
UniOviedo(Team1) at LeQua 2022: Sample-based
quantification using deep learning
Pablo González1

1Artificial Intelligence Center at Gijón, University of Oviedo, Spain

Abstract
Deep neural networks (DNNs) have become very popular in recent years, being applied to a wide variety
of problems. In the field of quantification, DNNs also show a promising future as an alternative to
conventional quantification methods with some properties that can be useful in certain problems. In
this paper we propose a deep learning architecture for quantification problems based on differentiable
histograms in order to obtain invariant sample representations. This approach has obtained competitive
results in each of the four subtasks of the LeQua 2022 competition.

Keywords
quantification, prevalence estimation, deep neural networks

1. Introduction

There are real-world applications where predicting the class of each individual example in a
dataset has no real utility, and the goal is to be able to estimate the prevalences of the classes in
a data sample (i.e. set of examples). Quantification is a supervised machine learning method
that tackles this particular problem and has become a task on its own in recent years [1].

Since the recognition of the quantification problem as a self-standing problem and different
from classification, several methods to solve it have been devised [2]. The LeQua 2022 competi-
tion [3] was launched with the aim of taking a step further the quantification field and stimulate
the creation of new quantification methods. In this competition, the standard quantification
methods are to be considered as baselines and the task of the competitors is to obtain solutions
to improve those.

The approach proposed by this team is a DNN architecture designed to learn from samples
(i.e. sets of unlabelled examples), that can optimize a specific error measure. The four subtasks
of the competition: T1A, T1B, T2A and T2B were tackled using basically the same setup that
will be described in the following section. This solution has led to pretty consistent results
in the four tasks, achieving, two silver medals, one bronze medal and one gold medal in the
four subtasks respectively. The solution also obtains state-of-the-art results compared with the
standard baselines.

CLEF 2022: Conference and Labs of the Evaluation Forum, September 5–8, 2022, Bologna, Italy
$ gonzalezgpablo@uniovi.es (P. González)
� https://pglez82.github.io/ (P. González)
� 0000-0002-9250-0920 (P. González)

© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:gonzalezgpablo@uniovi.es
https://pglez82.github.io/
https://orcid.org/0000-0002-9250-0920
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

2. Methods

sa
m
pl
e

Input
data

BERT
(T2A
and
T2B)

dense1

dense2

Histogram

denseq

cl
as
se
s

softmax
quantifi-
cation

Σ

RAE Loss

Feature extraction module Quantification module

Figure 1: DNN architecture. For tasks T2A and T2B the feature extraction module uses a BERT
transformer pretrained. For T1A and T1B this layer is removed. Dense layers number and size depend
on the task.

The method used for this competition is a DNN designed for tackling quantification problems.
The architecture (see Figure 1) is based on obtaining the representation of the samples using
a differentiable histogram layer. This representation is invariant to the order of the examples
in the sample. The network consists of a feature extraction layer, that is dependent on the
subtask; a histogram layer, that computes a histogram per input feature creating a numeric
vector representation of each sample; and a quantification module formed by dense linear layers,
able to learn the relationships existent between sample histograms and the sample prevalences.
Lastly, one softmax activation function translates the outputs of the last fully connected layer
(with size equal to the number of classes and specific to the task) into prevalences adding up to
one.

The principal advantages of this architecture versus the other approaches are threefold:

• The network can optimize any loss function. In this case, the competition rules established
the relative absolute error (RAE) as the official loss function for the competition, making
other possible quantification loss functions [4] not important for this particular problem.

• There is no need for labelled examples to train the network. Samples and their associated
prevalences are sufficient to train the network.

• The ability to use any existing network architecture in the feature extraction layer (for
instance, transformers for natural language processing problems).

2.1. Feature extraction layer

The feature extraction layer depends on the subtask. For tasks T1A and T1B, in which vector
features were already computed for each document, fully connected layers were used. The
number of layers and their size were considered as hyperparameters dependent on the subtask.
For subtasks T2A and T2B, raw text documents were the input of the network. In this case,
the decision taken was to plug-in BERT [5], a model pretrained on English language, from the

transformers library [6]. The input of this network is tokenized text (default BERT tokenizer
was used, with a sequence length limit of 200 tokens), and the network outputs a vector of 768
features per each example that is used to compute the histograms that represent the sample.
Note that using BERT in a network architecture like this is not exempt from problems, as all
the examples in a sample must pass through the network before doing a backward pass. As
BERT has 110M parameters this operation is not feasible from a memory usage point of view.
The solution adopted was to use a technique called gradient checkpointing [7] that reduces the
memory footprint at the cost of having a 30% increase in computation time.

2.2. Differentiable histograms

One of the problems to overcome is that histograms are not differentiable thus, they can not be
used directly in a neural network. The solution is to use an approximation that can be computed
with basic and differentiable functions as the sigmoid function, provided by all deep learning
frameworks.

For computing a histogram of a feature 𝑓𝑘 for each example 𝑖, first, the fixed bin centres 𝜇𝑏

are computed as well as the values 𝑓𝑘,𝑖 distance to each bin centre. Then, in a second step, two
logistic functions are used to approximate which values fall in each bin (see Figure 2).

0.25 0.5 0.75 1 1.25

1
𝜎(𝑓𝑘,𝑖 − 𝑤

2)

1− 𝜎(𝑓𝑘,𝑖 − 𝑤
2)

Figure 2: Histogram bin approximation using two sigmoid functions 𝜎(𝑓𝑘,𝑖) = 1

1+𝑒𝛾𝑓𝑘,𝑖
. In this example,

the bin center is fixed and equal to 𝜇 = 0.75. Bin width is also fixed with 𝑤 = 0.5. 𝛾 is a constant with
a high enough value to make sigmoid functions sharp and closer to a step function.

This method for computing histograms is fast, differentiable (so it can be used with back-
propagation), and given a big enough 𝛾 value, provides a good-enough approximation to the
real histograms. An example of a approximated histogram for a single feature using sigmoid
functions can be seen in Figure 3. In this example, the error made by the approximation
compared with the true one is close to zero (absolute error: 0.000123).

The number of bins of the histograms is parameter that can be optimized for each problem.
For this competition the optimal values were always close to 32, so for simplicity, this is the
value that was used for all four tasks (more information in Section 3.1).

Figure 3: True histogram (left) and sigmoid differentiable histogram (right) with 8 bins for a feature
normally distributed with 100 values. Difference between the two is 0.000123 in absolute error.

2.3. Sample generation

For the training process, the network needs training samples, so they can be fed forward through
the layers, compute the loss and make a backward pass to learn the network weights. For each of
the four subtasks, participants were given a labelled dataset to train the quantification algorithms
plus a set of dev samples associated with their prevalences, but without individual example
labels, intended to be used as validation samples. As example labels are not needed at all in this
DNN architecture, dev samples were used as the base of the training process. From the 1000
thousand dev samples given for each task, 500 were used for training, 200 for validation and
early stopping, and the remaining 300 were used for testing, to make sure that the solution was
not overfitting. In the subtasks where labelled training data was used, the APP protocol was
used to generate random samples.

Even though the number of samples may seem high, 500 instances for training the network
is not enough and would cause overfitting. The solution adopted was to create a bag generator
that can generate artificial samples that are a mixture of two real samples, the prevalence
of which is aproximated to the average of the prevalences of the two real samples. To also
feed the network with real samples, the sample generator was parameterized to control the
generated proportion of real samples versus mix samples. This parameter was considered a
hyperparameter to optimize for each subtask.

3. Experiments

In order to train the DNN, the bag generator described in the previous section was used to feed
the network with samples. After finishing one epoch with a fixed number of samples, validation
loss was computed using the 200 samples reserved for validation. For validation no mix samples
were generated, only real ones.

The loss function for the network was Relative absolute error (RAE) is defined as,

𝑅𝐴𝐸(𝑝, 𝑝̂) =
1

|𝐶|
∑︁
𝑐∈𝐶

|𝑝̂− 𝑝|
𝑝

, (1)

where 𝑝 and 𝑝̂ are the real and predicted prevalences and 𝐶 are the classes of the problem. RAE
may be undefined because of undefined denominator so we can take the smoothed version 𝑝𝑠
of both 𝑝 and 𝑝̂ [4]:

𝑝𝑠 =
𝜖+ 𝑝

𝜖|𝐶|+
∑︀

𝑐∈𝐶 𝑝
, (2)

where 𝜖 = 1
2*𝑠𝑎𝑚𝑝𝑙𝑒𝑠𝑖𝑧𝑒 .

To determine the number of training epochs, an early stopping criterion was established,
taking the model with the best validation loss and stopping learning after a number of epochs
without any improvement in the validation loss. The learning rate was considered a hyperparam-
eter and was reduced by a factor of 0.5 after a certain number of epochs without improvement
in the validation loss. Dropout and weight decay were used to prevent overfitting which was
indeed a problem in the training process of the DNN.

After completing the training process, the 300 test samples (not seen during training or
validation) were evaluated in order to get a realistic estimation of the performance of the
network.

3.1. Hyperparameter search

Exploring the different architectures and hyperparameters in a deep learning problem can
be a daunting experience. For tasks T1A and T1B, the Optuna hyperparameter optimization
framework was used [8]. For tasks T2A and T2B the BERT module slowed down the training
process to a degree that made impossible an automated hyperparameter search due to the lack
of computational resources (check Table 1 for a list of the most important hyperparameters
considered and their values for each task). Table 2 illustrates the optimization process conducted
for task T1A using Optuna. For each hyperparameter, the search space considered and the best
value found are presented. Note that an exhaustive search would not be plausible due to the
high number of hyperparameters and possible values. As an alternative, Optuna uses a sampler
to pick hyperparameter values using TPE (Tree-structured Parzen Estimator) algorithm [9] to
explore the search space and find the best values that optimize the objetive function.

3.2. Training process differences by subtask

Even though every subtask was tackled with a similar training process, it is worth noting the
subtle differences between them. In subtask T1A, only dev samples were used in the training
process. Best hyperparameters were found using Optuna and the final model was trained with
those. The approach for T1B was similar to T1A but training the network was more difficult.
Due to the high number of classes, the network tended to overfit. In this case, using the samples
generated with the labelled train data in a second stage helped reduce overfitting to a certain
degree. For task T2A the training process was divided into two stages. In the first one, BERT

Hyperparameter T1A T1B T2A T2B

starting lr 0.00027 0.0005 0.0001 0.001
optimizer AdamW AdamW AdamW AdamW
batch size 21 500 20 200

weight decay 0.0018 0 0 0
histogram bins 32 32 32 32

dropout 0.52 0.5 0.5 0.1
real bags proportion 0.35 0.5 0.5 0.5

quantification linear layers size [906, 1554, 38] [4096] [2048, 512] [4096]

Table 1
Summary of the most important hyperparameters used for each task.

Hyperparameter Values considered Selected value

starting lr [0.00001, 0.01] 0.00027
optimizer AdamW,Adam,RMSprop AdamW
batch size [1, 100] 21

weight decay [0.00001, 0.1] 0.0018
histogram bins [2, 64] 32

dropout [0, 0.8] 0.52
real bags proportion [0, 1] 0.35

feature extraction hidden layer size [2, 1024] 798
feature extraction output layer size [2, 256] 118

quantification linear layers [1, 3] 3
quantification linear layer size [2, 2048] [906, 1554, 38]

Table 2
Hyperparameters optimized for task T1A. Note that the values tested (except for the optimizer) represent
ranges from which Optuna will sample values trying to optimize the RAE over the validation set.

weights were frozen, allowing the network to update the weights only for the quantification
layers. In a second stage, all the weights were unfrozen and the network was allowed to converge
freely. For subtask T2B, BERT was finetuned for a few epochs to the 28 classes of the problem
using the training data. Then the process was the same as for T2A. This additional step helped
the network to converge faster as the feature extraction layer is already optimized to distinguish
between the 28 classes of the problem.

In Table 3, training and inference times are shown for each subtask. Computation for tasks
T1A and T1B was done in a NVidia Titan Xp card, with 12Gb of RAM. For tasks T2A and T2B a
NVidia GeForce RTX 3080 with 24Gb of RAM was used. Note that T2A and T2B training and
inference times are hugely conditioned by the feature extracture layer (BERT). Difference in
training times between T1A and T1B is due to the higher number of epochs needed in T1B for
the network to converge and the bigger sample size (250 for T1A vs 1000 examples for T1B).

Task Training time Inference time

T1A 30 min 2 min
T1B 23 hours 5 min
T1A 52 hours 1 hour
T2A 90 hours 4 hours

Table 3
Training/inference times for each of the subtasks. Inference time represent the time required to evaluate
the 5000 test samples.

3.3. Results

After selecting the best model for each subtask, based on the MRAE (mean RAE across samples),
the solution was submitted to the competition website. The following table shows the results
for each subtask in MRAE and MAE (mean absolute error, defined as the mean by sample of
𝑎𝑏𝑠(𝑝− 𝑝̂)), compared with the best baseline method, which was consistently the EM method
[10]. Results for the rest of the competitors and the other baselines methods can be found on
the website of the competition 1.

Task MRAE MAE

Validation Test Baseline (EM) Validation Test Baseline (EM)
T1A 0.1194 0.1090 0.113823 0.0229 0.0233 0.02518
T1B 0.9093 0.8842 1.182070 0.0280 0.0280 0.01976
T2A 0.0834 0.1070 0.087029 0.0184 0.0192 0.01952
T2B 1.1911 1.2309 1.309778 0.0319 0.0321 0.01552

Table 4
Validation: results over the last 300 dev samples that were not seen by the network in the training
process; Test: final results with the competition test data; Baseline (EM): results of the best baseline
method over the competition test data

3.4. Discussion

The results obtained in the final test data, released after the end of the competition, improve
MRAE for the existing baselines in three out of four subtasks. For subtasks T2A and T2B the
validation result is better than the final result. This may have been caused by overfitting to
validation data. Note that these subtasks were solved using a BERT transformer which is a
huge model with millions of parameters. Maybe the results using a slightly simpler method as a
feature extraction layer could have led to better results.

1https://codalab.lisn.upsaclay.fr/competitions/4134#results

https://codalab.lisn.upsaclay.fr/competitions/4134##results

Acknowledgments

This research was funded by MINECO (Ministerio de Economía y Competitividad) and FEDER
(Fondo Europeo de Desarrollo Regional), grant PID2019-110742RB-I00 (MINECO/FEDER).

Also, I would like to thank the organization of the LeQua 2022 competition, for making
possible this research and bringing us the opportunity to learn more about new and existing
methods, pushing a little further the quantification field. Lastly, thanks to Juan José del Coz for
his insightful comments and the enriching discussions about the methods and the competition.

References

[1] P. González, J. Díez, N. Chawla, J. J. del Coz, Why is quantification an interesting learning
problem?, Progress in Artificial Intelligence 6 (2017) 53–58. URL: https://doi.org/10.1007/
s13748-016-0103-3. doi:10.1007/s13748-016-0103-3.

[2] P. González, A. Castaño, N. V. Chawla, J. J. D. Coz, A review on quantification learning,
ACM Computing Surveys (CSUR) 50 (2017) 1–40.

[3] A. Esuli, A. Moreo, F. Sebastiani, G. Sperduti, Overview of lequa 2022: Learning to quantify,
2022.

[4] F. Sebastiani, Evaluation measures for quantification: an axiomatic approach, Information
Retrieval Journal 23 (2020) 255–288. URL: https://doi.org/10.1007/s10791-019-09363-y.
doi:10.1007/s10791-019-09363-y.

[5] J. Devlin, M.-W. Chang, K. Lee, K. Toutanova, Bert: Pre-training of deep bidirectional
transformers for language understanding, arXiv preprint arXiv:1810.04805 (2018).

[6] T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue, A. Moi, P. Cistac, T. Rault, R. Louf,
M. Funtowicz, J. Davison, S. Shleifer, P. von Platen, C. Ma, Y. Jernite, J. Plu, C. Xu, T. L. Scao,
S. Gugger, M. Drame, Q. Lhoest, A. M. Rush, Transformers: State-of-the-art natural lan-
guage processing, in: Proceedings of the 2020 Conference on Empirical Methods in Natural
Language Processing: System Demonstrations, Association for Computational Linguistics,
Online, 2020, pp. 38–45. URL: https://www.aclweb.org/anthology/2020.emnlp-demos.6.

[7] T. Chen, B. Xu, C. Zhang, C. Guestrin, Training deep nets with sublinear memory cost,
arXiv preprint arXiv:1604.06174 (2016).

[8] T. Akiba, S. Sano, T. Yanase, T. Ohta, M. Koyama, Optuna: A next-generation hyperpa-
rameter optimization framework, in: Proceedings of the 25rd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, 2019.

[9] J. Bergstra, R. Bardenet, Y. Bengio, B. Kégl, Algorithms for hyper-parameter optimization,
Advances in neural information processing systems 24 (2011).

[10] M. Saerens, P. Latinne, C. Decaestecker, Adjusting the Outputs of a Classifier to New
a Priori Probabilities: A Simple Procedure, Neural Computation 14 (2002) 21–41. URL:
https://doi.org/10.1162/089976602753284446. doi:10.1162/089976602753284446.

https://doi.org/10.1007/s13748-016-0103-3
https://doi.org/10.1007/s13748-016-0103-3
http://dx.doi.org/10.1007/s13748-016-0103-3
https://doi.org/10.1007/s10791-019-09363-y
http://dx.doi.org/10.1007/s10791-019-09363-y
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://doi.org/10.1162/089976602753284446
http://dx.doi.org/10.1162/089976602753284446

	1 Introduction
	2 Methods
	2.1 Feature extraction layer
	2.2 Differentiable histograms
	2.3 Sample generation

	3 Experiments
	3.1 Hyperparameter search
	3.2 Training process differences by subtask
	3.3 Results
	3.4 Discussion

