
Method of Training and Implementation on the Basis of Neural
Networks of Cryptographic Data Protection

Ivan Tsmots
1, Vasyl Teslyuk

1, Yurii Lukashchuk
1 and Yurii Opotiak

1

1 Lviv Polytechnic National University, 12 Bandery Str, Lviv, 79013, Ukraine

Abstract
The analysis of publications is carried out, which indicates the urgency of the problem of

cryptographic encryption and decryption of real-time data for mobile robotic systems. The

method of singular matrix decomposition has been improved, which, in contrast to the

principal components method, provides non-iterative learning and calculation of the matrix of

weights. This choice was made in order to be able to work with an input matrix of arbitrary

dimension, because the principal components method assumes that the input matrix is square.

The program which provides performance of process of training and calculation of a matrix

of weights for the set architecture of a neural network is developed. Visual Studio 2019

environment and C# programming language were used to develop the user interface. A

method for determining the parameters of the neural network architecture for data

encryption/decryption is proposed, which provides a choice of the number of neuroelements

and the number of inputs by taking into account the bit size of the message and the bit size of

the inputs. Implemented data encryption/decryption software for sixteen-bit message with

two-bit inputs on the basis of the SoC Allwinner H2+. It is determined that encryption and

decryption of data using the developed tools is performed in near real-time.

Keywords 1
cryptographic data protection, neural network architecture, neuroelements, matrix

transformations, Jacobi rotation method, data encryption, software implementation.

1. Introduction

When transmitting important information and remotely controlling mobile robotic systems by

unmanned aerial vehicles and various mobile transport systems, an important task is to ensure

cryptographic protection of data transmission [1-3]. Solving this problem requires the development of

new methods and algorithms for cryptographic protection, focused on effective real-time software and
hardware implementation with restrictions on size, power consumption and cost [4-6]. One way to

meet such requirements is to use an auto-associative neural network of direct propagation, which is

trained on the basis of the principal components method. A feature of such neural networks is the
ability to pre-calculate weights and use them to implement cryptographic protections. An auto-

associative neural network with pre-calculated weights is a neural network. To implement the task of

cryptographic data protection, it is proposed to use a neural network with encryption with symmetric
keys. When implementing symmetric crypto means, the encryption key and the decryption key are the

same or the decryption key is easily calculated from the encryption key. Neuro-like encryption occurs

over plaintext using a key that is determined by neural network parameters (number of neurons,

number of inputs and their bit size), a matrix of calculated weights, and masking operations. The main

COLINS-2022: 6th International Conference on Computational Linguistics and Intelligent Systems, May 12–13, 2022, Gliwice, Poland

EMAIL: ivan.tsmots@gmail.com (I. Tsmots); vasyl.m.teslyuk@lpnu.ua (V. Teslyuk); urijlukas@gmail.com (Yu. Lukashchuk);

yurii.v.opotiak@lpnu.ua (Yu. Opotiak)

ORCID: 0000-0002-4033-8618 (I. Tsmots); 0000-0002-5974-9310 (V. Teslyuk); 0000-0002-8933-8635 (Yu. Lukashchuk); 0000-0001-

9889-4177 (Yu. Opotiak)

©️ 2022 Copyright for this paper by its authors.
Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

 CEUR Workshop Proceedings (CEUR-WS.org)

https://www.scopus.com/authid/detail.uri?authorId=24315132000

component of the encryption key is the architecture of the neural network and the matrix of weights
calculated for it.

The choice of architecture, training, calculation of the matrix of weights of the neural network and

the implementation of such means of cryptographic encryption and decryption of data is an urgent

problem.
Achieving this goal in the work involves solving the following tasks:

 improvement of the method of singular matrix decomposition;

 development of software for calculating weights for a given architecture of a neural network;

 implementation of cryptographic neuro-like encryption and data decryption on the basis of a

microcomputer.

2. Related Works

Analysis of the use of neural networks in mobile robotic systems for the implementation of

cryptographic data protection [7, 8] shows that they have the following significant disadvantages:

 do not take into account the requirements of specific applications in terms of cost, size and

power consumption;

 not focused on the use of modern computing tools and systems on the chip;

 their implementation often does not provide real-time mode.

The analysis [9, 10] shows that to ensure real-time mode and high technical and economic
characteristics it is necessary to use neural networks with pre-calculated weights. [11, 12] considered

the application of direct propagation neural networks for the construction of cryptographic protection

systems, which study the back propagation algorithm, and [13, 14] considered the possibility of using
recurrent neural networks, in particular the Hopfield network. Also in [15, 16] the use of neural

networks of counter propagation and radial basis functions for the implementation of cryptographic

data protection is considered. A common disadvantage of the considered neural networks is the use of

iterative learning algorithms, which are not focused on the implementation of cryptographic
protection in real-time systems.

In [17, 18] the adaptation of the auto-associative neural network with non-iterative learning for the

problem of cryptographic encryption and data decryption was carried out. In such a neural network,
weights are calculated as a result of its training based on the principal components method. A feature

of this method is the use of a system of eigenvectors that correspond to the eigenvalues of the

covariance matrix of input data [19, 20]. An auto-associative neural network with calculated weights
is a neural network that focuses on cryptographic data protection. Analysis of neuro-like tools [21,

22], which are used for cryptographic encryption and decryption of data, showed that the basis of such

tools are neuro-like elements. The peculiarity of such neuroelements is that their implementation is

reduced to the calculation of the scalar product using pre-calculated weights. In [23] the element base
and the main ways of realization of mobile means of cryptographic protection of data transmission in

real time are analysed. The analysis shows that a promising way to create such tools is the use of

problem-oriented approach and modern microcomputer tools.
Therefore, the development on the basis of modern element base using neural networks of real-

time cryptographic protection with high technical and economic characteristics should be considered

an urgent task.

3. Methods and Materials
3.1. Improving the method of singular matrix decomposition and its focus

on calculating the weights of neural networks

The classic process of learning the neural network is to determine the matrix of weights. To
implement this task, the method of Singular Value Decomposition (SVD) was chosen. Singular

matrix decomposition is a certain type of decomposition of a rectangular matrix and is widely used

due to its visual geometric interpretation in solving many applied problems. Reformulation of singular

decomposition – the so-called Schmidt decomposition is used in quantum information theory, for
example, in confusion. SVD is similar to the principal component analysis (PCA), but is more

general. PCA assumes that the input matrix is square, SVD has no such restriction.

The general formula of SVD is as follows:

, (1)

where A – input matrix N×n; U – left singular matrix N×N, columns contain eigenvectors of the
matrix AAT; D – diagonal matrix N×n, containing singular (eigen) values; V – right singular matrix

n×n, columns contain eigenvectors of the matrix ATA.

To calculate the eigenvalues and eigenvectors, the Jacobi rotation method was used, in which the
eigenvalues and eigenvectors of the symmetric matrix are calculated by iteration. This process of

calculating eigenvectors is known as diagonalization. The essence of the Jacobi method is to construct

a sequence of orthogonal similar matrices S (1), S (2), …, S (m) for a given matrix S = S (0), which

converge to a diagonal matrix on which the diagonals are proper the value of the matrix S. To
construct this sequence, a specially selected matrix of rotation Ji is used, so that the norm of the super

diagonal part:

,

(2)

decreases with each two-sided rotation of the matrix:

. (3)

Therefore, to calculate the matrix U, the result of the product AAT is transmitted to the input of the

Jacobi method. And to find the matrix V – the result of the product ATA. In order to find the matrix D,
it is enough to take the eigenvalues that were found when calculating the matrix U or matrix V and

place them on the main diagonal.

After finding the matrices U, V and D, the weights are calculated. Based on the formula from the

source [8]:

, (4)

where A – is the input matrix of dimension N×n, w – is the matrix of weights of dimension n×n,

matrices U and D are taken from the result of SVD.

Now we express the matrix of weights w:

, (5)

Matrix A-1 can be written according to the formula proposed in the source [10]:

, (6)

Substituting (6) into (5) we obtain the formula for calculating the weights:

, (7)

It should be noted that in the case when the matrix D is rectangular, the pseudo-inverse matrix will

be calculated.
Now in order to encrypt the input data it is enough to use the formula from the source [17]:

, (8)

where y – is the vector of the resulting matrix with encrypted data, w – is the matrix of weights, a –

is the vector of the input matrix.

3.2. Implementation of cryptographic neuro-like encryption and data
decryption based on microcomputer

Cryptographic neuro-like encryption and decryption of data is performed using symmetric keys, in

which the encryption key and the decryption key are the same or the decryption key is easily
calculated from the encryption key. Encryption takes place over plaintext using a key that consists of

a given number of neurons in the neural network N, a matrix of Wji weights, and masking operations.

Consider the main stages of encryption and decryption of the message.

The first important step is to choose a neural network architecture for cryptographic encryption
and data decryption. The architecture of the neural network is determined by the number of

neuroelements N, the number of inputs k and the bit inputs m.

The type of neural network used for data encryption is shown in Figure 1, where Mj – is the mask

for the j-th input, xj is the j-th input data, XOR is the masking operation using the Exclusive OR
elements.

XOR

XOR

XOR

x1

xj

xk

1

j

N

y
1

y
j

y
N

M1

M j

Mk

Figure 1: Neural network structure for data encryption

As known, the main disadvantage of classical neural networks is a fairly long process of learning

them. The proposed neuro-like architecture allows the study of the neural network, which consists in

determining the matrix of weights W, which is formed from the eigenvectors of the autocovariance
matrix of input data R.

In this case, the main operation of neural network data encryption is reduced to multiplying the

matrix of weights W, in which each element on the input vector in accordance with the following
formula:

kNkNN

k

k

j

x

x

x

WWW

WWW

WWW

y

2

1

21

22221

11211

.

 (9)

Multiplying the matrix of weights W by the input vector is reduced to performing N operations

to calculate the scalar product:

k

s

sjsj xWy
1 ,

 (10)

where k – number of products, s=1, 2, …, k, j = 1, 2, …, N.

For example, to encrypt a 16-bit control command into the following neural network architecture
options:

 m=2, k=8, N=8;

 m=4, k=4, N=4;

 m=8, k=2, N=2.

The corresponding architectures of neural networks are shown in Figure 2.

Figure 2: Architectures of neural networks: a) with 8 neural elements; b) with 4 neuro-like elements;
c) with 2 neuro-like elements

The peculiarity of neural networks (Figure 4), which are used for cryptographic encryption, is that

increasing the number of neural elements and inputs leads to a decrease in the bit size of the inputs.
The bit inputs for a neural network with 2-a, 4-a and 8-a neuro-like elements are 8, 4 and 2 bits,

respectively.

In this case, neural network data decryption requires the following steps. Encrypted data in the

form of mantises , which are reduced to the largest common order (block-floating point) are

decrypted. Consider the main stages of decrypting encrypted data.

Configure the neural network architecture to decrypt encrypted data. The neural network
architecture for decrypting encrypted data by the number of neural elements corresponds to the neural

network used to encrypt data. In this neural network, the number of inputs and the number of neurons

corresponds to the number of encrypted mantises .

The neural network architecture used to decrypt encrypted data is shown in Figure 3.

XOR

XOR

XOR

x1

xj

xk

1

j

N

y
1

y
j

y
N

M1

M j

Mk

Figure 3: Neural network architecture for decrypting encrypted data

In a neural network for decrypting encrypted data, the bit rate of the inputs corresponds to the bit

rate of the encrypted mantises , which determines the decryption time. To reduce the decryption

time, you can discard the lower bits of the mantissa, which do not affect the recovery of the original

message.

4. Experiment

To implement software for calculating the weights used to encrypt the incoming message, the C#

programming language and Visual Studio 2019 development environment were chosen. The

developed software uses an advanced method of singular matrix decomposition, and the Jacobi
rotation method is used to find eigenvalues and eigenvectors. The practical value is that the developed

tools provide fast calculation of coefficients for a given neural network architecture. A flexible user

interface has also been developed, which allows you to clearly and in detail get acquainted with the
operation of the algorithm. In the developed application, you can view each step of the calculations,

which in turn allows you to check the correctness of the calculations at each stage.

For cryptographic encryption and decryption of data, neural networks are used, the architecture of

which is determined by the number of neuroelements N, the number of inputs k and their bit size m.
The number of neural elements in a neural network is determined by the following formula:

m

n
N , (11)

where n is the bit size of the message, m is the bit size of the inputs.

Encrypted incoming messages can have different bits n, and to encrypt them using a neural

network with a different architecture. The architecture of the neural network depends on the value of
the message bit n and the number of inputs k. The following variants of the neural network

architecture are possible for the n = 16 bit message: m = 2, k = 8, N = 8; m = 4, k = 4, N = 4; m = 8, k

= 2, N = 2, and for n = 24 are: m = 2, k = 12, N = 12; m = 3, k = 8, N = 8; m = 4, k = 6, N = 6, m = 6,
k = 4, N = 4; m = 8, k = 3, N = 3; m = 12, k = 2, N = 2.

The work of the developed simulation model is demonstrated below. For example, an input

message with a bit size of 16 and an input bit size of 2 was chosen. Based on these data, the input

matrix will have a dimension of 8×2. The incoming message is set by the user. As a result, a matrix of
2×2 weights is calculated. In the future, this matrix will be used to encrypt and decrypt the incoming

message. However, there are requirements for the message, namely: the bit size of the message and

the bit size of the inputs must be the same as when finding the matrix of weights.
Sixteen-bit message with bit input – 2 was used for the test example. Based on these data, the

number of neuroelements and the number of inputs – 8 were calculated.

The input data (Figure 4) for the program are n – bit message, m – bit inputs and training matrix.

Figure 4: Input data for the program

The dimension of the training matrix is 14x16, where each line is a sixteen-bit command (Figure

5).

Figure 5: Learning matrix

After entering the data, the program calculates the number of neuroelements and inputs. The Get
init mat button is responsible for this operation.

Next, find the matrices U, V and D using the SVD algorithm, which is triggered by pressing the

SVD button. As described above, the Jacobi rotation method is used to calculate the eigenvalues and
eigenvectors. To find U, the SVD input is the result of the product AAT, where A is the training

matrix, and to find V is the result of the product ATA. Matrix D consists of eigenvalues placed on the

main diagonal.

To calculate the weights, the user must press the Weights button. The coefficients are calculated by
formula (7). Formula (4) is used to check the correctness of the calculations. The result is shown in

Figure 6.

Figure 6: Matrix of weights

This matrix can now be used to encrypt an incoming message, which the user can enter in a special

text box – Message. Then, going to the Encryption tab and clicking on the Encrypt button, the user

will display an encrypted message according to formula (8). The result is shown in Figure 7.

Figure 7: Encryption of incoming message

Now to decrypt the encrypted data you need to go to the Decryption tab and click on the Decrypt

button. The decryption result is shown in Figure 8.

Figure 8: Decryption of incoming message

5. Results and Discussions

To implement the tasks of encryption/decryption, a software package has been developed, which
includes software modules: neural network encryptor, neural network decoder and their configuration

module. Software implementation of these modules is carried out in high-level C language, which is

due to the need to ensure compatibility of implementations on different hardware platforms. Because

a microcomputer is used to implement on-board modules, a standard GCC compiler is used to
compile and debug software modules.

Since the neural network technology of cryptographic data protection is focused on hardware and

software implementation, an important step is to assess the performance of individual components in
the complex and determine the components whose time delays in data processing are maximum. By

building a system based on a component approach, it is possible to independently improve individual

components in the process of debugging and testing. The set of implemented software modules of

neural network cryptographic encryption/decryption of data includes the following components:
Training_ANN, EnCrypt_ANN, DeCrypt_ANN.

The software module for training the neural network Training_ANN is used once to provide

training for a specific implementation of the neural network for data encryption/decryption. This

module prepares the input data in accordance with the specified values of the input parameters,
namely: bit input neurons of the neural network; the number of neurons in the input layer of the neural

network: the number and bit rate of training vectors. Based on the input data, the network weights for

a given architecture are calculated. The result of the program is information for further configuration
of the neural network for data encryption. The results of the calculations are recorded in files that are

used to configure neural networks when running encryption/decryption programs. It should be noted

that the configuration of the neural network is performed once and does not change during the further
operation of the configured network in the process of encrypting/decrypting data.

The EnCrypt_ANN neural network data encryption software program uses configuration files

created with Training_ANN. The network architecture (bit size of the input neurons of the neural

network, the number of neurons of the input layer of the neural network) and the weights for a given
architecture are configured. The input of the thus configured neural network is fed input data in the

form of a vector with bit size n, and at the output of the neural network we obtain encrypted. The

DeCrypt_ANN software decryption module also uses configuration files created with Training_ANN
similar to the encryption process. The matrix of weights of the neuronal decryption network is easily

obtained from the matrix used in encrypting data by transposing it.

Neuro-like cryptographic encryption/decryption of data for the onboard part is implemented on the
basis of a modern microcomputer based on SoC H2+ from Allwinner. The use of microcomputers

provides high flexibility in modifying data processing algorithms and sufficient speed to accomplish

the task. The use of the Linux operating system involves the use of standard software development

tools, standard compilers, including GCC, which provides portability of software code from one
microcomputer platform to another with minimal need for modification. A FriendlyElec NanoPi Duo

microcomputer was used to develop neural network cryptographic encryption and decryption.

An estimate of the time spent on the implementation of neural network cryptographic encryption
and data decryption. To do this, use the regular command of the OS time in the following format:

time ./EnCrypt_ANN.

As noted above, three possible configurations of neural network architecture in configurations

were debugged and tested to encrypt sixteen-bit messages on a microcomputer:

 m=2, k=8, N=8;

 m=4, k=4, N=4;

 m=8, k=2, N=2.
For this purpose, three separate directories were created to test previously developed and debugged

files of programs Training_ANN, EnCrypt_ANN, DeCrypt_ANN. These programs were configured

to implement these three neural network configurations. Next, it was performed sequentially using a
neural network with a defined architecture using configuration files, encrypting data based on a neural

network using the software module EnCrypt_ANN and decrypting them using the software module

DeCrypt_ANN. Similar tests were performed for two other configurations of neural network
architecture - m = 4, k = 4, N = 4 and m = 8, k = 2, N = 2. At the same time, identical results were

obtained, ie neural networks with these architectures successfully provided encryption and decryption

of files with identical input vectors and responded to corrupted input data.

According to the test results for the three neural network architectures, the following data were
obtained (Table 1).

Table 1
Learning, encryption and decryption execution time for the three neural network architectures

Module/Architecture m=2, k=8, N=2 m=4, k=4, N=4 m=8, k=2, N=2

Training_ANN, ms 189,7 197,4 203,2
EnCrypt_ANN, ms 37,2 29,3 37,8
DeCrypt_ANN, ms 38,4 22,9 24,9

To obtain more accurate results, the software modules were run 10 times and the results were
averaged. The obtained results are visualized in Figure 9.

0

50

100

150

200

250

m=2, k=8, N=2 m=4, k=4, N=4 m=8, k=2, N=2

Training_ANN, мс

EnCrypt_ANN, мс

DeCrypt_ANN, мс

Figure 9: Time diagram of learning, encryption and decryption operations for three neural network
architectures

The results of testing the implementation of neural network encryption/decryption of data show

that the longest operation is the formation and training of the neural network, and its execution time

on a microcomputer is about 200 ms and does not depend on the architecture of the selected neural

network. On the other hand, the execution time of neural network cryptographic encryption and
decryption of data blocks when implemented on a microcomputer is 30-38 ms and 23-35 ms,

respectively.

Another important parameter when creating a data processing system based on a microcomputer is
the temperature of the device, which is the result of CPU usage and indirectly indicates the intensity

of these calculations. To assess the dynamics of temperature change, a script was used, which

performs neural network cryptographic encryption and decryption operations in the loop. The script in
the loop alternately runs the developed encryption and decryption software modules with a delay of

0.1s and thus loads the microcomputer processor. Next, the processor temperature parameter is read

and output to the control console. The script was run for a long time (30 minutes) for testing. The

results of the RPI Monitor utility are shown in Figure 10.

Figure 10: Graphs of temperature and load of the microcomputer core based on SoC H2+ during
cyclic execution of software modules EnCrypt_ANN and DeCrypt_ANN

Therefore, in the normal operation of software for neural network cryptographic encryption and

decryption of data blocks based on microcomputers, problems related to the temperature of the

embedded system should not occur.

6. Conclusions

The paper presents an approach to build neural like networks of cryptographic data protection. The

application of the SVD method allowed to calculate the weights to adjust the neural network. In the

process of calculating the coefficients there is a certain error. This error is since the training matrix
has a large number of zero elements, which affects the calculation of matrices. However, the results of

modelling data encryption/decryption processes using a simulation model demonstrated the validity of

the obtained results and the uniqueness of the encryption processes of the incoming message and its
decryption.

The method of singular matrix decomposition has been improved, this was done by deriving

formulas (5) - (7), after analysing the literature, in particular [8]. Also, it is focused on the calculation

of the matrix of weights for a given architecture of a neural network. Software tools for calculating
the matrix of weights that are adapted to the architecture of a neural network have been developed.

The encryption/decryption software was implemented on the basis of the SoC H2+ microcomputer

and it was determined that the encryption/decryption time is approximately 30 ms, i.e., operate in near
real-time. The obtained encryption/decryption time does not depend much on the configuration of the

neural network architecture and is acceptable for the implementation of these tasks on embedded

systems. The time of the operation of neural network formation and its training (calculation of

weights) is an order of magnitude longer. However, this operation is performed once when changing
the configuration of the neural network (i.e., encryption keys), and therefore does not affect the

duration of the procedures themselves encryption/decryption.

Analysis of the obtained graphs (Fig. 10) of the microcomputer CPU load shows that the software
implementation of encryption/decryption procedures does not significantly increase its temperature

(apparently, this is facilitated by an efficient regular radiator) and problems with embedded system

temperature should not occur.
Further research is aimed at reducing the execution time of encryption/decryption operations by

further optimizing the relevant software modules and the use of hardware accelerators based on FPGA

[24, 25].

7. Acknowledgements

This work was performed within the R&D "Experimental system of neural network cryptographic

protection and real-time data transmission using barque-like codes" carried out by Lviv Polytechnic

National University and funded from the state budget of the Ministry of Education and Science of

Ukraine for 2021-2022.

8. References

[1] D. Hutabarat, M. Rivai, D. Purwanto and H. Hutomo, "LIDAR-based obstacle avoidance for the

autonomous mobile robot", Proc. 2019 Int. Conf. Inf. Commun. Technol. Syst. ICTS 2019, pp.

197-202, 2019.
[2] M. Rohfadli, M. Rivai, M. Attamimi and D. Aulia, "Gas Leak Inspection System Using Mobile

Robot Equipped With LIDAR," 2021 5th International Conference on Electrical,

Telecommunication and Computer Engineering (ELTICOM), 2021, pp. 50-54, doi:
10.1109/ELTICOM53303.2021.9590099.

[3] P. Denysyuk, V. Teslyuk and I. Chorna, "Development of mobile robot using LIDAR technology

based on Arduino controller", 2018 14th Int. Conf. Perspect. Technol. Methods MEMS Des.
MEMSTECH 2018 - Proc., pp. 240-244, 2018.

[4] Chen, Y.; Xie, S.; Zhang, J. A Hybrid Domain Image Encryption Algorithm Based on Improved

Henon Map. Entropy 2022, 24, 287. https://doi.org/10.3390/e24020287

[5] Khan, S.; Han, L.; Lu, H.; Butt, K.; Bachira, G.; Khan, N. A New Hybrid Image Encryption
Algorithm Based on 2D-CA, FSM-DNA Rule Generator, and FSBI. IEEE Access 2019, 7,

81333–81350.

[6] Corona-Bermúdez, E.; Chimal-Eguía, J.C.; Téllez-Castillo, G. Cryptographic Services Based on
Elementary and Chaotic Cellular Automata. Electronics 2022, 11, 613.

https://doi.org/10.3390/electronics11040613

[7] Tsmots I., Tsymbal Y., Skorokhoda O., Tkachenko R. Neural-like methods and hardware

structures for real-time data encryption and decryption. International Scientific and Technical
Conference on Computer Sciences and Information Technologies, 2019, 3, pp. 248–253,

8929809

[8] Diamantaras K.I., Kung S.Y. (1996). Principal Component Neural Networks. Theory and
Applications. Wiley. ISBN 9780471054368. (T)(C) 270 s.

[9] Tkachenko R., Tkachenko P., Izonin I., Vitynskyi P., Kryvinska N., Tsymbal Y. (2019)

Committee of the Combined RBF-SGTM Neural-Like Structures for Prediction Tasks. Lecture
Notes in Computer Science, 2019, vol 11673. pp. 267-277, Springer, Cham,

https://doi.org/10.1007/978-3-030-27192-3_21

[10] Śledź, S.; Ewertowski, M.W.; Piekarczyk, J. (2021). Applications of unmanned aerial vehicle

(UAV) surveys and Structure from Motion photogrammetry in glacial and periglacial
geomorphology. Geomorphology. Vol. 378. 107620.

[11] Verma, A.; Ranga, V. (2020). Security of RPL based 6LoWPAN Networks in the Internet of

Things: A Review. IEEE Sens. Vol. 20. P. 5666–5690.
[12] Volna E., Kotyrba M., Kocian V., Janosek M. (2012). Cryptography Based On Neural Network.

Proceedings of the 26th European Conference on Modeling and Simulation. P. 386–391.

[13] Shihab K. (2006). A backpropagation neural network for computer network security. Journal of
Computer Science. Vol. 2. No. 9. P. 710–715.

[14] Logoyda, M., Nazarkevych, M., Voznyi, Y., Dmytruk, S., & Smotr, O. (2019). Identification of

Biometric Images using Latent Elements. CEUR Workshop Proceedings. EID: 2-s2.0-

85074659529.
[15] Arvandi M., Wu S., Sadeghian A., Melek W.W., Woungang I. (2006). Symmetric cipher design

using recurrent neural networks. Proceedings of the IEEE International Joint Conference on

Neural Networks. P. 2039–2046.
[16] Tsmots, I., Tsymbal, Y., Khavalko, V., Skorokhoda, O., Tesluyk, T. (2018). Neural-Like Means

for Data Streams Encryption and Decryption in Real Time. Processing of the 2018 IEEE 2nd

International Conference on Data Stream Mining and Processing, DSMP 2018. P.438-443.

84788513.
[17] Rabyk, V., Tsmots, I., Lyubun, Z., Skorokhoda, O. (2020). Method and Means of Symmetric

Real-time Neural Network Data Encryption. 2020 IEEE 15th International Scientific and

Technical Conference on Computer Sciences and Information Technologies, CSIT 2020 –
Proceedings. Vol. 1, P. 47–50. 9322006.

[18] Chang A.X.M., Martini B., Culurciello E. (2015). Recurrent neural networks hardware

implementation on FPGA: arXiv preprint arXiv:1511.05552.
[19] Sooyong Jeong, Cheolhee Park, Dowon Hong, Changho Seo and Namsu Jho. (2021). Neural

Cryptography Based on Generalized Tree Parity Machine for Real-Life Systems. Security and

Communication Networks. Vol. 2021. Article ID 6680782. Retrieved from:

https://doi.org/10.1155/2021/6680782
[20] Kevin Gurney. 2003. An Introduction to Neural Networks. 317 p. Retrieved from:

https://www.inf.ed.ac.uk/teaching/courses/nlu/assets/reading/Gurney_et_al.pdf

[21] Cryptowiki. Retrieved from: http://cryptowiki.net/index.php?title=
Neural_networks_in_cryptography

[22] Eva Volna, Martin Kotyrba, Vaclav Kocian, Michal Janosek. (2012). Cryptography Based On

Neural Network. ECMS 2012 Proceedings edited by: K. G. Troitzsch, M. Moehring, U.
Lotzmann. European Council for Modeling and Simulation. Retrieved from:

http://dx.doi.org/10.7148/2012-0386-0391

[23] Wolfgang Kinzel, Ido Kanter. (2002). Neural cryptography. Proceedings of the 9th International

Conference on Neural Information Processing, ICONIP '02. Retrieved from:
http://dx.doi.org/10.1109/ICONIP.2002.1202841.

[24] Bao Z, Guo J, Zhang W, Dang H. DSCU: Accelerating CNN Inference in FPGAs with Dual
Sizes of Compute Unit. Journal of Low Power Electronics and Applications. 2022; 12(1):11.

https://doi.org/10.3390/jlpea12010011

[25] Hao, C.; Zhang, X.; Li, Y.; Huang, S.; Xiong, J.; Rupnow, K.; Hwu, W.; Chen, D. FPGA/DNN

Co-Design: An Efficient Design Methodology for 1oT Intelligence on the Edge. In Proceedings
of the 2019 56th ACM/IEEE Design Automation Conference (DAC), Las Vegas, NV, USA, 2–6

June 2019; pp. 1–6

	1. Introduction
	2. Related Works
	3. Methods and Materials
	3.1. Improving the method of singular matrix decomposition and its focus on calculating the weights of neural networks
	3.2. Implementation of cryptographic neuro-like encryption and data decryption based on microcomputer

	4. Experiment
	5. Results and Discussions
	6. Conclusions
	7. Acknowledgements
	8. References

