance is 1/𝐿. For 𝑄, the noise suppression performance decreased as 𝑄
increased. For 𝐿, the noise suppression performance increases as 𝐿 increases but appears to
converge to 0.5, when 𝑄 is not one.

In the following, we show that the above properties are maintained under the condition
𝐿 ≥ 𝑄− 1 ≥ 1. We will discuss the case 𝐿 < 𝑄− 1 in future work.

First, we investigate the noise suppression performance when𝑄 increases. If𝐿 ≥ 𝑄−1 ≥ 1 is
satisfied, the noise suppression performance can be expressed by Eq. (22), and thus the difference
between the noise suppression performance when𝑄′ and𝑄′+1 (𝐿 ≥ 𝑄′+1 > 𝑄′ ≥ 𝑄−1 ≥ 1)
is

2𝐿− (𝑄′ + 1) + 2

4𝐿− 2(𝑄′ + 1) + 2
− 2𝐿−𝑄′ + 2

4𝐿− 2𝑄′ + 2
(29)

This expression can be simplified as

1

2(2𝐿−𝑄′)(2𝐿−𝑄′ + 1)
. (30)

The equation is positive because 𝐿 ≥ 𝑄′ ≥ 1. In other words, as 𝑄 increased, the noise
suppression performance decreased.

The value of 𝑄 increased as the transmission period 𝑁𝑑 decreased. Therefore, the noise
suppression performance decreased as the transmission period was shortened.



Next, we investigate the noise suppression performance as the number of transmissions 𝐿
increases. The difference between 𝛽1 when the number of transmissions 𝐿′ (𝐿′ ≥ 𝐿 ≥ 𝑄−1 ≥
1) and 𝐿′ + 1 are

2(𝐿′ + 1)−𝑄+ 2

4(𝐿′ + 1)− 2𝑄+ 2
− 2𝐿′ −𝑄+ 2

4𝐿′ − 2𝑄+ 2
=

−1

(2𝐿′ −𝑄+ 1)(2𝐿′ −𝑄+ 3)
. (31)

The equation is negative because 𝐿′ ≥ 𝑄 ≥ 1. Therefore, the noise suppression performance
improves when the number of transmissions is increased. In addition, from Eq. (22), it can be
observed that 𝛽1 converges to 0.5 as 𝐿 is increased. To summarize the above, it can be said that
under the condition that 𝐿 ≥ 𝑄− 1 ≥ 1, the noise suppression performance can be improved
by increasing the number of transmissions 𝐿, but there is an lower limit of 0.5.

The lower limit of 𝛽1 0.5 is the same as that of the noise suppression performance of the
averaging method when the transmission period is set to more than 𝑀 and the number of
transmissions is set to two, as described in Section 2.3.2. In other words, when the proposed
method was used with a transmission period of 𝑀 or less, its noise suppression performance
was less than or equal to that of the averaging method under the aforementioned conditions. In
contrast, the proposed method has the advantage of reducing the time required for the signal
transmission. Specific numerical examples and performance comparisons are presented in
Section 4.3.

3.4. Relationship between the starting point of the cutout and the error
caused by the projection

In this section, we consider the case in which 𝑦 does not contain a part of 𝑔. There are two
cases in which the cutout is made either too early or too late, and we discuss them sequentially.

If the starting point of the cutout is too early, and 𝑦 does not contain the last 𝑖 components
of 𝑔, 𝑦 is represented as follows:

𝑦 =

(︂
𝑂′

𝑖

𝐴1,𝑅−𝑖

)︂
𝑥+ 𝑛 (32)

𝐴1,𝑅−𝑖 is the first to (𝑅 − 𝑖)-th rows of 𝐴. Let 𝑎𝑖 be the 𝑖-th column of matrix 𝐴, then, the
matrix on the right-hand side of Eq. (32) can be expressed as(︀

𝑎1+𝑖 𝑎2+𝑖 · · · 𝑎𝑀 ′ 𝑎𝑀 ′+1 · · · 𝑎𝑀 ′+𝑖

)︀
(33)

Here, 𝑎𝑗 (𝑗 > 𝑀 ′) is a vector consisting of a 𝑖-by-1 zero vector, and the first to (𝑀 ′ − 𝑖)-th
rows of 𝑎𝑗−𝑖. The product of this and 𝐴 is:

𝐴𝑇

(︂
𝑂′

𝑖

𝐴1,𝑅′−𝑖

)︂
=

⎛⎜⎜⎜⎝
𝑎𝑇
1

𝑎𝑇
2
...

𝑎𝑇
𝑀 ′

⎞⎟⎟⎟⎠(︀
𝑎1+𝑖 𝑎2+𝑖 · · · 𝑎𝑀 ′+𝑖

)︀
. (34)



This indicates that the first to (𝑀 ′ − 𝑖)-th columns are identical to the (𝑖 − 1)-th to 𝑀 ′-th
columns of 𝐴𝑇𝐴. Thus, 𝑦′ can be represented as:

𝑦′ =𝐴(𝐴𝑇𝐴)−1𝐴𝑇

(︂
𝑂′

𝑖

𝐴1,𝑅−𝑖

)︂
𝑥+ 𝑃𝐴𝑛

=𝐴

(︂
𝑂′′

𝑖 𝐾1

𝐼𝑀 ′−𝑖 𝐾2

)︂
𝑥+ 𝑃𝐴𝑛. (35)

𝑂′′
𝑖 is the 𝑖-by-(𝑀 ′−𝑖) zero matrix. 𝐾1 and𝐾2 are 𝑖-by-𝑖 and (𝑀 ′−𝑖)-by-𝑖matrices, respectively.

From Eq. (34), 𝐾1 and 𝐾2 are not zero matrices. Therefore, it can be observed that 𝑦′ contains
an error that is the product of the last 𝑖 components of 𝑥 and 𝐾1, 𝐾2. Note that this error does
not occur when 𝑧2 ≥ 𝑖 because the last 𝑧2 components of 𝑥 are zero (Eq. (11)).

If the starting point of the cutout is too late, and 𝑦 does not contain the first 𝑖 components of
𝑔, then 𝑦 is represented as follows:

𝑦 =

(︂
𝐴𝑖+1,𝑅

𝑂′
𝑖

)︂
𝑥+ 𝑛. (36)

The matrix on the right-hand side of this equation can be written as(︀
𝑎1−𝑖 𝑎2−𝑖 · · · 𝑎1 · · · 𝑎𝑀 ′−𝑖

)︀
. (37)

Here, 𝑎𝑗 (𝑗 < 1) is a vector comprising the 𝑖-th to 𝑀 ′-th rows of 𝑎𝑗+𝑖 and 𝑖-by-1 zero vectors.
The product of this and 𝐴 is:

𝐴𝑇

(︂
𝐴𝑖+1,𝑅

𝑂′
𝑖

)︂
=

⎛⎜⎜⎜⎝
𝑎𝑇
1

𝑎𝑇
2
...

𝑎𝑇
𝑀 ′

⎞⎟⎟⎟⎠(︀
𝑎1−𝑖 𝑎2−𝑖 · 𝑎𝑀 ′−𝑖

)︀
. (38)

It can be observed that (𝑖 + 1)-th to 𝑀 ′-th columns of this matrix are identical to first to
(𝑀 ′ − 𝑖)-th columns of 𝐴𝑇𝐴. Thus, 𝑦′ can be represented as:

𝑦′ =𝐴(𝐴𝑇𝐴)−1𝐴𝑇

(︂
𝐴𝑖+1,𝑅

𝑂′
𝑖

)︂
𝑥+ 𝑃𝐴𝑛

=𝐴

(︂
𝐾3 𝐼𝑀 ′−𝑖

𝐾4 𝑂′′
𝑖

)︂
𝑥+ 𝑃𝐴𝑛. (39)

𝐾3 and 𝐾4 are (𝑀 ′ − 𝑖)-by-𝑖 and 𝑖-by-𝑖 matrices, respectively. From Eq. (38), 𝐾3 and 𝐾4 are
not zero matrices. Therefore, this indicates that 𝑦′ contains errors owing to the product of the
first 𝑖 components of 𝑥 and 𝐾3, 𝐾4.

4. Numerical Experiment

In this section, numerical experiments were conducted to verify the effectiveness of the proposed
method. In Experiment 1, we compared the performances of the conventional and proposed
methods when the number of delay waves was varied. Experiment 2 was a comparative
evaluation of the required transmission time and noise suppression performance.



Table 1
Parameter

Sampling frequency 𝑓𝑠 = 1/𝑇𝑠 48 kHz
Frequency of transmission signal 𝑓 18 kHz

Length of signal 𝑇 0.001 s
Signal-to-noise raio 20 dB

False alarm probability 𝑃
(1)
𝐹𝐴 10−10

False alarm probability 𝑃
(2)
𝐹𝐴 10−6

Transmission period 𝑇𝑑 0.04 s
𝑀 ′ 0.13×𝑓𝑠

Trial count 1000

4.1. Experimental setting

This section describes the experimental setup common to Experiments 1 and 2. The list of
parameters is presented in Table 1. If the parameters are not specified, the values listed in Table
1 are used.

The transmitted signal was a sine wave in Eq. (2). The characteristics of the speaker and
microphone were ignored here to evaluate only the influence of the delay waves. The number of
samples in the received signal 𝑟 was set to 0.54× 𝑓𝑠 = 25, 920. For direct waves, the received
time is not necessarily a constant multiple of 𝑁𝑠 when sampled. To simulate this, a uniform
random number in the range of 0.15 s to 0.15 +𝑁𝑠 s was generated for each trial and was set
as the received time. The amplitude of the direct wave was set as 1.

For the simulated delayed waves, the amplitudes of each delayed wave were uniformly
random numbers, ranging from 0 to 0.8. The received time of each delayed wave was set to a
uniform random number in a range from the received time of the direct wave to 0.08 s.

The threshold 𝜏 (1) was given values calculated from the false alarm probabilities 𝑃 (1)
𝐹𝐴 and

the noise variance. 𝑀 ′ is set to a value of 0.13 s with a margin with respect to 𝑀 based on the
discussion in Section 3.1.

4.2. Experiment 1: Comparison with conventional methods

In this section, we compare the performance of each method when the number of delay waves is
varied. In the proposed method, the number of signal transmissions is set to four. The following
three methods were evaluated using conventional methods.

The first is the maximum peak method described in Section 2. Note that for transmission,
the signal length 𝑠(𝑡) is set to 𝑇 = 0.004 s, and the number of transmissions is set to one. The
reason for this was to make the energy identical to that of the signal transmitted using the
proposed method.

The second is the leading-edge method described in Section 2. Here, 𝜏 in Section 2.3.1 is
calculated from the false-alarm probabilities 𝑃 (2)

𝐹𝐴 and noise variance.

The third is the leading-edge method using the threshold 𝜏
(2)
𝑖 . Hereafter, this method will be

referred to as the low-threshold leading-edge method. The difference between this method and
the proposed method is that detection is performed using the threshold 𝜏

(2)
𝑖 without the noise



(a) Number of delay waves: 0 (b) Number of delay waves: 25 (c) Number of delay waves: 50

Figure 2: Results of Experiment 1

Figure 3: Number of false alarm Figure 4: Results of Experiment 2

suppression process described in Section 3. This method was evaluated to show that the number
of false alarms increased when the threshold was lowered, without the noise suppression process
of the proposed method.

The evaluation results of each method are shown in Figures 2a, 2b, and 2c. In these figures,
the horizontal axis shows the error of the estimated index and the vertical axis shows the
cumulative distribution function (CDF). The number of false alarms for each condition and
method is shown in Figure 3. False alarms were defined as errors greater than 15.

Figure 2a shows that, in the absence of delay waves, the maximum peak method yields the
best performance, as described in Section 2. However, in the maximum peak method, the false
alarm rate increases as the number of delay waves increases (Figures 2b, 2c, and 3).

For the methods based on leading-edge detection (leading-edge, low-threshold leading-edge,
and proposed methods), the performance was not significantly degraded even when the number
of delay waves increased, as shown in Figures 2a, 2b, 2c, and 3. Moreover, Figures 2a, 2b, and
2c show that the proposed method reduces the error around the true value compared to the
leading-edge method. Comparing the low-threshold leading-edge method and the proposed
method, although the errors around the true value are not significantly different, the number
of false alarms increases in the low-threshold leading-edge method compared to the proposed
method, as shown in Figure3.



4.3. Experiment 2: Required transmission time and noise suppression
performance

This section presents a comparative study of the relationship between the required transmission
time and noise suppression performance. In this experiment, the number of delay waves is set
to 25.

For the proposed method, the number of transmissions was set to one, two, three, and four.
Their required transmission times are 0.13, 0.17, 0.21, and 0.25 s, respectively. For the averaging
method, because 𝑀 is unknown, the transmission period 𝑇𝑑 is set to 𝑀 ′ × 𝑇𝑠 = 0.13 s, and the
number of transmissions is set to two. In this case, the required transmission time was 0.26 s.
As described in Section 2.3.2, under these conditions, the noise suppression performance of the
averaging method was 0.5, which is identical to the performance limit of the proposed method
shown in the 3.3.2 section.

The results of the experiment are shown in Figure. 4. As aforementioned, for the proposed
method, the required transmission time increases as the number of transmissions increases.
However, the performance of the estimation of the received time improves as the number of
transmissions increases. The averaging method had the best performance in estimating the
received time, but the required transmission time was the largest. These results confirm that the
proposed method can provide noise suppression with reduced transmission time if the required
noise suppression performance is greater than 0.5.

5. Conclusion

In this study, we proposed a noise suppression method that can be applied to multiple signal
transmissions without waiting for the disappearance of reverberation. Numerical experiments
were conducted to compare the effectiveness of the proposed method with that of conventional
methods in estimating the received time under multiple reverberation conditions.

The relationship between noise suppression performance and 𝐿 and 𝑄 is discussed under
the conditions 𝑄 = 1 or 𝐿 ≥ 𝑄− 1 ≥ 1. The case in which 𝐿 < 𝑄− 1 will be discussed in our
future work.
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Appendix

We show that 𝐴𝑇𝐴 is full rank. Because 𝐴𝑇𝐴 is a Gram matrix, it is sufficient to show that
all the column vectors of 𝐴 are linearly independent. First, for the 𝑖 (1 ≤ 𝑖 ≤ 𝑁𝑑)-th column
vector, the 𝑖-th row is one, but all 𝑖-th rows of column vectors except 𝑖-th column vector are
zero, and thus they are linearly independent.

For the 𝑖 (𝑖 > 𝑁𝑑)-th column vector, let Λ be the index set of the column vector whose 𝑖-th
row is one, except for the 𝑖-th column as follows:{︂

((𝑖− 1) mod 𝑁𝑑) + 1 +𝑁𝑑(𝑚− 1) | 𝑚 = 1, 2, . . . ,

⌈︂
𝑖

𝑁𝑑

⌉︂
− 1

}︂
(40)

In the following, let 𝜆1, 𝜆2, 𝜆3 ∈ Λ: For 𝜆1-th rows, the value is zero in 𝑖-th columns but one
only in 𝜆2 (𝜆1 ≥ 𝜆2)-th columns. Therefore, if the 𝑖-th column vector is linearly dependent,
then the linear sum of ⌈𝑖/𝑁𝑑⌉ − 1 column vectors must satisfy the ⌈𝑖/𝑁𝑑⌉ equality constraint,
where 𝜆3-th rows are zero and 𝑖-th row is one. Because this is impossible, it can be said that all
𝑖-th column vectors are linearly independent. Thus, (𝐴𝑇𝐴) is shown to have full rank.


	1 Introduction
	2 Related work
	2.1 Observation model
	2.2 Received time estimation by maximum peak detection
	2.3 Received time estimation by leading-edge detection
	2.3.1 False alarm probability and threshold
	2.3.2 Improvement of signal-to-noise ratio by averaging


	3 Proposed method
	3.1 Transmission and reception model
	3.2 Noise suppression in the decision interval
	3.3 Relationship between transmission period, number of transmissions, and noise suppression performance
	3.3.1 Analysis of PA
	3.3.2 Relationship between L, Q, and noise suppression performance

	3.4 Relationship between the starting point of the cutout and the error caused by the projection

	4 Numerical Experiment
	4.1 Experimental setting
	4.2 Experiment 1: Comparison with conventional methods
	4.3 Experiment 2: Required transmission time and noise suppression performance

	5 Conclusion

