
Ontology for Industrial Engineering: A DOLCE
Compliant Approach
Walter Terkaj1, Stefano Borgo2 and Emilio M. Sanfilippo2

1Istituto di Sistemi e Tecnologie Industriali Intelligenti per il Manifatturiero Avanzato (STIIMA-CNR) Via A. Corti, 12,
20133, Milano, Italy
2ISTC-CNR Laboratory for Applied Ontology, via alla cascata 56/C, 38123, Povo, Trento, Italy

Abstract
Recent academic and industrial initiatives show an increasing interest in the use of foundational ontologies
to support the development of domain-specific ontologies. Foundational ontologies guarantee formal
and conceptual robustness, and at the same time support the integration of multiple domain-ontologies
aligned to the same foundational ontology. This paper reports some ongoing work in this area focusing
on the application of the dolce ontology in the manufacturing domain. Taking advantage of the newly
formal representation of dolce in OWL and building on previous modeling works, the paper shows
how different modeling strategies can be used depending on the engineering requirements at hand, and
discusses advantages and disadvantages of these strategies. We exemplify the discussion by means of an
industrial case study.

Keywords
Ontology, Foundational Ontologies, dolce, Industrial engineering

1. Introduction

Recent initiatives like the European project OntoCommons1 and activities in OAGI like the
Industrial Ontologies Foundry (IOF)2 show that there is a convergence in scientific and industrial
interests towards the development of ontology-based information systems for industry at large.

While this convergence can be analyzed from different perspectives, the modelling of in-
dustrial engineering application cases asks for a common and extensible data model for the
representation of assets related to systems, resources, processes, and products. This can be done
from different perspectives (e.g., relative to one stakeholder or another) and at different levels
of granularity (depending, e.g., on the information available or on contextual constraints).

To considering these industrial models for implementation purposes, the ontological model
must be provided in some computational language that can be directly used at the organization’s
site, independently whether the model is for production, logistics or management. The adopted
computational language may change considerably depending on several issues like legacy
constraints and local expertise but, by and large, one usually finds applications based on

FOMI 2022: 12th International Workshop on Formal Ontologies meet Industry, September 12–15, 2022, Tarbes, France
$ walter.terkaj@stiima.cnr.it (W. Terkaj); stefano.borgo@cnr.it (S. Borgo); emilio.sanfilippo@cnr.it
(E. M. Sanfilippo)

© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

1https://ontocommons.eu/
2https://www.industrialontologies.org/

mailto:walter.terkaj@stiima.cnr.it
mailto:stefano.borgo@cnr.it
mailto:emilio.sanfilippo@cnr.it
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org
https://ontocommons.eu/
https://www.industrialontologies.org/


languages that have been developed within the Semantic Web approach. Today, the default
choice seems to be to work with some version of the OWL language3 due to its logical properties:
computability, decidability and, depending on needs and constructs, efficiency. Efficiency is
particularly relevant because there are different kinds of reasoning tasks that may be performed
at runtime. They are classified and studied in terms of data complexity, taxonomic complexity,
query complexity, and combined complexity.4

While OWL is usually considered a suitable solution for ontology implementations, the
adoption of OWL remains the result of a compromise. On the one hand, OWL allows to address
decision making needs that occur at runtime. On the other hand, it is strong enough to model the
taxonomic structure of the ontology and some aspects of its relational structure. Nonetheless,
top-level or middle level ontologies, which are at the core of robust ontology modeling, are
preferably represented using stronger logical languages like first-order logic (FOL) [1]. Indeed,
there is a gap between the information an ontology can model in FOL and the information the
OWL language can represent. This gap has important consequences since there exist different
approaches to generate an OWL version of an ontology which is initially given in FOL [2]. For
instance, given that not everything can be expressed in OWL, it is unclear which parts of the
FOL ontology should be given priority when generating the OWL version. Other problems
arise when considering interoperability across ontologies as it is unclear today which type of
OWL version of a domain ontology optimises the interoperability alignments that are under
development across top-level and/or middle-level ontologies (an ongoing effort taken by the
OntoCommons project among others). This paper focuses on the first of these issues aiming, as
we will see later, to show what the difficulties are and some options that should be considered.
Note that the existence of an ontology in two different languages is not per se a problem, since
an ontology is not a syntactic entity, but a semantic one. Two versions of the same ontology
may coexist as long as they share the same class of models.5 However, when the two languages
have different expressive power, like FOL and OWL do, the classes of models are different.
Practically speaking, the two ontologies describe different views of reality, and derive different
consequences even when describing the same scenario.

This problem is not restricted to some ontological systems, it applies to all ontologies written
in such languages. Actually, the problem is even more general, since it holds for logical theories
at large, but it becomes particularly relevant when ontologies are at stake due to their general
aim to provide a robust understanding of (a fragment of) reality. Furthermore, the problem
cannot be classified as a logical fact that we simply have to live with, as there are different ways
to approximate the richer ontology in a less expressive language. This means that there are
choices one can (and perhaps needs to) make. Given that there are different approximation
options, one wonders if there is the possibility to develop guidelines or even a methodology to
minimize the modeling gap.

The aim of this paper is to highlight the aforementioned problem and see what options are
generally available. We take the perspective of a practitioner and, thus, exemplify the discussion
(which remains general) on a specific system, namely, the dolce ontology [3]. dolce is under

3https://www.w3.org/TR/owl-overview/
4https://www.w3.org/TR/owl-profiles/#Computational_Properties
5Things are more complex than this, as different languages have different ontological commitments. Generally

speaking, this is an important point in applied ontology but, to keep things simple, we ignore it in this paper.

https://www.w3.org/TR/owl-overview/
https://www.w3.org/TR/owl-profiles/##Computational_Properties


evaluation as part 3 of the ISO standard 213836 which includes two versions of the ontology,
one in Common Logic Interchange Format7 (CLIF), and one in OWL (see Section 3). This means
that both the FOL and the OWL versions are official versions of dolce .8

The paper is structured as follows. Section 2 introduces the requirements of a domain ontology
for manufacturing applications, whereas Section 3 presents the proposal of an OWL ontology
extending dolce for such domains. Examples of instantiation are discussed in Section 4 and
conclusions are drawn in Section 5.

2. Problem Statement

Industrial systems are typically characterized by a long lifecycle, including phases like early
design, detailed design, installation and ramp-up, run and monitor, maintenance, and decom-
missioning. Therefore, a data model for industrial systems must be able to cope with evolving
data that refer to the same concept but with a different status and level of details (LOD). Indeed,
all planning activities are particularly data-intensive. For instance it is necessary to deal with
capacity plans, process plans, and production plans. The first addresses the timed acquisition of
production resources, e.g., machine tools, transporters, fixtures, etc., to meet production goals.
A process plan gives work instructions to transform a part from its initial form to the final
form and may include the description of manufacturing processes, operational setup, process
parameters, equipment and/or machine tool selection. Finally, a production plan determines
the production resources assigned to execute operations on each workpiece, the scheduling and
resource optimization [5]. As anticipated in the introduction, the choice of the approach may
be pragmatic and related to local requirements and modeling needs. In principle, an ontology
should allow these modeling views to coherently coexist and interact.

Since also the relationships between assets evolve over time, it may be necessary to add the
time dimension to capture changing configurations and plans. However, this may significantly
increase the complexity of an ontology, in particular if modeled in OWL.

Narrowing the focus on manufacturing engineering, listing some relevant competency ques-
tions can help to highlight the importance of modeling relations between assets:

CQ1 Which are the descriptions of artefacts (i.e., part types) to be produced by a production
system under design?

CQ2 Which are the components of an artefact as designed?

CQ3 Which are the components of a physical artefact?

CQ4 Which are the executable activities (i.e., process plans) to obtain an artefact as output?

6https://www.iso.org/obp/ui/!iso:std:78927:en
7For the CLIF standard see: https://www.iso.org/standard/66249.html

For dolce in CLIF see: http://www.loa.istc.cnr.it/wp-content/uploads/2021/07/dolce-mace4-prover9.zip
8This year marks the twentieth anniversary of the official version of dolce [4] which is based on first-order

modal logic. The new versions in CLIF and OWL that we are mentioned, have been generated to comply with the
requirements of the new ISO standard 21383. As of now these versions should be considered in a developing phase
due, among other things, to the alignment problems we are in part addressing in this paper.



CQ5 Which are the sub-activities nesting a complex activity (e.g., a process plan)?

CQ6 Which are the activity occurrences nesting a complex activity occurrence (e.g., a manu-
facturing operation)?

CQ7 Which is the artefact description (activity) that an artefact (activity occurrence) is imple-
menting?

CQ8 Which production resource is needed to execute an activity?

CQ9 Which production resource is scheduled to execute an activity occurrence (e.g., a manu-
facturing operation)?

CQ10 Which are the capabilities of a machine tool in terms of activity occurrence that is able to
execute?

These questions address the variety of aspects that the ontology should manage to cover.
The long-term goal is to obtain a recommended extension of an OWL ontology (e.g., an OWL
version of dolce ) suitable for industrial engineering applications.

3. dolce for Industrial Engineering

The OWL dolce version (prefix dolce in Table 1) is here tested as the core module for possible
extensions to address the area of industrial engineering. This version is named DolceEng (see
prefix d4e in Table 1).

The proposed extension takes advantage of previous contributions in this domain, in particu-
lar:

• The standard ifcOWL ontology [6] (prefix ifc in Table 1) that is the official OWL version
of the Industry Foundation Classes (IFC) standard [7]. IFC provides a wide range of
high-level and detailed concepts to represent systems in Architecture, Engineering, and
Construction (AEC). However, the OWL version of the standard is hindered by a lack of
clear ontological commitment [8] and by an extremely complex monolithic structure [9].
In addition, ifcOWL relies on reified relations [8] resulting in verbose and computationally
expensive instantiations.

• A domain ontology for digital factory applications named Factory Data Model (FDM). This
data model,9 already presented in previous works [10, 11], has been developed as an OWL
ontology to represent factory assets related to production systems, resources, processes,
and products. The ontology integrates different knowledge domains while reusing existing
technical standards (e.g., ifcOWL [6], W3C SSN/SOSA [12], UML Statechart [13]). In
particular, an extension to ifcOWL has been adopted (prefix ifcext in Table 1) to simplify
the representation of relations between classes, similarly to what proposed by [14].

The design of DolceEng is presented in the following subsections focusing on taxonomy
(Sect.3.1) and relations (Sect.3.2), while recalling the competency questions listed in Sect.2.

9https://virtualfactory.gitbook.io/vlft/kb/fdm

https://virtualfactory.gitbook.io/vlft/kb/fdm


Table 1
Prefixes of ontology modules

Prefix Prefix IRI of ontology module
dolce http://www.loa.istc.cnr.it/dolce/dolce-owl/DOLCE#
d4e http://www.ontoeng.com/DolceEng#
ifc https://standards.buildingsmart.org/IFC/DEV/IFC4/ADD1/OWL#
ifcext http://www.ontoeng.com/IFC4_ADD1_extension#

3.1. Taxonomy

The taxonomy of DolceEng specializes OWL classes defined in dolce by simple subsump-
tion relations (rdfs:subClassOf). The relevant classes are reported in Table 2 and have been
introduced in [5]. From a general perspective, the table covers perdurants (aka events, occur-
rences), i.e., happenings in time like d4e:ActivityOccurrence, endurants like physical objects (e.g.,
d4e:TechnicalArtefact), qualities (e.g., d4e:Capability), concepts (e.g., d4e:Role), and descriptions
(e.g., d4e:ArtefactDescription, d4e:Activity). These latter two are useful for different purposes; e.g.,
in engineering design or manufacturing planning scenarios, experts need to explicitly represent
the design models (or process plans) with which technical artefacts (or activity occurrences) are
meant to comply (see CQ1). The d4e:Description class can be used for these purposes thanks
to specific relations (see next subsection 3.2). In research work about dolce , the class of
concepts (d4e:Concept) has been introduced to model the social or cognitive nature of certain
properties [15]. For instance, d4e:Concept can be used to capture properties that entities satisfy
within specific manufacturing contexts. Roles themselves (d4e:Role) are examples of concepts,
for instance, being mechanical engineer, employee, and lathe turner. In addition, following the
analysis by Sanfilippo et al. [5], roles can also model manufacturing resources, i.e., physical
entities which satisfy the requirement(s) required for the execution of a manufacturing activity
(plan). For instance, an individual lathe machine has the role of manufacturing resource when
that machine satisfies the requirements of a manufacturing activity, e.g., to have the capability
of cutting certain metallic materials within specific tolerance ranges.

DolceEng, as shown in Table 2, covers also classes that do not belong to dolce , like capabilities
and capacities (see CQ10). We resume here the view that capabilities are dolce individual
qualities associated with functions or activities, as discussed in [16]. This means to take
capabilities as relational qualities that depend on the environment and functionality, so that
it is possible to model the meaning of expressions like ‘it has the capability to hold’ (said of a
container), ‘it has the capability to carry’ (said of a truck), ‘it has the capability to cut’ (said of
a blade) [16]. Taking capabilities as a kind of contextual quality (the capability of holding is
implicitly parameterised by the qualities of the objects to be held like size, weight and material),
one is driven to separate intrinsic qualities (like shape, weight and color) and relational qualities
(like the capability to hold, to carry, to acquire information and so on). In engineering, the
designed capability acquires a special position. These are capabilities that are attributed (by the
designer and/or the producer) to the designed/produced object.

Borgo et al. [16] contrasted capabilities and capacities proposing to see the latter as qualities
that provide quantitative information. In this view, the capacities of an object are the qualities
that specify to which extent the object can realize a function or, in other terms, can manifest



a capability. This view classifies capacities as a type of relational qualities that, while distinct
from capabilities, also depend on the context in which the object is used. Examples are the
containment capacity (essentially the volume available to perform a storage functionality and
which depends on the type of entity one aims to store, e.g., liquid vs solid items of a certain
form and size) and the throughput (e.g., the number of products produced in a certain time
period by a production system with the capability to produce that kind of products).

Table 2
Classes defined in DolceEng

owl:Class rdfs:subClassOf
d4e:ActivityOccurrence dolce:Accomplishment
d4e:Artefact dolce:NonAgentivePhysicalObject
d4e:TechnicalArtefact d4e:Artefact
d4e:Building d4e:TechnicalArtefact
d4e:TransformationSystem d4e:TechnicalArtefact
d4e:Concept dolce:NonAgentiveSocialObject
d4e:Role d4e:Concept
d4e:Description dolce:NonAgentiveSocialObject
d4e:Activity d4e:Description
d4e:ArtefactDescription d4e:Description
d4e:TechnicalArtefactDescription d4e:ArtefactDescription
d4e:Capability dolce:PhysicalQuality
d4e:Capacity dolce:PhysicalQuality

3.2. Relations

Relations are key elements in conceptual models, ontologies included, to link classes and
establish formal restrictions. Table 3 compares how some relevant relations needed to represent
industrial systems, in particular manufacturing systems (cf. competency questions in Section 2),
can be modeled with 1) the standard ifcOWL ontology using reified relations (owl:Class), 2) the
Factory Data Model (FDM) using the ifcOWL extension ifcext that employs binary relations
(owl:ObjectProperty), and 3) dolce as employed by the proposed extension DolceEng taking
advantage of both binary and reified relations.

From a modeling perspective, there is an important distinction in using either temporalized
or non-temporalized relations. For instance, one may simply say that a physical lathe has
a cutting tool as component, with or without explicitly stating the time when the relation
holds. In a certain interpretation10 one aspect that changes from a formal perspective is the
arity of the relation. Without reference to time, one can use a binary logical predicate like
ℎ𝑎𝑠𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡(𝑥, 𝑦), whereas a ternary predicate is needed to include also the time 𝑡 at which
𝑥 is a component of 𝑦, i.e., ℎ𝑎𝑠𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡(𝑥, 𝑦, 𝑡). Adopting one view or the other one has
consequences in the expressivity of the application models. For instance, the mereological
characterization of physical entities commonly includes time variables, because physical objects
can undergo changes in time with respect to their parts [18]. Hence, an ontology restricted
to non-temporalized parthood relations cannot distinguish cases where, e.g., the same tool is

10See Galton [17], for an overview of different approaches for the representation of time in logical theories.



Table 3
Modeling relations in ifcOWL, FDM, and DolceEng

Description of Relation ifcOWL (owl:Class) FDM
(owl:ObjectProperty)

DolceEng

Decomposition of Artefact
Description (hierarchy)

ifc:IfcRelAggregates ifcext:decomposesObject dolce:constantProperPartOf

Decomposition of Artefact
(hierarchy)

ifc:IfcRelAggregates ifcext:decomposesObject dolce:constantProperPartOf,
dolce:TemporaryProperPart
(reified)

Nesting of Activity ifc:IfcRelNests ifcext:nestsObject dolce:constantProperPartOf
Nesting of Activity Occur-
rence

ifc:IfcRelNests ifcext:nestsObject dolce:temporalProperPartOf

Typing/Modeling defini-
tion between Artefact
Description and Artefact,
Activity and Activity
Occurrence

ifc:IfcRelDefinesByType ifcext:typesObject d4e:constantlyClassifies,
d4e:Classification (reified)

Product Description de-
fined as input of an Activ-
ity

ifc:IfcRelAssignsToProcess ifcext:hasAssignedObject d4e:hasInputReq

Product Description de-
fined as output of an Ac-
tivity

ifc:IfcRelAssignsToProduct ifcext:hasAssignedObject d4e:hasOutputReq

Assignment of a Resource
to an Activity

ifc:IfcRelAssignsToProcess ifcext:hasAssignedObject d4e:hasResourceReq

Assignment of a Resource
to an Activity Occurrence

ifc:IfcRelAssignsToProcess ifcext:hasAssignedObject dolce:Participation (reified)

used at different times with different machines. However, Semantic Web languages, like OWL,
force the use of binary relations represented by means of object or data properties. A trade-off
between expressivity and computational tractability is therefore required.

What is interesting from a modeling perspective is that the choice of adopting either a
diachronic or synchronic approach depends on the perspective one wishes to represent. Taking
as example a product design setting, one may wish to say that the product under design (i.e.,
a technical artefact description in our terminology) comprises various components without
reference to the time when the relation between the whole product and its components holds
(see CQ2). This is common in bill of materials (BOM) specifications where the relationships
between the components of a product are not always temporalized. On the other hand, when
representing an assembled product, one may need to refer to the time when an item is attached
to another one to enable an explicit representation of change (see CQ3). In a nutshell, an
ontology for industry should provide users with the flexibility of using either temporalized or
non-temporalized relations to meet different requirements in different application scenarios.

To make sense of these considerations, the OWL version of dolce (which, as said, is go-
ing through a validation period) covers different parthood relations among which three of
them are particularly relevant for our purposes: 1) dolce:TemporaryProperPart (reified), 2)
dolce:constantProperPartOf, and 3) dolce:temporalProperPartOf. Starting from the first one,
dolce:TemporaryProperPart stands for the reified ternary relation by which an endurant 𝑥 is



proper part of 𝑦 at time 𝑡 (with 𝑥 and 𝑦 being different individuals).11 Being reified, the relation
is represented as a class, whose instances are linked to three entities standing for the arguments
of the ternary relation. Axioms (Ax1)-(Ax2), in the notation of first-order logic (FOL), say that
the first (𝑡𝑃1) and second (𝑡𝑃2) arguments of the reified relation 𝑥 are endurants; by (Ax3), the
third argument (𝑡𝑃 𝑡) is a time. Each instantiation of 𝑇𝑒𝑚𝑝𝑜𝑟𝑎𝑟𝑦𝑃𝑟𝑜𝑝𝑒𝑟𝑃𝑎𝑟𝑡 has only these
three arguments.

Ax1 𝑇𝑒𝑚𝑝𝑜𝑟𝑎𝑟𝑦𝑃𝑟𝑜𝑝𝑒𝑟𝑃𝑎𝑟𝑡(𝑥) → ∃𝑦(𝑡𝑃1(𝑥, 𝑦) ∧ 𝐸𝑛𝑑𝑢𝑟𝑎𝑛𝑡(𝑦))

Ax2 𝑇𝑒𝑚𝑝𝑜𝑟𝑎𝑟𝑦𝑃𝑟𝑜𝑝𝑒𝑟𝑃𝑎𝑟𝑡(𝑥) → ∃𝑦(𝑡𝑃2(𝑥, 𝑦) ∧ 𝐸𝑛𝑑𝑢𝑟𝑎𝑛𝑡(𝑦))

Ax3 𝑇𝑒𝑚𝑝𝑜𝑟𝑎𝑟𝑦𝑃𝑟𝑜𝑝𝑒𝑟𝑃𝑎𝑟𝑡(𝑥) → ∃𝑡(𝑡𝑃 𝑡(𝑥, 𝑡) ∧ 𝑇𝑖𝑚𝑒(𝑡))

The second relation, i.e., dolce:constantProperPartOf is binary and holds between endurants.
It has the intended interpretation that 𝑥 is proper part of 𝑦 during the whole existence of 𝑦.
Accordingly, 𝑥 can exist before 𝑦 but once it is related to 𝑦 via constant proper part, it must remain
part of 𝑦 as long as the latter exists. In the case of physical artefacts, dolce:constantProperPartOf
can be used to model parthood relations between artefacts and their unreplaceable components,
but also for application settings where one does not wish to capture diachronic features of
domain entities (see CQ3). This relation can be also used to model the structure of descriptions
(recall that the latter are non-physical endurants according to dolce ) on the assumption that
descriptions cannot change parts in time; e.g., a complex activity (i.e., a manufacturing plan)
comprising various subactivities or the description of the artefact to be manufactured (see
CQ5).12 The third, binary, relation, dolce:temporalProperPartOf is used for parthood among
perdurants only; the idea is that a perdurant is an happening. Hence, it is not necessary to
parametrize parthood with respect to time [18] (see CQ6).

From Table 3, d4e:hasInputReq, d4e:hasOutputReq, and d4e:hasResourceReq are subrelations
of d4e:hasReq (has requirement) which is subsumed by (the inverse of) d4e:constantProperPart.
These are used to relate an activity to other descriptions representing what is needed for its
executions to take place. In particular, input requirements (d4e:hasInputReq) are the entities
undergoing an occurrence, e.g., amounts of matter or physical objects; output requirements
(d4e:hasOutputReq) are the intended results of an activity occurrence (see CQ4); resource
requirements (d4e:hasResourceReq) capture the resources needed according to the plan (see
CQ8), including things like oil, fuel, jigs, etc. (see the next section for an example).

The relation of participation is the most general one holding between endurants and the
perdurants in which they take part; e.g., the relation between a lathe machine, a turning activity
occurrence, and the time at which the former participates in the latter (see CQ9). Similarly to
the case of temporary parthood, axioms (Ax4)-(Ax6) represent Participation as a class related to
three entities standing for the arguments of the reified (ternary) relation: an endurant (𝑡𝑃𝐶1),
a perdurant (𝑡𝑃𝐶2), and time (𝑡𝑃𝐶𝑡).

Ax4 𝑃𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑡𝑖𝑜𝑛(𝑥) → ∃𝑦(𝑡𝑃𝐶1(𝑥, 𝑦) ∧ 𝐸𝑛𝑑𝑢𝑟𝑎𝑛𝑡(𝑦))

11Endurant in dolce is the most general class for things extended in space, e.g., machines, tools, persons, features
like holes and bumps. The reification of relationships with arity higher than two is common in Semantic Web
approaches, see, e.g., https://www.w3.org/TR/swbp-n-aryRelations/.

12Following Sanfilippo et al. [5], a description in our ontology can have only other descriptions as parts.

https://www.w3.org/TR/swbp-n-aryRelations/


Ax5 𝑃𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑡𝑖𝑜𝑛(𝑥) → ∃𝑦(𝑡𝑃𝐶2(𝑥, 𝑦) ∧ 𝑃𝑒𝑟𝑑𝑢𝑟𝑎𝑛𝑡(𝑦))

Ax6 𝑃𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑡𝑖𝑜𝑛(𝑥) → ∃𝑡(𝑡𝑃𝐶𝑡(𝑥, 𝑡) ∧ 𝑇𝑖𝑚𝑒(𝑡))

The relations for input- and output-participation in (Ax7)–(Ax8) are the counterparts for
input and output-requirements, respectively; hence they are needed to qualify the physical
entities (satisfying the requirements) taking part in activity occurrences. The participation
of resources is not further characterized in formal terms. Specific relations could be however
included in DolceEng to distinguish between different resource roles and their participation in
activity occurrences.

Ax7 𝐼𝑛𝑝𝑢𝑡𝑃𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑡𝑖𝑜𝑛(𝑥) → 𝑃𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑡𝑖𝑜𝑛(𝑥) ∧ ∃𝑦𝑧𝑡(𝑡𝑃𝐶1(𝑥, 𝑦) ∧ 𝑡𝑃𝐶2(𝑥, 𝑧) ∧
𝑡𝑃𝐶𝑡(𝑥, 𝑡) ∧ 𝑏𝑒𝑔𝑖𝑛𝑂𝑓(𝑡, 𝑧))

(𝑦 participates in 𝑧 at least at the start time 𝑡 of 𝑧)

Ax8 𝑂𝑢𝑡𝑝𝑢𝑡𝑃𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑡𝑖𝑜𝑛(𝑥) → 𝑃𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑡𝑖𝑜𝑛(𝑥) ∧ ∃𝑦𝑧𝑡(𝑡𝑃𝐶1(𝑥, 𝑦) ∧ 𝑡𝑃𝐶2(𝑥, 𝑧) ∧
𝑡𝑃𝐶𝑡(𝑥, 𝑡) ∧ 𝑒𝑛𝑑𝑂𝑓(𝑡, 𝑧))

(𝑦 participates in 𝑧 at least at the finish time 𝑡 of 𝑧)

Finally, classification is the most general relation holding between either a concept or a
description and the entity satisfying it at a certain time.13 For instance, considering employee
as a specific kind of role, we say that John is classified by employee at time 𝑡 meaning that
John plays that role at 𝑡. Another example, but this time for description, says that a lathe
machine is classified by the corresponding product description (e.g., the list of attributes one
commonly finds in a product catalog) at 𝑡 meaning that it is compliant with the description at
𝑡; or a manufacturing activity occurrence of drilling is classified by a manufacturing activity
when the happening of the former complies with the restrictions established by the latter (e.g.,
requirements about the use of resources) (see CQ7). It should be clear that classification requires
(at least) three arguments (concept or description, classified entity, and time) in different cases,
and has to be therefore reified in OWL. The first argument of the relation (𝑡𝐶𝐹1) is either a
concept or a description (Ax9); the second argument (𝑡𝐶𝐹2) is either an endurant or a perdurant
(Ax10); the third argument is time (Ax11).

Ax9 Classification(𝑥) → ∃𝑦((𝐶𝑜𝑛𝑐𝑒𝑝𝑡(𝑦) ∨𝐷𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑜𝑛(𝑦)) ∧ 𝑡𝐶𝐹1(𝑥, 𝑦))

Ax10 Classification(𝑥) → ∃𝑦((𝐸𝑛𝑑𝑢𝑟𝑎𝑛𝑡(𝑦) ∨ 𝑃𝑒𝑟𝑑𝑢𝑟𝑎𝑛𝑡(𝑦)) ∧ 𝑡𝐶𝐹2(𝑥, 𝑦))

Ax11 Classification(𝑥) → ∃𝑡(𝑇𝑖𝑚𝑒(𝑡) ∧ 𝑡𝐶𝐹𝑡(𝑥, 𝑡))

A binary counterpart expresses constant classification. In this case, d4e:constantlyClassifies
says that 𝑥 (concept or description) classifies 𝑦 for the whole life of 𝑦, i.e., whenever 𝑦 exists, it
is always compliant with 𝑥. Intuitively, this could be used for capturing a sort of full compliance
between a manufacturing occurrence and the corresponding activity; clearly, if the former
(while it happens) does not match with the requirements of the latter, it is not classified as an
occurrence of the activity. This would likely represent only an ideal case, since manufacturing

13We slightly depart from the work of Masolo et al. [15] where classification holds only between concepts and
the classified entities. We add also descriptions among classifying entities to capture the idea that an individual
entity like a product can satisfy the conditions established in a certain description.



occurrences may slightly deviate from their corresponding plans. In this sense, one may think
about the specifications of conditions that must be necessarily met by an activity occurrence to
be classified by a certain activity. The same consideration could apply to objects.

4. An example based on DolceEng

We show in this section an example about the use of some of the notions of DolceEng introduced
in the previous section, while taking as reference the use case of an assembly line14 presented
in [19]. The assembly line produces damped cabinet hinges15 consisting of 11 components (e.g.,
Wing, WingScrew, Clip, etc., cf. Table 5 in [19]). The process plan of the hinge is nested by
19 sub-activities of different types (e.g., pin insertion, riveting, pick and place, etc.). Each sub-
activity is assigned to a workstation (cf. Table 6 in [19]). A rotating table and linear conveyors
are used to transport work-in-progress hinges, thus connecting the workstations.

For instance, the first workstation (PPW1) executes a pick and place operation (𝑝𝑐𝑘𝑝𝑙𝑒1)
moving the main body of the hinge (i.e., the 𝑤𝑖𝑛𝑔) from a conveyor to the rotating table. The
second workstation (T1) executes a 𝑡𝑖𝑔ℎ𝑡𝑒𝑛𝑖𝑛𝑔 operation assembling a 𝑠𝑐𝑟𝑒𝑤 on the 𝑤𝑖𝑛𝑔
component.

The assembly line was previously fully instantiated16 according to the Factory Data Model [10,
11] to define each asset in terms of properties (e.g., placement, capacity, 3D representation) and
relations (e.g., assignments, connections). We show here how DolceEng can be exploited to
instantiate the same use case. For the sake of shortness, we show only the tightening operation.

At the description level, formulas (f1)–(f4) represent input, output, and resource requirements
for the activity of tightening (recall that requirement-relations are constant-part relations).17

More specifically, the individual activity 𝑡𝑖𝑔ℎ𝑡𝑒𝑛𝑖𝑛𝑔 has input requirements wing (f1) and screw
(f2), output requirement wingWScrew (f3) (i.e., a work-in-progress Hinge with only the Wing
and WingScrew components), and resource requirement rscdesT1 (f4), i.e. the description of
workstation 𝑇1.

f1 hasInputReq(𝑡𝑖𝑔ℎ𝑡𝑒𝑛𝑖𝑛𝑔, 𝑤𝑖𝑛𝑔) ∧
𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦(𝑡𝑖𝑔ℎ𝑡𝑒𝑛𝑖𝑛𝑔) ∧ TechnicalArtefactDescription(𝑤𝑖𝑛𝑔)

(input requirement 𝑤𝑖𝑛𝑔)

f2 hasInputReq(𝑡𝑖𝑔ℎ𝑡𝑒𝑛𝑖𝑛𝑔, 𝑠𝑐𝑟𝑒𝑤) ∧
𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦(𝑡𝑖𝑔ℎ𝑡𝑒𝑛𝑖𝑛𝑔) ∧ TechnicalArtefactDescription(𝑠𝑐𝑟𝑒𝑤)

(input requirement 𝑠𝑐𝑟𝑒𝑤)

f3 ℎ𝑎𝑠𝑂𝑢𝑡𝑝𝑢𝑡𝑅𝑒𝑞(𝑡𝑖𝑔ℎ𝑡𝑒𝑛𝑖𝑛𝑔,wingWScrew) ∧
𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦(𝑡𝑖𝑔ℎ𝑡𝑒𝑛𝑖𝑛𝑔) ∧ TechnicalArtefactDescription(wingWScrew)

(output requirement wingWScrew )

14https://virtualfactory.gitbook.io/vlft/use-cases/assembly-line
15https://virtualfactory.gitbook.io/vlft/use-cases/factory-assets/assembled-product
16https://difactory.github.io/repository/ontology/VFLab.owl
17Some of the domain, range specifications for the relations can be deduced. We include them here to facilitate

understanding.

https://virtualfactory.gitbook.io/vlft/use-cases/assembly-line
https://virtualfactory.gitbook.io/vlft/use-cases/factory-assets/assembled-product
https://difactory.github.io/repository/ontology/VFLab.owl


f4 ℎ𝑎𝑠𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑅𝑒𝑞(𝑡𝑖𝑔ℎ𝑡𝑒𝑛𝑖𝑛𝑔, rscdesT1 ) ∧
𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦(𝑡𝑖𝑔ℎ𝑡𝑒𝑛𝑖𝑛𝑔) ∧ TechnicalArtefactDescription(rscdesT1 )

(resource requirement rscdesT1 )

Assume to have a specific occurrence of activity tightening, namely, tightening01 (f5), as well
as physical realizations of the descriptions above, namely wing01 of 𝑤𝑖𝑛𝑔 (f6), screw01 of
𝑠𝑐𝑟𝑒𝑤 (f7), wingWScrew01 of wingWScrew (f8)18, and workstation 𝑇1 of rscdesT1 (f9).

f5 constantlyClassifies(𝑡𝑖𝑔ℎ𝑡𝑒𝑛𝑖𝑛𝑔, tightening01 ) ∧
𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝑂𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒(tightening01 )

f6 Classification(𝑐𝑓1) ∧ 𝑡𝐶𝐹1(𝑐𝑓1, 𝑤𝑖𝑛𝑔) ∧ 𝑡𝐶𝐹2(𝑐𝑓1,wing01 ) ∧
𝑡𝐶𝐹𝑡(𝑐𝑓1, 𝑡1) ∧ TechnicalArtefact(wing01 )

(classification of wing01 -input)

f7 Classification(𝑐𝑓2) ∧ 𝑡𝐶𝐹1(𝑐𝑓2, 𝑠𝑐𝑟𝑒𝑤) ∧ 𝑡𝐶𝐹2(𝑐𝑓2, screw01 ) ∧
𝑡𝐶𝐹𝑡(𝑐𝑓2, 𝑡2) ∧ TechnicalArtefact(screw01 )

(classification of screw01 -input)

f8 Classification(𝑐𝑓3) ∧ 𝑡𝐶𝐹1(𝑐𝑓3,wingWScrew) ∧ 𝑡𝐶𝐹2(𝑐𝑓3,wingWScrew01 ) ∧
𝑡𝐶𝐹𝑡(𝑐𝑓3, 𝑡3) ∧ TechnicalArtefact(wingWScrew01 )

(classification of wingWScrew01 -output)

f9 Classification(𝑐𝑓4) ∧ 𝑡𝐶𝐹1(𝑐𝑓4, rscdesT1 ) ∧ 𝑡𝐶𝐹2(𝑐𝑓4, 𝑇1) ∧
𝑡𝐶𝐹𝑡(𝑐𝑓4, 𝑡4) ∧ TechnicalArtefact(T1 )

(classification of 𝑇1-resource)

Finally, the formulas below represent participation relations between the activity occurrence
tightening01 and workstation 𝑇1 (f10), components wing01 (f11) and screw01 (f12), and work-
in-progress wingWScrew01 (f13). Looking at the temporal parameters in the formulas, 𝑑𝑢𝑟
is meant to represent the whole duration interval of tightening01 , whereas tstart and tfinish
represent the beginning and end time of tightening01 , respectively.

f10 𝑃𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑡𝑖𝑜𝑛(𝑝𝑐1) ∧ 𝑡𝑃𝐶1(𝑝𝑐1, 𝑇1) ∧ 𝑡𝑃𝐶2(𝑝𝑐1, tightening01 ) ∧ 𝑡𝑃𝐶𝑡(𝑝𝑐1, 𝑑𝑢𝑟)
(workstation 𝑇1 participation)

f11 InputParticipation(𝑝𝑐2) ∧ 𝑡𝑃𝐶1(𝑝𝑐2,wing01 ) ∧ 𝑡𝑃𝐶2(𝑝𝑐2, tightening01 ) ∧
𝑡𝑃𝐶𝑡(𝑝𝑐2, tstart) ∧ 𝑏𝑒𝑔𝑖𝑛𝑂𝑓(tstart , tightening01 )

(wing01 input-participation)

f12 InputParticipation(𝑝𝑐3) ∧ 𝑡𝑃𝐶1(𝑝𝑐3, screw01 ) ∧ 𝑡𝑃𝐶2(𝑝𝑐3, tightening01 )
∧ 𝑡𝑃𝐶𝑡(𝑝𝑐3, tstart) ∧ 𝑏𝑒𝑔𝑖𝑛𝑂𝑓(tstart , tightening01 )

(screw01 input-participation)

f13 OutputParticipation(𝑝𝑐4)∧𝑡𝑃𝐶1(𝑝𝑐4,wingWScrew01 )∧𝑡𝑃𝐶2(𝑝𝑐4, tightening01 )∧
𝑡𝑃𝐶𝑡(𝑝𝑐4, tfinish) ∧ 𝑒𝑛𝑑𝑂𝑓(tfinish, tightening01 )

(wingWScrew01 output-participation)

18We do not model further here the structure of wingWScrew01 , which is an assembled product comprising of
both wing01 and screw01 .



As said, the formulas cover only part of the example. The aim is to show how the proposed
ontology can be used to represent data in industry and, in particular, design and management
of manufacturing systems. Further work is needed to improve the formal representation to
fully exploit the expressive power of the ontology (e.g., by representing explicitly resources’
capacities and capabilities) and complete the implementation of the ontology in OWL language
to support ontology-based applications that are able to produce and consume instances (i.e.,
OWL individuals), while referring to a consolidated foundational ontology like dolce .

5. Conclusions

The tendency to adopt robust ontological modeling in engineering is confirmed by current
initiatives in the industrial domain. In spite of the many advantages of ontological modeling, the
exploitation of ontology from the top-level to the domain level brings to light also problematic
aspects which are related to the technical properties of logical languages. It is expected that
the analysis and comparison of different use cases together with increasing experiences in real
scenario modeling will lead to identify best practices and, hopefully, to design shared guidelines
and perhaps even methodologies to optimize domain level ontology development in coherence
with the corresponding top-level ontologies.

For this to be achieved, a discussion of the problematic issues has to arise and comparisons of
viewpoints have to be developed. This paper contributed to this research line by analysing an
industrial use case where an extension of the dolce ontology in OWL for industrial engineering
can be applied. We have seen that while this leads to complicate OWL data models (also because
of the use of reified relations), the patterns one should use are very similar across different
relationships like those relating a whole and its parts, an event and its subevents, and a class
and its instances.

In the future we plan to make a more systematic analysis of these problems and to test
the generality of the results in terms of different case-studies by means of ontology-based
applications and reusable SPARQL queries19 and updates20.

Acknowledgement: The work presented in this paper is partially funded by the European
project OntoCommons (GA 958371). We thank colleagues at the ISTC-CNR Laboratory for
Applied Ontology, as well as Daniele Porello (University of Genoa, Italy), and Laure Vieu (CNRS,
France) for their valuable work on the OWL formalization of dolce .

References

[1] J. Barwise, E. J., The language of first-order logic, CSLI, Stanford,California, 1993.
[2] T. Hahmann, R. W. Powell II, Automatically extracting owl versions of fol ontologies, in:

International Semantic Web Conference, Springer, 2021, pp. 252–269.
[3] S. Borgo, R. Ferrario, A. Gangemi, N. Guarino, C. Masolo, D. Porello, E. M. Sanfilippo,

19https://www.w3.org/TR/sparql11-query/
20https://www.w3.org/TR/sparql11-update/



L. Vieu, Dolce: A descriptive ontology for linguistic and cognitive engineering, Applied
Ontology (2022) 1–25.

[4] C. Masolo, S. Borgo, A. Gangemi, N. Guarino, A. Oltramari, L. Schneider, DOLCE: A
descriptive ontology for linguistic and cognitive engineering, WonderWeb, D18 (2003).

[5] E. M. Sanfilippo, W. Terkaj, S. Borgo, Ontological modeling of manufacturing resources,
Applied Ontology 16 (2021) 87–109.

[6] P. Pauwels, T. Krijnen, W. Terkaj, J. Beetz, Enhancing the ifcowl ontology with an al-
ternative representation for geometric data, Automation in Construction 80 (2017) 77 –
94.

[7] T. Liebich, Y. Adachi, J. Forester, J. Hyvarinen, S. Richter, T. Chipman, M. Weise, J. Wix,
Industry Foundation Classes IFC4 official release, 2013. Available online: https://standards.-
buildingsmart.org/IFC/RELEASE/IFC4/FINAL/HTML. Last accessed on 23 February 2020.

[8] S. Borgo, E. M. Sanfilippo, A. Šojić, W. Terkaj, Ontological Analysis and Engineering
Standards: An Initial Study of IFC, Springer International Publishing, Cham, 2015, pp.
17–43.

[9] W. Terkaj, P. Pauwels, A method to generate a modular ifcOWL ontology, in: CEUR
Workshop Proceedings, volume 2050, 2017.

[10] W. Terkaj, P. Gaboardi, C. Trevisan, T. Tolio, M. Urgo, A digital factory platform for the
design of roll shop plants, CIRP Journal of Manufacturing Science and Technology 26
(2019) 88 – 93.

[11] M. Urgo, W. Terkaj, Formal modelling of release control policies as a plug-in for perfor-
mance evaluation of manufacturing systems, CIRP Annals 69 (2020) 377 – 380.

[12] K. Janowicz, A. Haller, S. J. Cox, D. L. Phuoc, M. Lefrançois, Sosa: A lightweight ontology
for sensors, observations, samples, and actuators, Journal of Web Semantics 56 (2019) 1 –
10.

[13] P. Dolog, Model-Driven Navigation Design for Semantic Web Applications with the
UML-Guide, in: Proc. of ICWE, Munich, Germany, 2004, pp. 75–86.

[14] T. M. de Farias, A. Roxin, C. Nicolle, Ifcwod, semantically adapting IFC model relations
into OWL properties, CoRR abs/1511.03897 (2015). URL: http://arxiv.org/abs/1511.03897.
arXiv:1511.03897.

[15] C. Masolo, L. Vieu, E. Bottazzi, C. Catenacci, R. Ferrario, A. Gangemi, N. Guarino, et al.,
Social roles and their descriptions., in: KR, 2004, pp. 267–277.

[16] S. Borgo, E. M. Sanfilippo, W. Terkaj, Capabilities, capacities, and functionalities of re-
sources in industrial engineering, in: Proceedings of the Joint Ontology Workshops 2021
Episode VII: The Bolzano Summer of Knowledge co-located with the 12th International
Conference on Formal Ontology in Information Systems (FOIS 2021), and the 12th Interna-
tional Conference on Biomedical Ontologies (ICBO 2021), Bolzano, Italy, September 11-18,
2021, volume 2969 of CEUR Workshop Proceedings, CEUR-WS.org, 2021.

[17] A. Galton, Operators vs. arguments: the ins and outs of reification, Synthese 150 (2006)
415–441.

[18] P. M. Simons, Parts: A study in ontology, Oxford University Press, 1987.
[19] F. Berardinucci, G. Colombo, M. Lorusso, M. Manzini, W. Terkaj, M. Urgo, A learning

workflow based on an integrated digital toolkit to support education in manufacturing
system engineering, Journal of Manufacturing Systems 63 (2022) 411–423.

http://arxiv.org/abs/1511.03897
http://arxiv.org/abs/1511.03897

	1 Introduction
	2 Problem Statement
	3 dolce for Industrial Engineering
	3.1 Taxonomy
	3.2 Relations

	4 An example based on DolceEng
	5 Conclusions

