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Abstract
An undirected graph Γ with diameter 𝑘 is said to be goal-minimally 𝑘-diametric if for every edge 𝑢𝑣 of Γ the distance
𝑑Γ−𝑢𝑣(𝑥, 𝑦) > 𝑘 if and only if {𝑥, 𝑦} = {𝑢, 𝑣}. It is rather difficult to construct such graphs. Before our research, they were
known only for diameters up to 14, except of the case 𝑘 = 11. In this paper we construct such graphs of larger diameters
using Cayley graphs with generators obtained by linear fractional transformations on the set of elements of a finite field
GF(𝑞) extended by an element ∞.
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1. Introduction
Minimal graphs with respect to diameter were studied
by many authors, for example see [1], [3], [7], [9], [11],
[12], [17] and [18]. A special subclass of this class of
graphs are so-called goal-minimal graphs with respect
to diameter which were introduced by Kyš in [16] and
studied by Gliviak and Plesník in [10], [19] and by Gyürki
in [13] and [14].

A graph Γ with diameter 𝑘 is called a minimal graph
of diameter 𝑘 if diam(Γ − 𝑒) > 𝑘 for every edge 𝑒 ∈ 𝐸(Γ).
A graph Γ is said to be goal-minimal of diameter 𝑘 or goal-
minimally 𝑘-diametric (𝑘-GMD for short), if the diameter
of Γ is equal to 𝑘, and for every edge 𝑢𝑣 ∈ 𝐸(Γ) the inequal-
ity 𝑑Γ−𝑢𝑣(𝑥, 𝑦) > 𝑘 holds if and only if {𝑢, 𝑣} = {𝑥, 𝑦}.

For an example of a GMD graph with diameter 3, see
Figure 1.

Figure 1: A 3-GMD graph on 8 vertices.

Kyš [16] conjectured that for every positive integer 𝑘
there exists a 𝑘-GMD graph. He discovered such graphs
only for 𝑘 = 1, 2, 3, 4, 6. Moreover, for 𝑘 = 1, 2, 4 he
gave infinite families of 𝑘-GMD graphs. In [19] Plesník
showed the first examples of 𝑘-GMD graphs for diame-
ters 𝑘 = 5, 7, 8, 10, 12, 14, and constructed the first infinite
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family of 6-GMD graphs. Gyürki [14] constructed by lifts
the first known 9-GMD and 13-GMD graphs, moreover,
he found an infinite family of 5-GMD graphs. Thus, be-
fore our research such graphs have been known only for
values 𝑘 ≤ 14, except of the case 𝑘 = 11.

In this paper we construct 𝑘-GMD graphs as Cayley
graphs with generating set obtained from linear frac-
tional transformations on GF(𝑞) ∪ {∞}, having larger di-
ameters.

The most important properties of 𝑘-GMD graphs are
collected in the next theorem.

Theorem 1. [14]
Let 𝑘 be a positive integer. A graph Γwith order at least 3

is 𝑘-GMD if and only if it has diameter 𝑘, girth 𝑘 + 2 and
for any two non-adjacent vertices 𝑢 and 𝑣 there exist two
internally-disjoint 𝑢−𝑣 paths of length not exceeding 𝑘.

Many of the 𝑘-GMD graphs have been discovered
among the graphs belonging to the family of symmetric
cubic graphs and among the cages.

The symmetric cubic graphs are those cubic graphs,
which are vertex-transitive and edge-transitive too.
These graphs are collected into a catalogue, which can be
found on the web site ([5]) of Marston Conder. We have
found thirty-six 𝑘-GMD graphs in this catalogue which
are shown in Table 1.

Conder ([4]) has constructed some cubic Cayley graphs
in order to find minimal cubic graphs with prescribed
girth. Among them, we found two which fulfill the rela-
tion 𝑔 = 𝑘 + 2 from Theorem 1, where 𝑔 is the girth and
𝑘 the diameter. It turns out that the first one is a 16-GMD
graph and the second one is a 20-GMD graph. Conder in
his paper did not specify the details of how to obtain the
generators of these Cayley graphs, but fortunately, his
method was described by Biggs ([2]).

The construction of Cayley graphs in this paper is a
slight generalization of the Conder’s method.
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graph result
C016.1 4-GMD
C018.1 4-GMD
C040.1 6-GMD
C048.1 6-GMD
C080.1 8-GMD
C090.1 8-GMD
C102.1 7-GMD
C108.1 7-GMD
C128.2 8-GMD
C144.2 8-GMD
C224.3 10-GMD
C360.2 10-GMD
C364.3 10-GMD
C384.2 10-GMD
C384.3 10-GMD
C440.3 10-GMD
C480.3 10-GMD
C512.1 12-GMD
C624.2 12-GMD
C672.7 12-GMD
C768.3 12-GMD
C880.3 12-GMD
C912.2 12-GMD
C960.1 12-GMD
C960.3 12-GMD
C1008.2 12-GMD
C1024.1 12-GMD
C1092.3 12-GMD
C1140.3 12-GMD
C1140.10 12-GMD
C1344.5 12-GMD
C1344.6 12-GMD
C1632.7 14-GMD
C1792.8 14-GMD
C2016.5 14-GMD
C2048.17 14-GMD

Table 1
𝑘-GMD graphs from Conder’s catalogue.

2. Cayley graphs and finite fields
Let 𝐺 be a finite group and 𝑋 be a subset of 𝐺 not con-
taining the group identity and having the property that
if ℎ ∈ 𝑋 then ℎ−1 ∈ 𝑋. Then the Cayley graph of 𝐺 with
generating set 𝑋 is the graph 𝐶(𝐺, 𝑋) with vertex set 𝐺
and vertices 𝑥 and 𝑦 are adjacent if and only if 𝑥𝑦−1 ∈ 𝑋.

Let GF(𝑞) be the finite field with 𝑞 elements. It is a
well-known fact that such field exists if and only if 𝑞 is

a power of a prime and the multiplicative group GF×(𝑞)
is cyclic, so there exists a so-called primitive element
(generator) 𝜔 of GF(𝑞) such that

GF(𝑞) = {0, 1, 𝜔, 𝜔2, … , 𝜔𝑞−2}.

For our aims it is sufficient to identify the finite field
of prime order 𝑝 with the ℤ𝑝. Finite fields of order 𝑝𝑘,
where 𝑝 is a prime and 𝑘 ≥ 2, we can obtain by factoring
the ring of polynomial over ℤ𝑝 by an ideal generated by
an irreducible polynomial 𝑃(𝑥) of degree 𝑘.

Let us consider the set 𝑇 = GF(𝑞) ∪ {∞}. For each
element 𝑔 ∈ GF(𝑞)⧵{0, 1} define the mapping 𝜑𝑔 ∶ 𝑇 → 𝑇
by linear fractional transformation

𝜑𝑔 ∶ 𝑥 ↦ 𝑥 − 1
𝑔𝑥 − 1

for 𝑥 ∉ {𝑔−1, ∞}. Further, 𝜑𝑔(∞) = 𝑔−1 and 𝜑𝑔(𝑔−1) = ∞.
It is easy to see that 𝜑𝑔 is a permutation of 𝑇. Moreover,
it is an involution, i.e. 𝜑𝑔 = 𝜑−1𝑔 . From 𝜑𝑔 one can derive
many other permutations by the following. For every
integer 1 ≤ 𝑛 ≤ 𝑞 − 2 define Φ𝑔,𝑛 ∶ 𝑇 → 𝑇 as a conjuga-
tion of 𝜑𝑔 under the permutation 𝑥 ↦ 𝜔𝑛𝑥 in the group
Sym(𝑇 ). Hence, we can use these mappings (involutions)
to generate some undirected Cayley graphs.

In fact, such permutations generate either the full
group 𝑃𝑆𝐿(2, 𝑞) or some of its subgroup.

3. The construction
Conder constructed his graphs as cubic Cayley graphs
with generating set

𝑋 = {𝜑𝑔, Φ𝑔,𝑛, Φ𝑔,2𝑛} (1)

in the group 𝐺 = ⟨𝑋⟩, where 𝑛 = (22𝑚 −1)/3 for possible
𝑚 ∈ ℕ and 𝑔 ∈ GF(𝑞) ⧵ {0, 1}.

We have performed an exhaustive computer search for
arbitrary integers 1 ≤ 𝑎 < 𝑏 ≤ 𝑞 − 2 in the fields with up
to 49 element for generating sets 𝑋 of the form

𝑋 = {𝜑𝑔, Φ𝑔,𝑎, Φ𝑔,𝑏} (2)

for every 𝑔 ∈ GF(𝑞) ⧵ {0, 1}. Further, we explored the
generating sets 𝑋 of the form (1) in the fields GF(𝑞) for
every possible 𝑞 ≤ 103, where 𝑞 ≡ 1 (mod 3).

Our computer search of these cases yielded more than
90 new 𝑘-GMD graphs. They are shown in Table 2. All
these graphs are mutually non-isomorphic, since they
can be distinguished by the value of the total distance
in a graph. As one can see, these 𝑘-GMD graphs covers
diameters 𝑘 = 12, 16, 18, 19, 20, 21, 22, 23, 24 and 26. Thus,
we have found 𝑘-GMD graphs for nine new values of 𝑘. So
at present there are known 𝑘-GMD graphs for 22 distinct
values of 𝑘. The graphs were generated by the computer



system GAP [8] and the goal-minimality property was
examined by a computer program based on the algorithm
described in [15].

Example 1. The multiplicative group of GF(13) =
(ℤ13, ⊕, ⊙) is generated by 𝑔 = 2. If we take 𝑎 = 1
and 𝑏 = 2, then we get the following permutations of
𝑇 = ℤ13 ∪ {∞}:

𝜑2 = (0, 1)(3, 12)(4, 8)(6, 7)(9, 11)(10,∞)
Φ2,1 = (0, 2)(1, 12)(3, 8)(5, 9)(6, 11)(7, ∞)
Φ2,2 = (0, 4)(1, ∞)(2, 11)(3, 6)(5, 10)(9, 12).

These permutations generate a subgroup Γ of index 2 in
𝑃𝑆𝐿(2, 13), so |Γ| = 1092. The corresponding Cayley graph
has diameter 12, girth 14 and it is a 12-GMD graph. This
graph is displayed in Table 2 under the number 1.

We plan to continue in this search, but it requires too
much computer time. So we would like to know the
answer to the next open question.

Question. How to choose 𝑔 ∈ GF(𝑞) and integers 𝑎
and 𝑏 in (2) in order to obtain a 𝑘-GMD graph for some
integer 𝑘?
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Table 2: 𝑘-GMD graphs obtained from finite fields.
graph 𝑞 𝑔 𝑎 𝑏 order result |Aut| Total distance

1 13 𝜔2 1 2 1 092 12-GMD 2184 4784052
2 13 𝜔7 3 6 1 092 12-GMD 6552 4795518
3 16 𝜔3 5 10 4 080 16-GMD 24480 81753000
4 19 𝜔5 2 4 6 840 16-GMD 41040 252765360
5 19 𝜔5 2 10 6 840 16-GMD 13680 254352240
6 19 𝜔5 6 12 6 840 16-GMD 41040 251773560
7 25 𝜔4 8 16 7 800 16-GMD 46800 332853300
8 27 𝜔2 2 14 9 828 16-GMD 19656 540692334
9 29 𝜔3 2 8 12 180 16-GMD 24360 860906760
10 29 𝜔3 4 8 12 180 16-GMD 24360 853263810
11 29 𝜔6 1 13 12 180 16-GMD 24360 847100730
12 29 𝜔6 2 9 12 180 16-GMD 12180 851241930
13 29 𝜔6 4 9 12 180 16-GMD 24360 858708270
14 29 𝜔8 9 18 12 180 16-GMD 24360 857313660
15 29 𝜔13 8 16 12 180 16-GMD 73080 856521960
16 31 𝜔14 4 14 14 880 16-GMD 14880 1311828240
17 31 𝜔17 2 14 29 760 18-GMD 29760 5777665920
18 32 𝜔3 7 16 32 736 18-GMD 32736 7024883712
19 32 𝜔5 1 16 32 736 18-GMD 65472 7002459552
20 32 𝜔5 2 4 32 736 18-GMD 65472 6949099872
21 32 𝜔5 8 18 32 736 18-GMD 32736 7046915040
22 32 𝜔7 3 12 32 736 18-GMD 32736 6986680800
23 32 𝜔7 7 15 32 736 18-GMD 32736 6958511472
24 32 𝜔15 1 14 32 736 18-GMD 32736 6939573696
25 32 𝜔15 3 6 32 736 18-GMD 65472 7024261728
26 32 𝜔15 3 11 32 736 18-GMD 32736 7012296720
27 32 𝜔15 5 12 32 736 18-GMD 32736 6987941136
28 37 𝜔2 10 22 25 308 18-GMD 25308 4065059538
29 37 𝜔2 12 24 25 308 18-GMD 151848 4052620656
30 37 𝜔5 12 24 50 616 20-GMD 303696 17698491792
31 37 𝜔20 3 12 50 616 20-GMD 101232 17623731960
32 37 𝜔25 12 24 50 616 20-GMD
33 37 𝜔30 1 7 25 308 18-GMD
34 41 𝜔 6 19 34 440 18-GMD
35 41 𝜔3 3 15 34 440 18-GMD
36 41 𝜔10 1 10 34 440 18-GMD
37 41 𝜔16 6 12 68 880 20-GMD
38 41 𝜔25 4 11 68 880 20-GMD
39 43 𝜔4 14 28 79 464 20-GMD
40 43 𝜔5 3 16 79 464 20-GMD
41 43 𝜔6 2 10 39 732 18-GMD
42 43 𝜔6 12 27 39 732 18-GMD
43 43 𝜔7 8 21 39 732 18-GMD
44 43 𝜔8 3 11 39 732 18-GMD
45 43 𝜔8 5 15 39 732 18-GMD
46 43 𝜔10 4 14 39 732 18-GMD
47 43 𝜔10 9 23 39 732 18-GMD
48 43 𝜔10 12 24 39 732 18-GMD
49 43 𝜔13 7 22 39 732 18-GMD

The table continues on the next page.



Table 2 – continuing from the previous page.
graph 𝑞 𝑔 𝑎 𝑏 order result |Aut| Total distance
50 43 𝜔13 9 20 39 732 18-GMD
51 43 𝜔14 8 19 39 732 18-GMD
52 43 𝜔17 4 17 39 732 18-GMD
53 43 𝜔19 5 13 79 464 20-GMD
54 43 𝜔21 11 23 39 732 18-GMD
55 43 𝜔23 2 22 79 464 20-GMD
56 43 𝜔24 1 7 39 732 18-GMD
57 43 𝜔24 3 6 39 732 19-GMD
58 43 𝜔24 3 16 39 732 18-GMD
59 43 𝜔24 4 15 39 732 18-GMD
60 43 𝜔24 5 10 39 732 18-GMD
61 43 𝜔25 11 25 39 732 18-GMD
62 43 𝜔27 3 19 39 732 18-GMD
63 43 𝜔38 3 6 39 732 18-GMD
64 47 𝜔5 7 16 103 776 20-GMD
65 47 𝜔11 3 12 51 888 19-GMD
66 47 𝜔14 7 14 103 776 20-GMD
67 47 𝜔16 13 26 51 888 20-GMD
68 47 𝜔22 14 28 51 888 19-GMD
69 47 𝜔37 4 18 103 776 20-GMD
70 49 𝜔2 16 32 58 800 19-GMD
71 49 𝜔3 2 19 58 800 19-GMD
72 49 𝜔18 1 14 117 600 22-GMD
73 49 𝜔20 6 21 117 600 20-GMD
74 61 𝜔44 20 40 226 920 22-GMD
75 61 𝜔53 20 40 226 920 22-GMD
76 64 𝜔1 21 42 262 080 23-GMD
77 64 𝜔13 21 42 262 080 23-GMD
78 64 𝜔23 21 42 262 080 23-GMD
79 64 𝜔31 21 42 262 080 23-GMD
80 67 𝜔13 22 44 150 348 22-GMD
81 67 𝜔33 22 44 150 348 22-GMD
82 67 𝜔59 22 44 150 348 22-GMD
83 73 𝜔25 24 48 388 944 22-GMD
84 73 𝜔37 24 48 194 472 22-GMD
85 73 𝜔65 24 48 194 472 21-GMD
86 79 𝜔62 26 52 246 480 22-GMD
87 79 𝜔72 26 52 246 480 22-GMD
88 97 𝜔5 32 64 912 576 24-GMD
89 97 𝜔6 32 64 912 576 24-GMD
90 97 𝜔41 32 64 456 288 23-GMD
91 97 𝜔47 32 64 912 576 26-GMD
92 103 𝜔9 34 68 546 312 24-GMD
93 103 𝜔50 34 68 1 092 624 26-GMD
94 103 𝜔78 34 68 546 312 23-GMD
95 103 𝜔93 34 68 546 312 24-GMD
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