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Abstract
ChEMU 2022 tasks 1a and 1b aim to NER (Named Entity Recognition) and EE (Event Extraction) bench-
marks. EE is RE (relation extraction) between trigger word and entity. We develop context-aware NER
and RE models based on the domain-specific language model and achieve the state-of-the-art perfor-
mance in ChEMU 2022, the public exact match f1 score of tasks 1a is 96.33, and task 1b is 92.82. For
the domain-specific language model, we post-train the Bio-linkBert model with various corpora. We
then select the best performing model from domain-specific benchmark datasets consisting of BLURB
(Biomedical Language Understanding & Reasoning Benchmark) and ChEMU 2020. For the NER model,
we choose a sequence tagging model that outperforms the span-based model in CHEMU 2022 task 1a.
For the RE model, we train the model to classify the relation types or no relation between every pair of
trigger words and entities in the snippet. Furthermore, we train both models using inputs that contain
multiple sentences rather than a single sentence so that the model can utilize contextual information.
For the ensemble, we train the best-performing model with 10-fold cross-validation and then predict the
results with soft-voting. Finally, we apply rule-based post-processing to the prediction results.

Keywords
Language Model, Named Entity Recognition, Relation Extraction, Event Extraction

1. Introduction

Named Entity Recognition (NER)[1] and Relation Extraction (RE)[2] are well-known tasks in
the field of information extraction research. Previous research has focused on diverse domain
datasets, such as ACE051 from Newswire and online forums, and SciERC[3] from scientific
papers. Both NER and RE models are based on either a general domain language model[4]
or a domain-specific language model[5],[6],[7], depending on the dataset. And most of the
works employ either a pipeline approach or a joint approach. A pipeline approach is training
one model to extract entities and another model to classify relations between them. A joint
approach is training the model for both tasks simultaneously.
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ChEMU (Cheminformatics Elsevier Melbourne University) 2022 introduces 5 tasks to extract
information from the snippet of chemical patents to support the drug discovery process. Among
these tasks, we focus on NER task 1a and EE (event extraction) task 1b. Task 1a aims to extract
chemical entities from the snippet. Task 1b aims to extract trigger words and relations between
trigger words and entities from the snippet. Task 1b includes both NER and RE tasks. The
extraction of trigger words is the NER task and the relation between trigger word and entity
is the RE task. We develop context-aware NER and RE models based on the domain-specific
language model and achieve state-of-the-art performance in ChEMU 2022, the exact match
f1 score of task 1a is 96.33, and task 1b is 92.82.2 In this paper, we explain our contributions
to improving the performance of ChEMU 2022 : (1) domain-specific language model, (2) best
performing NER and RE models, (3) context-aware model with input consisting of multiple
sentences, (4) post-processing to the model prediction, (5) cross-validation and ensemble. Finally,
we experiment and analyze our contributions in section 4.

For the domain-specific language model, we post-train the Bio-linkBert[7] model with various
chemical corpora. We then select the best performing model from domain-specific benchmark
datasets consisting of BLURB (Biomedical Language Understanding & Reasoning Benchmark)[8]
and ChEMU 2020[9]. Among the pipeline approach and the joint approach, we choose the
pipeline approach because PURE[10] reports it gets higher performance than the joint ap-
proach. For the NER model, we experiment with two popular approaches, the sequence tagging
approach[4],[11] and the span-based approach[10], [12]. And finally, we choose the sequence
tagging approach that shows higher performance in ChEMU 2022 task 1a. The NER model is
trained to predict both entities in task 1a and trigger words in task 1b. For the RE model, we
train the model to classify the relation types or no relation between every pair of trigger words
and entities in the snippet. In task 1b, the RE model predicts the relation between entities and
trigger words predicted by the NER model. Furthermore, we train both models using inputs that
contain multiple sentences rather than a single sentence so that the model can utilize contextual
information. For the ensemble, we train the best-performing model with 10-fold cross-validation
and then predict the results with soft-voting. Finally, we apply rule-based post-processing to
the prediction results.

2. Related Work

Named Entity Recognition (NER)[1] and Relation Extraction (RE)[2] are well-known tasks in
the field of information extraction research. These tasks have lots of applications in various
domains such as news, social media, biomedical and chemical domains. There are two areas of
study. The first is to improve the language model, and the second is to improve the NER and RE
models based on that model.

Recently the pre-trained language model such as BERT[4] and Roberta[13] have improved all
NLP task performance. To improve the language model for NER and RE tasks, LUKE[14] and
KeBioLM[15] use additional information such as named entity labels to pre-train the model.
However, it is not easy to prepare a lot of label data in the chemical domain. Others approach

2ChEMU 2022 website shows public and private exact match f1 score and the score mentioned above is the
public score. The meaning of public and private scores is explained in section 4



such as BioBert[5], PubmedBert[6] and Bio-linkBert[7] are pre-trained using domain-specific
corpora. Similarly, we train a domain-specific language model with a chemical domain corpus
and ultimately improve the performance of the ChEMU 2022 task.

For NER tasks, there are the sequence tagging approach such as BERT[4] and the span-based
approach such as PURE[10] and PL-Marker[12]. For the sequence tagging approach, BERT uses
a BIO scheme to encode each token into a tag and trains a model to classify each token into its
tag. For the span-based approach, PURE and PL-Marker generate entity span candidates whose
length is shorter than the maximum span length and then train a model to classify them as
entity type or no-entity. We experiment with both approaches and then select the model with
the best performance in the ChEMU 2022 task.

For NER and RE tasks, there are the pipeline approach [10],[12] and joint approach[16]. In a
pipeline approach, the NER model predicts entities and then the RE model predicts the relation
between them. On the other hand, in the joint approach, a single model learns the NER and RE
tasks simultaneously. Because PURE[10] reports the pipeline approach performs better than
the joint approach, we adopt the pipeline approach.

3. Method

3.1. Domain-specific language model

We use transformer encoder-based models and these models are published in huggingface3,
such as BERT, Roberta, BioBert, PubmedBert, Bio-megatron[17], and Bio-linkBert. Most of
the publicly available pre-trained language models (PLM) are trained using general domain
or biomedical domain knowledge. However, ChEMU 2022 data is composed of text based
on chemical patents. Therefore, when fine-tuning publicly available pre-trained models, the
gap between the chemical domain and other domains reduces the utilization of pre-trained
knowledge. For example, if a word such as chemical compound is split into several tokens
because the tokenizer is not trained with chemical domain texts, the language model may
not capture its original meaning. And the understanding of the context is lowered due to a
homonym problem in the different domains.

To overcome this problem, the one way is to learn a model from scratch using only the
chemical domain texts, as PubmedBert and Bio-linkBert did in the biomedical domain, but
it was difficult due to the lack of time. We try to solve the problems mentioned above by
applying domain transfer to the set using the post-training method. In this paper, we post-train
Bio-linkBert with various chemical corpora and then select the best performing model from
domain-specific benchmark datasets consisting of BLURB (Biomedical Language Understanding
& Reasoning Benchmark) and ChEMU 2020. Since we believe that the Pubmed dataset used
by the pre-trained Bio-linkBERT has some chemical information, we want to put additional
data information into the model without losing the already learned information. The same
methodology as Mix-Review[18], a rehearsal-based continual learning approach, is applied for
domain transfer.

3https://huggingface.co/



3.2. Named Entity Recognition

Using the domain-specific language model mentioned above, we experiment with the sequence
tagging approach and the span-based approach. And then we compare which is better for the
entity and trigger word recognition of ChEMU 2022 tasks 1a and 1b. In the case of the sequence
tagging approach, a bio scheme is used, each token is encoded with the BEGIN and IN tag
of a specific entity or OUT tag. And then the model is trained to classify each token into its
corresponding tag. To classify tags, the output representation of each token is simply fed into a
linear layer. We also experiment with CRF or Bi-LSTM+CRF layers in appendix A.1, but there
is no performance improvement. In the case of the span-based approach, we consider token
sequences shorter than the maximum span length4 as entity span candidates and then train the
model to classify them to corresponding entity type or no entity. However, there are chemical
entities much longer than the maximum sequence length in ChEMU 2022 task 1a. Therefore,
we use several heuristic approaches to add long entity span candidates. One simple way we
used is to add a space-split sequence of tokens. A span representation for classifying an entity
is a concatenation of the first token, last token representation and width embedding to capture
entity length information.5 After experiments, we finally decide to go with the sequence tagging
approach that shows higher performance.

According to the error analysis part of the ChEMU2020[9], in some cases, contextual informa-
tion from other sentences is necessary to extract trigger words. So we train the context-aware
model with input including multiple sentences rather than a single sentence. It goes through
several processing steps to generate the input data. First, we split the snippet into sentences
with spacy6 library. Second, by sliding the sentences from left to right, we generate inputs that
contain as many sentences as possible without exceeding the maximum sequence length of the
model.

3.3. Relation Extraction

In this paper, we use the PURE[10] approach to extract the relation between entity and trigger
word extracted from the NER model. For every entity and trigger word pair in the snippet, we
generate input data to train the model to classify as a specific relation type or no-relation. Note
that this input includes relations that occur in a single sentence as well as relations that occur
in cross sentences. The pre-processing step to generate this input is as follows. First, we split
the snippet into sentences as we did in the pre-processing step. Second, we add the sentences
in which the entity or the trigger word occurs to the input. Third, if there are intermediate
sentences between added sentences, we add them as well. If the generated input is longer than
the maximum sequence length, we skip it. Since this input consists of a trigger word and an
entity that is far from it, there doesn’t seem to be any relation between them. So skipping
this input doesn’t affect the performance. However, if the generated input is shorter than the
maximum sequence length, we add as many left and right sentences as possible to the input
to train a context-aware RE model. Finally, in order to include information about the entity

4The maximum span length used in the PURE paper is 8. We use the same value
5Since entity span candidates can be too long, so 9 width embeddings are used, embeddings for 1 to 8 tokens

and embeddings for tokens longer than 8.
6https://spacy.io/usage/spacy-101



and trigger span, special tokens are inserted before and after the entity and trigger span. Each
special token indicates the type of entity or trigger and whether it is inserted before or after the
span. After input is fed to the model, output representations of special tokens before entity and
before trigger are concatenated. And then, this concatenated representation is fed to the linear
layer to classify relations.

3.4. Ensemble

Ensemble methods combine predictions from multiple models to improve performance. We train
NER and RE models using 10-fold cross-validation on the merged training and development
datasets. We apply the soft voting ensemble method to output results from 10 models.

3.5. Post-processing

We apply three post-processing methods to correct the results mispredicted by NER & RE
models. The first method is to correct the entity misclassification of STARTING_MATERIAL as
REAGENT_CATALYST. According to ChEMU 2020[9], misclassifying STARTING_MATERIAL
as REAGENT_CATALYST is one of the most common errors in the NER task. We design the rules
according to the definition of the entities or trigger words. By definition, the difference between
STARTING_MATERIAL and REAGENT_CATALYST is that STARTING_MATERIAL is consumed
during the chemical reaction, while REAGENT_CATALYST is not consumed and only increases
the reaction rate. In other words, unlike REACTION_CATALYST, the molecular structure of
STARTING_MATERIAL is similar to REACTION_PRODUCT. Therefore, we measure similarity
between STARTING_MATERIAL or REAGENT_CATALYST and REACTION_PRODUCT in the
snippet and then correct the entity type if it appears to be misclassified. 7

The second method is to correct mispredicted trigger word or entity spans. Sometimes the
model predicts different spans for the same word in different sentences. For example, the model
predicts "taken up" as a trigger word span, but sometimes only "taken" without "up" in other
sentences. Sometimes this can happen because the labels for the same word are different from
each other in the dataset. We apply post-processing that modifies all "taken" to "taken up". In
the same manner, several spans of the entities are post-processed.

The third method is to correct the relation misclassification of WORKUP as REAC-
TION_STEP. If the RE model predicts that a trigger word is related to REACTION_PRODUCT,
YIELD_PERCENT, YIELD_OTHER at one time, the trigger word should be REACTION_STEP
rather than WORKUP. The rule should capture the sentence at the end of the snippet that
describes the material synthesis in which the product is finally formed. Thus, we force the
trigger word WORKUP to be replaced by REACTION_STEP in this case.

4. Experiments

We evaluate our domain-specific language model with the BLURB benchmark and ChEMU 2020
dataset. We then evaluate NER and RE models with ChEMU 2022 task 1a and 1b datasets. Since

7the details are described in appendix A.2



Table 1
Overall statistics of train and development datasets in ChEMU 2022 task1b.

Feature Value

# Patent snippets 1500
# Entities 26857
# Trigger Words 11236
# Relations 23445

the ChEMU 2022 test dataset may also consist of unseen data, we want to choose a domain-
specific language model that generally performs well for the unseen data. This is why we use
the BLURB benchmark dataset together rather than just ChEMU 2020. BLURB benchmark
dataset is based on the biomedical domain, which has some relevance to the chemical domain.
Furthermore, it also includes chemical domain data, such as BC5-chem and ChemProt. The
train dataset of ChEMU 2020 is the same as that of ChEMU 2022, but the development and test
datasets of ChEMU 2020 are the same as the development dataset of ChEMU 2022. The test data
set of ChEMU 2020 is public, while that of ChEMU 2022 is not. In order to get the score of the
ChEMU 2022 test data set, the model must be uploaded to the ChEMU website. For convenience,
we use the ChEMU 2020 data set to evaluate domain-specific language models, but the ChEMU
2022 data set to evaluate our NER and RE models.

4.1. Dataset

4.1.1. ChEMU 2022 dataset

ChEMU 2022 includes five tasks: named entity recognition (task 1a), event extraction (task
1b), anaphora resolution (task 1c), chemical reaction reference resolution (task 2a), and table
semantic classification (task 2b). Among them, we focus on tasks 1a and 1b. Task 1a is to extract
chemical entities and task 1b is to extract both the trigger words and the relations between
trigger words and chemical entities. The dataset of task 1b is a superset of task 1a. Table 1
shows the overall statistics of the train and development datasets in ChEMU 2022 task 1b.

4.1.2. BLURB benchmark dataset

The BLURB benchmark dataset consists of six tasks as follows : named entity recognition, PICO
(patient population, interventions, comparator, and outcomes), relation extraction, sentence
similarity, document classification, and question answer. Among them, we use only NER and
RE datasets, which are the target tasks of ChEMU 2022. Table 2 summarizes the dataset we use.



Table 2
The NER and RE datasets in BLURB benchmark.

Dataset Task Train Dev Test Evaluation Metrics

BC5-chem NER 5203 5547 5385 F1 entity-level

BC5-disease NER 4182 4244 4424 F1 entity-level

NCBI-disease NER 5134 787 960 F1 entity-level

BC2GM NER 15197 3061 6325 F1 entity-level

JNLPBA NER 46750 4551 8662 F1 entity-level

ChemProt RE 18035 11268 15745 Micro F1

DDI RE 22233 5559 5716 Micro F1

GAD RE 4261 534 535 Micro F1

4.2. Implementation

4.2.1. Domain-specific language model

We post-train Bio-LinkBert with different corpus combinations and then select the best-
performing model. Based on the architecture and weight of Bio-LinkBert large8, we post-train
Bio-LinkBert on a task of masked language modeling[13]. We experiment with three corpora:
(1) Google patent: 23 GB of chemical domain patents we crawled using chemical keywords,
(2) Journal: 22 GB of chemical journal abstracts and body text (3) Pubmed abstract9: used by
training BioBert[5], 38 GB of biomedical domain data. For the Pubmed abstract corpus, we use
12 GB, which is 30% of the total data. This is because Bio-LinkBert has already been trained
with Pubmed abstract and the post-training aims to learn new information without losing what
has been learned. The corpus used for our best-performing model is the combination of Journal
and Pubmed abstract. We train our model for 15,000 steps (approx. 2 epochs) with sequence
length 512, batch size 2k, weight reduction 0.01, warm-up 3000 steps, and learning rate 5e-5.
The training time is about 13 hours using DeepSpeed10 with 16 Nvidia A100 40GB GPUs.

4.2.2. NER & RE models

We train a NER model to predict both entities and trigger words and a RE model to predict
relations between them. At inference time, the RE model predicts the relation using the results
predicted by the NER model. Although the code for ChEMU 2022 task 1a and task 1b is published,
we implement all codes for pre-processing, post-processing, and modeling for NER and RE. As
we will discuss in the 4.4 section, we achieve higher performance than the other participants
in tasks 1a and 1b even using publicly available domain-specific language models such as

8https://huggingface.co/michiyasunaga/BioLinkBERT-large
9https://github.com/EleutherAI/the-pile

10https://github.com/microsoft/DeepSpeed



Table 3
The Exact match results of the ChEMU 2020 test set. "GP" indicates training with Google Patent corpus
we crawl. "PM" refers PubMed abstract corpus and "J" refers to Journal data. "p", "r" and "f1" means
precision, recall and f1 score, respectively. We train these models with the input data generated from
each paragraph, but (doc) means model trained at the document level.

Model
Trigger Entity

p r f1 p r f1

PubmedBert-base 96.1 94.9 95.5 95.6 94.3 95.0

Bio-linkBert-large 96.3 95 95.6 95.9 94.2 95.1

+GP 95.9 97.4 96.6 95.8 96.1 95.9

+GP+PM 96.3 97.2 96.8 95.6 96 95.8

+J 96 97.3 96.6 95.8 96.1 96

+J+PM 96.6 96 96.3 95.9 96.1 96

+J+PM (doc) 96.2 97.1 96.7 96.1 96.3 96.2

PubmedBert and Bio-linkBert on huggingface. We train the NER model for 20 epochs with a
learning rate of 5e-5. At each epoch, we evaluate it on the development dataset and choose
the best-performing model. In the same manner, we train the RE model for 10 epochs with a
learning rate of 2e-5 and choose the best-performing model. The training time of the NER and
RE model is about 20 minutes and 24 hours with 1 Nvidia A100 40GB GPU. Because the RE
model is trained to classify all pairs of trigger words and entities in the snippet, it takes longer
than the NER model only to classify each token.

For the ensemble, We train a model with 10-fold cross-validation. And these 10 trained
models predict entities or relations by soft-voting. Finally, post-processing is applied to the
prediction results of the ensemble model.

4.3. Evaluation Result

We post-train Bio-linkBert with various corpora to obtain the domain-specific language model
that achieves high performance in ChEMU 2022 tasks 1a and 1b. The performance verification
of this model is performed using the CHEMU 2020 dataset and the BLURB dataset.

Table 3 shows the entity and trigger extraction performance of post-trained models in
ChEMU2020 task 1a. Table 4 shows the results of the NER and RE performance of the BLURB
dataset. In Tables 3 and 4, the post-training with the journal and Pubmed abstract on Bio-
linkBert large achieves the highest overall score, so we choose this model as our final model.
We train these models with the input data generated from each paragraph. Training the model
with input generated at the document level gives a slight performance improvement. However,
in ChEMU 2022, the score eventually drops slightly, so it is not used.

Table 5 and Table 6 show the evaluation results of task 1a and 1b in ChEMU2022, respectively.



Table 4
The evaluation results of NER and RE tasks in BLURB, the f1 score of the test dataset.

Model
BC5

-chem

BC5

-disease

NCBI

-disease
BC2GM JNLPBA

Chem

Prot
DDI GAD

Average

score

PubmedBert-base 92.95 85.35 87.57 84.36 79.13 77.02 82.74 81.89 83.87

Bio-linkBert-large 93.33 85.65 87.62 84.61 79.08 77.68 82.03 84.15 84.26

+GP 94.1 85.79 88.46 84.9 79.97 77.85 82.74 85.62 84.92

+GP+PM 93.66 85.93 88.06 84.67 79.38 79.91 82.82 85.42 84.98

+J 94.13 85.64 88.61 84.51 79.53 79.49 83.39 84.66 84.99

+J+PM 94.11 86.65 88.11 85.03 79.79 79.92 83.17 85.04 85.24

+J+PM (doc) 93.92 85.58 89.32 85.06 79.53 79.97 84.79 84.33 85.31

Table 5
ChEMU 2022 task 1a: named entity recognition evaluation results of the test dataset.

Model
Exact F1 Relaxed F1

public private public private

Hokkaido University 93.20 94.12 94.58 95.35
ChEMU Baseline 93.20 93.67 95.28 95.72
Virginia Commonwealth University 77.80 76.86 87.19 87.45

Ours (single) 95.52 95.86 97.10 97.33
Ours (Ensemble) 96.26 96.73 97.55 97.93
Ours (Ensemble) + post processing 96.33 96.80 97.59 97.93

The public and private scores are calculated from 30% and 70% of the test data set, respectively. 11

Both exact match and relaxed match require predicted entity or trigger word type to match the
label. For span, exact match requires that predicted span exactly matches gold span. However,
the relaxed match only requires that the predicted span overlap the gold span. Both metrics use
f1 score which is the harmonic mean of the precision and recall.

In Table 5, our single model achieves public and private exact match f1 scores improvement
of +2.32 and +1.74 compared to Hokkaido University which achieves the highest score among
other participants. Also, our final model with ensemble and post-processing achieves +3.13 and
+2.68.

In Table 6, the evaluation method of task 1b in ChEMU 2022 is very similar to 1a, except
that the relation type must match the label as well. To check whether the performance of the
RE model is higher than that of other participants, we predicted the relation using the entity
and trigger prediction results of the model12 that achieved the lowest performance among the

11The Private score was published before the submission deadline, and the public score was published after that
time.

12EM F1 public score = 93.65, private score = 94.3



Table 6
ChEMU 2022 task 1b: Event extraction evaluation results of the test dataset.

Model
Exact F1 Relaxed F1

public private public private

Hokkaido University 87.00 88.68 89.63 90.28
ChEMU Baseline 88.42 89.25 90.36 91.04
Virginia Commonwealth University 74.08 74.73 78.93 79.46

Ours (single, worst ner) 90.46 90.51 92.34 92.07
Ours (single) 92.00 91.84 93.75 93.48
Ours (Ensemble) 92.23 91.99 94.03 93.63
Ours (Ensemble) + post processing 92.82 92.15 94.24 93.61

Table 7
Ablation over the pre-tained language models. PLMs publicly opened in huggingface and our best
performing PLM are evaluated.

Model
task1a : NER task1b: EE

public private public private

PubmedBert base 94.73 95.55 92 91.84
Bio-linkBert base 95.2 94.91 91.53 91.66
Bio-linkBert large 95.05 95.34 91.02 91.28
Ours 95.52 95.86 91.86 91.78

NER models we submitted. Even in this case, the public and private exact match f1 scores are
+2.04 and +1.26 higher than the ChEMU Baseline, which has the highest performance among
participants. Therefore, the proposed RE model also affects the performance improvement. The
highest score is obtained by training an ensemble RE model using the prediction results of the
best performing NER and applying post-processing to the prediction results. In this case, the
public and private exact match f1 scores are +4.4 and +2.9 higher than the ChEMU Baseline.

4.4. Analysis

This section explains how PLM and data pre-processing methods affect the performance of
ChEMU 2022 task 1a and 1b.

Table 7 shows the exact match f1 score of the publicly available PLMs and our language
model, which is post-trained on Bio-linkBert large with journal and pubmed abstract data
and the best performing model is used by measuring the Blurb and CHEMU20 performance
at every 500 steps within 2 epochs. . In task 1a, our language model outperforms all other
PLMs. However, although it is not common, the performance of Bio-linkBert large is lower than
Bio-linkBert base. Therefore, post-training Bio-linkBert base as we did for Bio-linkBert large
may improve the performance. In task 1b, our model outperforms the Bio-linkBert large model,
but PubmedBert base gets the highest score. As a result, we use our language model for task 1a
and PubmedBert base for task 1b.

Table 8 shows the comparison of the exact match f1 score in ChEMU 2022 according to the



Table 8
Ablation over pre-processing methods, how to generate input data. For each task 1a and 1b, the best
performance PLM is used respectively.

Pre-processing
task1a : NER task1b : EE

public private public private

line 93.89 94.6 91.89 91.63
snippet 95.52 95.86 92 91.84

Table 9
Ablation over post-processing methods. Similarity refers to post-processing using molecular simi-
larity between REACTION_PRODUCT and STARTING_MATERIAL or REACTION_PRODUCT and
REAGENT_CATALYST. Entity span and trigger span indicates post-processing of entities and trigger
span mismatch ,respectively. Strict relation refers post-processing to forbid WORKUP relate to REAC-
TION_PRODUCT, YIELD_PERCENT and YIELD_OTHER at once. Post-processed means applying all
post-processing methods.

Model
public private

Exact F1 Relaxed F1 Exact F1 Relaxed F1

NER base 96.26 97.55 96.73 97.93

NER similarity 96.29 97.59 96.73 97.93

NER entity span 96.29 97.55 96.80 97.93

NER post-processed 96.33 97.59 96.80 97.93

EE base 92.23 94.03 91.99 93.63

EE similarity 92.27 94.07 91.99 93.63

EE trigger span 92.56 94.03 92.15 93.63

EE entity span 92.27 94.03 92.01 93.63

EE strict relation 92.40 94.19 91.98 93.61

EE post-processed 92.82 94.24 92.15 93.61

pre-processing methods that generates the input data to train the model. A single snippet txt file
of ChEMU 2022 data consists of multiple lines. We apply pre-processing methods mentioned in
section 3.2 and 3.3 with two different ways. The first is to pre-process the data line by line and
the second is to pre-process the entire snippet. If the input is generated only on each line, the
model cannot predict the result by referencing the context information given in the other lines.
Furthermore, for task 1b, the first deals with relations that occur on a single line, while the
second also includes relations that occur in multiple lines. Therefore, the second outperforms
the first.

Table 9 shows the ablation over three post-processing methods: (1) similarity: to correct
the entity misclassification of STARTING_MATERIAL as REAGENT_CATALYST, (2) trigger &



entity span: to correct mispredicted trigger word or entity spans. (3) strict relation: to correct
the relation misclassification of WORKUP as REACTION_STEP in some cases. In the NER model,
the similarity method improves public exact and relaxed f1 by +0.03 and +0.04, respectively.
The entity span method improves public exact f1 by +0.03. As a result, the score after applying
all post-processing methods shows +0.07 and +0.04 improvement in public exact and relaxed f1,
respectively. In EE model public score, the most effective method is trigger span method which
improves public exact f1 by +0.33. Following method is strict relation, improves public exact f1
by +0.17 and relaxed f1 by +0.16. This rule drops the private score a bit, but it is still effective in
the public score. Similarity improves public exact f1 by +0.04 and relaxed f1 by +0.04 and entity
span method improves public exact f1 by +0.04. Finally all of post-processing methods applied
EE model shows +0.59, +0.21 in public exact, relaxed f1 score higher than EE base model.

5. Conclusion

In this paper, we present the domain-specific language model and context-aware NER and
RE models for ChEMU 2022. For the best performing domain-specific language model, We
post-train Bio-linkBert with various corpora. Based on this language model, we present the
NER model using the sequence tagging method and the RE model using the PURE approach.
Pre-processing methods where the input contains multiple lines of sentences help the model
to be context-aware, which ultimately improves performance. Finally, we train the ensemble
model and apply some rules as post-processing.

We achieve state-of-the-art performance on ChEMU 2022 tasks 1a and 1b and analyze con-
tributions to performance. However, there is still room for improvement. First, because our
language model has a maximum sequence length of only 512 tokens, the model can not predict
entities and relations referencing the entire snippet. Second, some chemical entities consist of
too many tokens, which can degrade the performance of the model. These will be our future
works to develop improved language models.
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Table 10
Ablation over NER approaches and classification layers in ChEMU 2020

Approach PLM
Exact F1

Entity Trigger word

Span-based PumbedBert base 86.9 96.6
Sequence tagging (CRF) PumbedBert base 96 96
Sequence tagging (Dense) PumbedBert base 95.9 96.5

A. Appendix

A.1. Additional Ablation Studies for the NER Model

Table 9 shows the ablation studies over the NER approach and classification layer in ChEMU
2020. As mentioned in section 3, sequence tagging approach outperforms span-based approach.
However, the performance difference between the dense layer and CRF layer is not significant.

A.2. Post-processing to correct the entity misclassification of
STARTING_MATERIAL as REAGENT_CATALYST

As we mentioned in 3.5, we measure the similarity between STARTING_MATERIAL or
REAGENT_CATALYST and REACTION_PRODUCT in the snippet and then correct the entity
type if it appears to be misclassified. We use Pubchem[19] Python package pubchempy13 to
parse chemical entity from text, and then the similarity is measured using Python package
RDKit14 with Tanimoto coefficient[20] and Tversky index[21].

13https://github.com/mcs07/PubChemPy
14The RDKit: Open-Source Cheminformatics Software, version 2022.03.2. http://www.rdkit.org
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