
Towards one-shot Learning via Attention
Andrej Lucny

1

1Faculty of Mathematics, Physics and Informatics, Comenius University, Mlynska Dolina Bratislava 84248, Slovakia

Abstract

Though the deep neural networks enabled us to create systems that would be incredible ten years ago, still most of them

learn gradually and offline. We introduce an approach to how to overcome this limitation. We have implemented it by the

well-known attention mechanism that transforms one latent space into another using a list of key-value pairs defining the

correspondence between points in the two spaces. We can express any point in the first space as a mixture of keys and map it

to a point in the second space that is an analogical mixture of values. While encoders and decoders of these spaces we train

only gradually, the keys and values of the transformation we can collect online so that we constantly improve the mapping

quality, achieving the perfect mapping of the current situation immediately. We demonstrate our approach to one-shot

learning on the simplified imitation game in the human-robot interaction, where we map the representations of the robot’s

body and the examinator’s body seen by the robot.

Keywords
one-shot learning, attention, imitation game, deep learning models, self-supervision

1. Introduction
Artificial intelligence is a rapidly growing domain mainly

due to deep learning technology. Nowadays, the ambi-

tion is to achieve general artificial intelligence, so we aim

to develop a model that simultaneously processes image,

text, and voice, incorporating multimodal knowledge.

However, how we create the model is still close to devel-

oping any model tailored to a particular task; we need

just much bigger datasets, data storage, and much more

powerful hardware for training. Nevertheless, it is pos-

sible to train a model that can answer what the longest

river in Africa is. But the model learns this fact gradually,

processing it many times until it can answer correctly.

On the other hand, we learn such facts in one shot. It is

enough to tell us that the longest river in Africa is the

Nile, and we can remember or forget it, but we avoid

evolving answers from "blah blah blah" through "Egypt"

to "the Nile." In the worst case, we produce errors like

"the Mississippi."

Philosophers analyzing natural intelligence enlight

that what today we call general intelligence is very far

from the human one. For example, Daniel Dennet pro-

vided a famous analysis that recognized four kinds of

minds [1]. The first kind (Darwinian) – although its be-

havior can be very effective – cannot adapt. Most of our

artificial solutions correspond to this type that, in na-

ture, we can observe mainly on insects. The second kind

(Skinnerian) can adapt gradually, needing many shots to

achieve a reasonable probability of intelligent behavior.

ITAT’22: Information technologies – Applications and Theory, Septem-
ber 23–27, 2022, Zuberec, Slovakia
$ lucny@fmph.uniba.sk (A. Lucny)

� 0000-0001-6042-7434 (A. Lucny)

© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License

Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

The behavior of these creatures can change, e.g., by Pavlo-

vian conditioning. The third kind (Popperian) can create

mental models and, thanks to that, can suddenly adapt

behavior, needing few or one shot. Finally, the fourth

kind (Gregorian) manages language communication to

transfer the content of the mental models from one indi-

vidual to others. In this way, these creatures adapt even

without a single shot.

The typical approach of deep learning is to train a

Skinnerian system and interpret some observed behavior

as Popperian or Gregorian capabilities. Such systems

are Skinnerian at the structural level, but higher faculties

emerge as side effects. A different approach could look for

structural changes that correspond to, e.g., the acquisition

of associations. Of course, some parts of an intelligent

system can grow only gradually. But, after achieving a

certain complexity level, one-shot learning should appear.

We suppose that responsibility for this faculty is laying

on processes different from those for gradual growth.

In this paper, we outline how it could work. At first, we

need to develop structures that map some structured data

(like the seen image or joint setup) into a (so-called latent)

space in which any point codes a reasonable instance of

the data. We can provide that by technologies such as

autoencoders or contrastive learning that do not need

annotations. We need a vast set of samples and a lot of

time, but after some time, the mapping converges, and

we can fix it. It is essential to mention that though the

used examples correspond only to isolated points, any

point in the latent space corresponds to an instance of

the data. At that moment, we can start a different process

that maps one latent space to another, e. g. perception to

action. This process creates a list of associations between

points in one latent space and the other. For the two

mapped points, the new association works correctly and

immediately. However, the more associations we collect,

mailto:lucny@fmph.uniba.sk
https://orcid.org/0000-0001-6042-7434
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

the more accurate the mapping of the whole spaces we

get. Anytime we can express any point as a mixture

of the associated points from one space and map it to

an analogical mix from their pairs in the other space.

In the deep neural network, we can provide it by the

Attention module. As a result, the system can learn the

presented example in one shot and use the knowledge

for approximation for situations never seen.

We test this one-shot learning process on a modern

reimplementation of an imitation game with a robot, in-

troduced in [2] [3]. We aim to learn the ability to imitate

arm movements, for which we need associations between

the robot’s body and the body seen by the robot’s camera.

In the first phase, the robot invites us to imitate it. It gen-

erates various arm poses, and the human imitates them

with its body in front of the robot’s camera. In the sec-

ond phase, the robot mimics the human by associations

learned during the first phase.

We present details of our approach in the third chapter

after discussing the related works in Chapter 2. Then

we deal with its demonstration in Chapter 4. Finally, we

discuss quality and the pros and cons.

2. Related Works
Looking at how to initiate one-shot learning, we pre-

fer self-supervised gradual methods, i.e., gradient-based

methods working with unlabelled data. Only these meth-

ods could correspond to how living creatures or robots

in changing environments learn. We know several such

ways and pay attention to autoencoders and metric learn-

ing. Their task is to provide us (by a gradual process)

with extractors that map raw data into a latent space and

generators that can turn any value from the latent space

into raw data. Finally, the attention mechanism enables

us to map one latent space to the other.

2.1. Autoencoders
Autoencoders [4] are predecessors of the early convolu-

tional networks. They contain blocks of convolutional

layers interleaved by dimension reduction in the first half

and dimension expansion in the second half. Thus data

like images with a typical dimension of hundreds of thou-

sands are sequentially reduced to a feature vector with a

size of hundreds or thousands and then expanded to the

original extent. We train them from an unlabelled dataset

to respond with an output equal to the input. If the train-

ing is successful, each part of the processing sequence

contains the same information. As a result, the feature

vectors have the same information as images from the

dataset. Then we cut the part of the neural network after

the feature vector and get the extractor (encoder). Or

we remove the part before the feature vector and get the

generator (decoder). Feature vectors of all instances of

the raw data constitute a latent space with a dimension

equal to the size of the feature vector.

The distribution of the feature vectors in the latent

space is crucial [5]. We prefer to have similar data

mapped to similar vectors. We can achieve a good perfor-

mance mainly by the variational autoencoders [6]. They

split the feature vector into two parts: one corresponds

to average and the other to deviation. In this way, we

push features to have the Gaussian distribution.

2.2. Metric learning
We can create feature extractors also without the neces-

sity to develop both encoders and decoders. However,

training only the encoder part, we lack the exact output

we like to get for a given input. We do not know what

feature vector we expect. We know only, e. g., the input

category. Thus we cannot calculate the gradient from

the difference between the actual and expected outputs.

So, instead, we specify a metric that the mapping of all

instances from our dataset should hold. Then we try our

network with all inputs and identify the worst pairs of

feature vectors that are close, have different categories, or

are far, and have the same type. We want to move them

in the latent space further or closer, and that direction

provides us with the gradient for training the network.

After many training cycles, the mapping holds the metric

and becomes suitable [7].

Advanced methods, called contrastive learning, em-

ploy metrics based on the similarity or diversity of out-

puts of two copies of the same network. We feed them

with two augmentations of the same instance from the

dataset and require similar outcomes or with different

samples expecting different results. We can train both

networks [8] or only one of them [9]. In the second case,

one copy is the teacher and the other student. During

the training, we adjust the student network weights and

occasionally copy them to the teacher.

In this way, we get feature extractors of better qual-

ity. Then we can train the corresponding decoders and

use them as generators when we feed them with inputs

different from the feature vectors of instances from the

dataset.

2.3. Attention
The invention of the attention mechanism in natural lan-

guage processing enabled us to take to regard the global

content during processing sequences of words, e. g., for

distinguishing the meaning of synonyms upon their con-

tent. Then it helped to avoid sequential processing and

start the transformer revolution in the whole domain of

deep learning [10]. But, for our purposes, it is enough

to concern it from a mathematical point of view. The

attention mechanism works with a set of key-value pairs.

Having a query 𝑞 on input, we mix the query from keys

𝐾 and outputs an analogical mixture from the corre-

sponding values 𝑉 , where:

𝐾 =

⎛⎜⎜⎝
𝑘1
𝑘2
. . .
𝑘𝑙

⎞⎟⎟⎠ 𝑉 =

⎛⎜⎜⎝
𝑣1
𝑣2
. . .
𝑣𝑙

⎞⎟⎟⎠
All queries and keys are vectors of dimension 𝑛, so 𝐾 is a

matrix 𝑙×𝑛. Values and outputs are vectors of dimension

𝑚, so𝑉 is a matrix 𝑙×𝑚. At first, we find such 𝑐𝑖 ∈ ⟨0, 1⟩
that

∑︀
𝑐𝑖𝑘𝑖 = 𝑞,

∑︀
𝑐𝑖 = 1, and 𝑖 = 1, 2, ...𝑙. Since we

like to mix the query more from keys similar to it and less

from different keys, we can define the mixture roughly

as dot product 𝑐
(0)
𝑖 = 𝑞𝑘𝑖 = ‖𝑞‖‖𝑘𝑖‖ cos𝜑𝑖, where 𝜑𝑖 is

the angle between 𝑞 and 𝑘𝑖. Since cos𝜑𝑖 is 1 for same, 0
for different, and−1 for opposite vectors, we can turn the

products to high, middle, and small values from ⟨0, 1⟩ by

𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑥)𝑖 =
𝑒𝑥𝑖∑︀
𝑘 𝑒𝑥𝑘 . Thus 𝑐 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑐

(0)

𝑑
) =

𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑞𝐾
𝑇

𝑑
), where 𝑑 is a constant that enables us

to scale how much we mix from similar keys and how

much from different ones. Since the length of vectors is

growing with

√
𝑛 and dot product with 𝑛, it is popular to

define 𝑑 =
√
𝑛. It would mean we include different and

opposite keys, even if one key equals the query. For our

purposes, we use a much smaller scale factor 𝑑 = 5
√
𝑛,

since we prefer to mix almost from a single key if the key

is equal to the query. Having coefficients of the mixture 𝑐,

we can mix values 𝑉 to output 𝑜 = 𝑐𝑉 . So, the complete

response of the attention module to a single query 𝑞 is:

𝐴(𝑞,𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥

(︂
𝑞𝐾𝑇

𝑑

)︂
𝑉

Yet we mention that the typical use of the attention

mechanism is the so-called self-attention, for which the

queries, keys, and values are coming from the same input,

and we aim to get the query compatibility to each key.

However, this is not the case. So instead, we will use the

mechanism for mapping two latent spaces; queries and

keys are from one space, and values and outputs are from

another.

3. Method
Let us assume we have a system with one feature extrac-

tor 𝐹 and one generator 𝐺. The extractor represents

perception and generator action. The extractor imple-

ments function 𝐹 : 𝐼 → 𝐿𝐹 , where 𝐼 is a set of system

inputs and 𝐿𝐹 , is their latent space, i.e., turns the input

data into feature vectors. The generator implements func-

tion 𝐺 : 𝐿𝐺 → 𝑂, where 𝑂 is a set of system outputs

and 𝐿𝐺 is their latent space, i.e., turns feature vectors

into the output data.

We map the spaces 𝐿𝐹 and 𝐿𝐺 by the attention mod-

ule 𝐴. We are gradually building matrices 𝐾 and 𝑉
containing keys and values. Each pair key-value corre-

sponds to an association between two feature vectors

representing stimulus and response at the system level.

The system employs the generator to act with 𝑎 = 𝐺(𝑣)
upon a random value 𝑣. As a result, it receives a response

𝑟 and extracts key 𝑘 = 𝐹 (𝑟). Then, concerning their

quality, the system can include 𝑘, 𝑣 into 𝐾,𝑉 . Thus, the

mapping 𝐿𝐹 and 𝐿𝐺 become richer.

On the other hand, when the system receives an input

𝑝 independent of the system activities, it turns it into

query 𝑞 = 𝐹 (𝑝). If the query is equal to one of the

keys, i. e. 𝑞 = 𝑘𝑖, we aim to act with 𝐺(𝑣𝑖). However,

it is much more probable that we cannot translate the

query so directly. Therefore we operate with 𝐺(𝑣) where

𝑣 = 𝐴(𝑞,𝐾, 𝑉).
So, we can summarize the system operation into two

processes (procedures 𝐴𝐶𝑄𝑈𝐼𝑅𝐸 and 𝑈𝑆𝐸):

Algorithm Method of attention-based one-shot learning

𝐹 is extractor, 𝐺 generator

𝐴 is attention, 𝐾 keys, 𝑉 values

procedure Acquire(𝐹 ,𝐺,𝐾 ,𝐿)

loop
𝑣 ← 𝑟𝑎𝑛𝑑𝑜𝑚()
𝑜← 𝐺(𝑣)
𝑜𝑢𝑡𝑝𝑢𝑡(𝑜)
𝑟 ← 𝑖𝑛𝑝𝑢𝑡()
𝑘 ← 𝐹 (𝑟)
𝐾 ← 𝐾 ∪ {𝑘}
𝑉 ← 𝑉 ∪ {𝑣}

procedure Use(𝐹 ,𝐺,𝐾 ,𝐿)

loop
𝑝← 𝑖𝑛𝑝𝑢𝑡()
𝑞 ← 𝐹 (𝑝)
𝑣 ← 𝐴(𝑞,𝐾, 𝑉)
𝑜← 𝐺(𝑣)
𝑜𝑢𝑡𝑝𝑢𝑡(𝑜)

Of course, this schema is not generally applicable.

However, if we can apply it, it grants one-shot learn-

ing. The system capability is still growing gradually but

in steps, without transient states. Each demonstration

invokes immediate faculty to act accordingly under sit-

uations close to the seen example. The system operates

somehow also upon unseen conditions, and the quality of

these actions grows with the number of key-value pairs.

Figure 1: The imitation game.

4. Demonstration and Evaluation
To demonstrate the method, we deal with the imitation

game between a human and a humanoid robot. Though

it is possible to implement this task with classic computer

vision [3] and deep learning [11], for our purposes, it has

the meaning to re-implement it in a novel way. In this

game, a humanoid robot with a body similar to humans

invites a human to mimic his movements. If the human

accepts the invitation and imitates the robot, the robot

learns how to mimic the human. As a result, the robot

can mimic the movements of humans (Figure 1).

For implementation, we need a humanoid robot; we

employ iCubSim, the simulator of the iCub robot [12],

equipped with an external camera. We control it from

Python via pyicubsim, ONNX-runtime and OpenCV [13]

libraries. Further, we need a feature extractor that turns

images seen by the robot to feature vectors. For our pur-

pose, it is not necessary to train it; we can get it from

a pre-trained model for computer vision (obtained by a

self-supervised method described in Chapter 2.2). How-

ever, we need to invest more effort in generating robot

movements since neither pre-trained models nor datasets

are available to us for the chosen robot. First, we create

the dataset as a set of the robot joint positions while mov-

ing its arm to random points in the robot’s vicinity. We

avoid abnormal setups of robot joints by their calculation

by inverse kinematics. Then we train (using Keras [14])

the variational autoencoder (see Chapter 2.1) and get the

generator model as its part. Having the extractor and

generator, we can define the overall model controlling

the robot as their integration by the attention module

(see Chapter 2.3). Since the system operates in real-time

and calls models, the integration employs a blackboard

architecture [15] that helps us to combine slower and

faster processes. Finally, we test the system.

4.1. Extractor
We turn images into features by the pre-trained model

DINO [9]. In detail, we use dino_deits8.onnx – the middle-

sized version of the latter vision-transformer backbone,

distributed in the ONNX format. Though it turns color

images with resolution 224x224 into feature vectors of

mere 384 numbers, its quality is incredible, demonstrated

by several successful applications, including pose detec-

tion. Thus we are sure that the vector also contains

information representing the person’s pose on the image.

But, of course, the pose is in a raw form: we use the

backbone only, while the applications mentioned above

add further processing layers. The model is relatively

large, but its middle-sized version can fit into the 4GB

GPU. Moreover, its inference takes 0.05s on an ordinary

gaming notebook; thus, it is very suitable for building

real-time applications.

4.2. Generator
The iCub robot arm contains five significant degrees of

freedom, two in the shoulder and three in the elbow joints.

All together pose of the left and right arms is coded by

ten angles.

Aiming to create a decoder generating accurate poses,

we first need to get their dataset. We cannot get it by

random generation of joints because it would also con-

tain unnatural poses. So we need to define what it means

natural here. To do that, we have decided to concern nat-

ural poses generated by the inverse kinematics. We have

asked the robot to move its arm to all possible coordinates

in its vicinity, and if it succeeded in reaching the point,

we have added the current joint setup into the dataset.

It was not an easy job because inverse kinematics for

iCub was not available to us. Therefore we have started

from the known Denavit-Hartenberg parameters of the

robot, and – using on-the-shelf direct kinematics [16]

– we have implemented the FABRIK algorithm [17] ad-

justed for Denavit-Hartenberg notation and extended by

constraints [18]. It is a slow but fully operational solution

that not only defines the natural poses of the robot but

speeds up the creation of the dataset. We speed up the

process because we can reliably calculate all data on the

kinematics model, and we do not need to try them on the

robot. Also, as we see later, it is profitable that our dataset

can contain the Euler coordinates corresponding to the

recorded joint setups. We do not use them for model

creation, but they are helpful for model visualization. In

this way, we have collected all possible poses (Figure 2),

23470 for each arm. Then we randomly selected 60000

examples concerning the equal probability that the robot

uses the left arm, the right arm, both arms symmetrically,

and both arms in different poses.

In the second phase, we used Keras to train the varia-

Figure 2: The iCub’s kinematics (on the left: coordinates
reachable by the elbow, on the right: coordinates reachable
by the wrist).

Figure 3: The architecture of the iCub’s actions autoencoder
(on the left: encoder, on the right: decoder).

tional autoencoder of the selected joint setups. Since the

space of iCub’s arm action is not ample, we have used

just ten input, six intermediate, two feature, six interme-

diate, and ten output neurons. Of course, we double the

internal structures because the features are the sum of

the average and random multiple of standard deviation

(Figure 3). We have used ReLU and tanh activations since

we turned joint angles from −180∘ to 180∘ into code

from −1 to 1. Before training, we shuffled the dataset

and split it into 50000 training and 10000 testing exam-

ples. The training required ten epochs with batch size 32

and took mere 92s (Figure 4). Finally, we have distilled

the decoder part of the trained architecture and saved it

as our generator. Yet we have converted the generator

model from the .h5 format to the .pb format that we can

open in the OpenCV library.

This model can turn any pair of numbers from −1 to

1 into a proper joint setup on the robot (Figure 5). But,

further, we need to check that the space of generated

actions is well-organized. In other words, we need to

check that a fluent change of the feature vector causes

only a fluent shift in the joint setup. Since the feature

vector has only two numbers, we can easily visualize its

quality in six pictures depicting the x,y, and z coordinates

Figure 4: Training the variational autoencoder of iCub’s arms
movement.

of the right and left arms. We put a point to the picture for

each example from the testing set. Its color corresponds

to the value of the coordinate. Then fluent color gradient

means that the space is well-organized (Figure 6).

4.3. Integration
Now we can integrate the extractor and generator mod-

els into one system. Since such a system needs to com-

bine fast data sources like a camera with slower models

and languid robot movement, the integration employs a

blackboard architecture. Concretely, we use our solution

named Agent-Space architecture [15] to split the system

into a set of agents communicating via blackboard and let

the overall control emerge from the individual behaviors

of the agents.

Our system contains the following agents (Figure 7):

• The camera agent grabs images from the camera

and writes them onto the backboard, where other

agents can read image samples according to their

processing capacity. (This way, we avoid delays

and overloadings appearing if we put grabbing

and processing images into the same loop.)

• The perception agent reads the grabbed image

from the blackboard, turns it into a blob, feeds the

extractor model, and writes the provided feature

vector to the blackboard.

• The control agent operates in two modes: AC-

QUIRE and USE. In the first mode, it collects lists

of keys and values corresponding to the feature

vectors of the extractor and generator in the fol-

lowing way. First, it randomly generates a feature

vector for the generator, writes it to the black-

board, waits, and reads the feature vector pro-

vided by the extractor. Then it adds them to the

Figure 5: Examples of iCub’s actions generated from the
feature vectors.

lists. In the second mode, the agent reads the fea-

ture vector provided by the extractor and writes

the feature vector for the generator calculated by

the attention module from the lists of keys and

values.

• The action agent reads the feature vector for the

generator and controls the iCub robot by the com-

mands of the YARP protocol encapsulated by the

pyicubsim library.

• For simplification, at the current stage of devel-

opment, we specify the accurate time for waiting

in the ACQUIRE mode by the examinator. Since

his hands are busy imitating the robot’s pose, we

manage this signaling by whistling. We imple-

mented this input by the pitch agent. It processes

sound by the Fourier transform and looks for the

high frequencies.

Figure 6: The x, y, and z coordinates of the right and the
left iCub’s arm for the testing set. Each point represents one
sample, and its color is the value of the coordinate.

4.4. Testing
We have developed the real-time system incrementally,

working with the off-line version, which quality we can

investigate more easily. In this phase, we have selected a

bunch of ten examinator’s poses and created a few im-

ages – under varying conditions – for each pose. Then

we taught the system, and after each sample, we tested

the system’s capability to imitate all poses. The number

of operational poses indicated whether the system could

forget a learned pose. We found that it did forget neither

one. Even the system learned one pose implicitly, com-

pounding the correct response from two other already

presented poses (Figure 8).

So far, we have not evaluated the real-time version in

another way than by the examinator’s opinion. In the

future, we plan to employ pose detectors for this purpose.

Figure 7: Schema of the integrated system for the imitation
game. Circles represent agents, triangles the blackboard, cylin-
ders models, and the letter A the attention module.

Figure 8: One-shot learning of selected arms poses.

5. Conclusion
In this paper, we introduced a kind of one-shot learning.

Its key component is the attention module. We have used

this existing component of deep neural networks for a

new task: mapping two latent spaces. First, however, we

had to adjust one of its parameters: the scale factor.

We demonstrated our approach to one-shot learn-

ing on imitation between human and humanoid robots.

We built our demo from modules developed in a self-

supervision way. Thus we avoided using datasets con-

taining particular poses of the person on images and the

robot’s body. Instead, our robot has learned them by

interacting with the examinator in a one-shot learning

way.

For imitation, the robot needs to get the model of the

body seen as analogical to the model of its own body. In

humans, it is not clear where this ability originates. But

our approach enlights that the imitation game not only

solicits this ability but can also help it to emerge. Here

imitation is an ability of a society [19], and one of its

members learns it from other (a child from its parent or a

robot from its user). Remarkably, this transfer could rely

on the attention module, an essential building block for

natural language processing. We could look at language

as a kind of imitation related to the movement of vocal

cords. Its nature is similar to hand movement. On the

other hand, the presented one-shot learning mechanism

could play a role in the early evolution of signal-based

language.

Our approach also has weaknesses. The major one is

that if we use an encoder that stems from general data,

the mapping could be relevant only for specific condi-

tions. For example, associations learned in the presented

imitation game could be fooled by more persons in front

of the camera. On the other hand, the quality of today’s

self-supervised models does not allow us to cheat the

system by e. g. the different colors of the wall or the

different dress of the seen person. We could decrease

this problem by training the encoder from more specific

data under specific conditions. However, it isn’t easy to

imagine that we could manage it in a self-supervision

way.

Finally, our method is more general than an imitation

game. For example, processing vision, the robot cannot

see itself; therefore, it needs the help of an examinator.

However, it could apply the same method for seeing it-

self in the mirror. Or it could similarly process voice.

Having a speech generator corresponding to the physical

capabilities of vocal cords, lips, and tongue and a voice

listener analogical to the ear, it could start to produce

random voices and learn the mapping between the lis-

tener perception and the generator action. As a result, it

can reproduce the listened speech when another source

makes it.

References
[1] D. C. Dennett, Kinds of minds: towards an under-

standing of consciousness, Weidenfeld & Nicolson,

London, 1996.

[2] J. P. Bandera, J. A. Rodriguez, L. Molina-Tanco,

A. Bandera, A survey of vision-based architectures

for robot learning by imitation, International Jour-

nal of Humanoid Robotics 9 (2012). doi:10.1142/
S0219843612500065, world Scientific Publishing

Company.

[3] S. Boucenna, S. Anzalone, E. Tilmont, D. Co-

hen, M. Chetouani, Learning of social signa-

tures through imitation game between a robot

and a human partner, IEEE Transactions on Au-

http://dx.doi.org/10.1142/S0219843612500065
http://dx.doi.org/10.1142/S0219843612500065

tonomous Mental Development 6 (2014) 213–225.

doi:10.1109/TAMD.2014.2319861.

[4] G. E. Hinton, R. R. Salakhutdinov, Reducing the di-

mensionality of data with neural networks, Science

313 (2006). doi:10.1126/science.1127647.

[5] Brownlee, Deep Learning for Computer Vision, 1.4

ed., machinelearningmastery.com, 2019.

[6] D. P. Kingma, M. Welling, An introduction to vari-

ational autoencoders, Foundations and Trends in

Machine Learning 12 (2019) 307–392.

[7] D. King, High quality face recognition with deep

metric learning, 2017. URL: http://blog.dlib.net/

2017/02/high-quality-face-recognition-with-deep.

html.

[8] T. Chen, S. Kornblith, M. Norouzi, G. Hinton, A

simple framework for contrastive learning of visual

representations, in: Proceedings of the 37th Inter-

national Conference on Machine Learning, number

149 in ICML, 2020, pp. 1597–1607.

[9] M. Caron, H. Touvron, I. Misra, H. Jégou, J. Mairal,

P. Bojanowski, A. Joulin, Emerging properties in

self-supervised vision transformers, in: Proceed-

ings of the International Conference on Computer

Vision, ICCV, 2021.

[10] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit,

L. Jones, A. N. Gomez, Łukasz Kaiser, I. Polosukhin,

Attention is all you need, in: 31st International Con-

ference on Neural Information Processing Systems,

ACM, Long Beach, 2017.

[11] M. Petrovich, M. J. Black, G. Varol, Action-

conditioned 3D human motion synthesis with trans-

former VAE, in: International Conference on Com-

puter Vision, ICCV, 2021.

[12] D. Vernon, G. Metta, G. Sandini, The icub cog-

nitive architecture: Interactive development in a

humanoid robot, in: 2007 IEEE 6th International

Conference on Development and Learning, 2007, pp.

122–127. doi:10.1109/DEVLRN.2007.4354038.

[13] G. Bradski, The opencv library, Dr. Dobb’s Journal

of Software Tools (2000).

[14] F. Chollet, Deep Learning with Python, Manning

Publications Co., Greenwich, CT, USA, 2017.

[15] A. Lucny, Building complex systems with agent-

space architecture, Computers and Informatics 23

(2004) 1–36.

[16] L. Natale, C. Bartolozzi, F. Nori, G. Sandini, G. Metta,

Humanoid Robotics, Springer, Dordrecht, 2017.

doi:10.1007/978-94-007-6046-2.

[17] A. Aristidou, J. Lasenby, Fabrik: A fast, iterative

solver for the inverse kinematics problem, Graphi-

cal Models 73 (2011) 243–260.

[18] R. A. Tenneti, A. Sarkar, Implementation of modi-

fied fabrik for robot manipulators, in: Proceedings

of the Advances in Robotics 2019, 2019, pp. 1–6.

doi:10.1145/3352593.3352605.

[19] A. Aristidou, J. Lasenby, Embodied gesture pro-

cessing: Motor-based integration of perception

and action in social artificial agents, Cogni-

tive Computing 3 (2011) 419–435. doi:10.1007/
s12559-010-9082-z.

6. Online Resources
We share codes of this project at GitHub

http://dx.doi.org/10.1109/TAMD.2014.2319861
http://dx.doi.org/10.1126/science.1127647
http://blog.dlib.net/2017/02/high-quality-face-recognition-with-deep.html
http://blog.dlib.net/2017/02/high-quality-face-recognition-with-deep.html
http://blog.dlib.net/2017/02/high-quality-face-recognition-with-deep.html
http://dx.doi.org/10.1109/DEVLRN.2007.4354038
http://dx.doi.org/10.1007/978-94-007-6046-2
http://dx.doi.org/10.1145/3352593.3352605
http://dx.doi.org/10.1007/s12559-010-9082-z
http://dx.doi.org/10.1007/s12559-010-9082-z
https://github.com/andylucny/learningImitation

	1 Introduction
	2 Related Works
	2.1 Autoencoders
	2.2 Metric learning
	2.3 Attention

	3 Method
	4 Demonstration and Evaluation
	4.1 Extractor
	4.2 Generator
	4.3 Integration
	4.4 Testing

	5 Conclusion
	6 Online Resources

