
Comparison of the Efficiency of Parallel Algorithms KNN and
NLM Based on CUDA for Large Image Processing

Lesia Mochurad a, Roman Bliakhar a

a Lviv Polytechnic National University, 12 Bandera street, Lviv, 79013, Ukraine

Abstract
Digital image processing is widely used in various fields of science, such as medicine – X-
ray analysis, magnetic resonance imaging, computed tomography, cosmology – collecting
information from satellites, their transmission and analysis. Image noise accompanies any of
the stages of image processing – from obtaining them to segmentation and object recognition.
In order to process large images in real time, the paper proposes to use CUDA technology to
parallelize KNN and NLM algorithms. The subject area of the satellite images is selected for
noise reduction. A comparative analysis of the effectiveness of the proposed approach. It is
investigated how the computation time of successive versions of algorithms changes with
increasing the size of the image itself. Based on a series of numerical experiments, it was
possible to achieve an acceleration of 40 times using CUDA technology. It is shown that the
calculations on the CPU significantly exceed the time spent on execution compared to the
GPU. This is due to the fact that in tasks of this type, several threads on the CPU are not able
to compete with thousands of threads of the graphics core. We can also observe that as the
number of GPU threads increases, the time decreases significantly. This study is especially
relevant in current trends in video cards. that in tasks of this type, several threads on the CPU
are not able to compete with thousands of threads of the graphics core. We can also observe
that as the number of GPU threads increases, the time decreases significantly. This study is
especially relevant in current trends in video cards. that in tasks of this type, several threads
on the CPU are not able to compete with thousands of threads of the graphics core. We can
also observe that as the number of GPU threads increases, the time decreases significantly.
This study is especially relevant in current trends in video cards.

Keywords 1
Computer vision, noise reduction, graphics processor, computational process optimization,
acceleration.

1. Introduction

Most images are affected by various types of noise caused by equipment failure, problems with
data transmission or compression, and natural factors. Therefore, the first stage of image processing is
filtering. The presence of noise in the image can cause inaccuracies and distortions in the
segmentation and recognition phase. For example, the system may perceive noise for individual
objects, which, in turn, will negatively affect further research. That is why noise removal is an
important problem in the field of image processing, which has many applications in various fields,
such as medicine (magnetic resonance imaging, computed tomography), industry, military
applications, space research, communications (satellite television) [1-3].

Most often, noise reduction is used to improve visual perception, but can also be used for
specialized purposes – for example, in medicine to increase the clarity of images on X-rays [4], in
pre-processing images for further recognition and more. In addition, noise reduction plays an
important role in compressing video and images.

CMIS-2022: The Fifth International Workshop on Computer Modeling and Intelligent Systems, Zaporizhzhia, Ukraine, May 12, 2022
EMAIL: lesia.i.mochurad@lpnu.ua (L. Mochurad); bliakharr@gmail.ua (R. Bliakhar)
ORCID: 0000-0002-4957-1512 (L. Mochurad); 0000-0001-8478-5308 (R. Bliakhar)

© 2022 Copyright for this paper by its authors.
Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

 CEUR Workshop Proceedings (CEUR-WS.org)

Despite the fact that noise reduction is a classic problem and has been studied for a long time, this
task is still difficult and open. The main reason is that from a mathematical point of view, noise
reduction is an inverse problem, so its solution is not unique. As a result, there are many different
methods, the advantages and disadvantages of which will be discussed and analyzed in the next
section.

Today there is a relevant area of image processing from satellites [5]. They are used by both
cartographers and private companies to analyze land data. Since these images are used in further
analysis by artificial intelligence methods, in particular such as computer vision, an important step is
part of their pre-processing. This process often involves reducing noise in the image, which could be
caused by various interferences, and therefore lose some information. That is why the subject area of
satellite images is chosen for this work, because these images are large in size, and therefore require
large computing power. Therefore, in this case it will be effective to take advantage of parallel
calculations.

Based on the above, we can formulate the purpose of this work, namely, to conduct a comparative
analysis of the effectiveness of parallel algorithms KNN and NLM based on CUDA technology to
accelerate the noise of large-scale images obtained from satellite.

2. Analysis of literature sources

Significant results in the field of image noise reduction have been achieved in recent decades. This
is due to the wide range of applications in everyday life, as we are surrounded by more and more
digital devices: smartphones, webcams, surveillance cameras, drones and more. Accordingly, this
problem occurs in such areas as: satellite television, computed tomography [4], magnetic resonance
imaging, medicine in general, and in the field of research, which is actually the basis of many
applications, such as object recognition and technology, such as geographic information systems,
astronomy and many others [2].

Thus, image noise has remained a pressing issue for many researchers in recent times. To date,
many classical filtration algorithms have been proposed (Median Filtering, Linear Filtering,
Anisotropic Filtering) [3, 6, 7]. Median, linear, anisotropic and other classical filtering algorithms are
usually able to remove noise, but have disadvantages, because their use loses a lot of information and
suffers image geometry, resulting in objects in the image may take a completely different shape.

All linear filtering algorithms are optimal for Gaussian distribution of signals, interference and
observed data, and lead to the smoothing of sharp differences in the brightness of the processed
images. However, real images, strictly speaking, are usually not subject to this probability
distribution.

Some of these problems are solved using non-parametric image processing methods. Studies have
shown that good results in image processing were obtained using median filtering [8]. Note that the
median filtering is a heuristic method of processing, its algorithm is not a mathematical solution of a
strictly formulated problem. In the last two decades, nonlinear algorithms based on ranking statistics
for the recovery of images damaged by various types of noise have been actively developed in digital
image processing.

One of the algorithms without the above disadvantages is Non-Local Means (NLM) [8]. Because
the principle is simple and straightforward, and the information contained in the image is better
stored, NLM has become a popular noise reduction algorithm in recent years. Although NLM has
achieved good results, there are some areas for improvement [9]. Mainly in the following aspects:
first, although good results are achieved, the efficiency of the algorithm is slightly lower than
traditional algorithms; secondly, it is difficult to determine the weight of similarity between image
blocks, which in turn affects the efficiency of noise reduction [10].

Another effective algorithm, in terms of reducing noise and maintaining the informativeness of the
original image, is K-Nearest Neighbors [11]. This algorithm is conceptually similar to the above
NLM, but, as indicated in studies, with lower computational complexity [12]. Therefore, in theory, it
should work faster than NLM, but the result of noise reduction should be compared in more detail.

So let's highlight the problem statement for our study:

 Develop a parallel algorithm of KNN and NLM methods based on CUDA technology and
implement them programmatically.
 Test and compare the noise reduction results for each algorithm, as well as compare both
algorithms with each other.
 Measure the execution time of each algorithm with a different configuration of the computer
system for further calculation of acceleration and comparative analysis of efficiency.

3. Methods and tools

Mathematically, the problem of image noise reduction can be modeled as follows: 𝑦 ൌ 𝑥 𝑛,
where 𝑦 – noisy input image, 𝑥 – unknown clear image without noise, and 𝑛 – is an additive of white
Gaussian noise with standard deviation 𝜎𝑛, which can be estimated in practice by various methods,
such as the median of absolute deviations (MAD) [Ошибка! Источник ссылки не найден.3] or
the principal component algorithm (PCA) [Ошибка! Источник ссылки не найден.4].

The purpose of image noise reduction is to reduce distortion while minimizing the loss of original
features of the input image and increase the signal-to-noise ratio (SNR) [15].

The following main challenges can be identified for this task:
 flat areas of the image should be smooth;
 the edges must be protected from erosion;
 textures must be preserved;
 new distortions and artifacts should not be formed.
The principle of the first methods of noise reduction of images was quite simple: the color of the

pixel was replaced by the average color of neighboring pixels. The law of variance in probability
theory ensures that if nine pixels are averaged, the standard deviation of the mean noise is divided by
three [8]. Thus, if we can find for each pixel nine other pixels in the image with the same color
(before distortion due to noise), we can divide the noise into three (or four with 16 similar pixels,
etc.) [9].

In fact, the most similar pixels will not always be the closest, on the contrary almost never. For
example, you can give images with periodic patterns (when a certain fragment may occur several
times). So the solution is to scan a huge part of the image for all the pixels that really resemble the
pixel we want to replace (mute). The noise reduction task is then performed by calculating the
average color of the most similar pixels found. This results in much greater clarity after filtering and
less loss of image detail compared to average local algorithms. This algorithm is called non-local
means and its definition can be written as follows:

Let Ω – image area, and 𝑝 and 𝑞 are two dots (pixels) within the image, then:

𝑁𝐿𝑢ሺ𝑝ሻ ൌ
1

𝐶ሺ𝑝ሻ
 න 𝑓 ቀ𝑑൫𝐵ሺ𝑝ሻ,𝐵ሺ𝑞ሻ൯ቁ
ఆ

𝑢ሺ𝑞ሻ,

where 𝑢ሺ𝑝ሻ is the filtered value of the image at the point 𝑝; 𝑢ሺ𝑞ሻ is the unfiltered value of the image
at the point 𝑞; 𝐶ሺ𝑝ሻ – this is the normalizing factor; 𝑓 is a weighing function in which 𝑑ሺ𝐵ሺ𝑝ሻ,𝐵ሺ𝑞ሻሻ
is the Euclidean distance between image patches focused on 𝑝 and 𝑞 in accordance.

When calculating the Euclidean distance 𝑑ሺ𝐵ሺ𝑝ሻ,𝐵ሺ𝑞ሻሻ all pixels in the patch 𝐵ሺ𝑞ሻ have the same
weight (importance), so the function 𝑓ሺ𝑑൫𝐵ሺ𝑝ሻ,𝐵ሺ𝑞ሻ൯ሻ can be used to mute all pixels in the patch
𝐵ሺ𝑝ሻ and not just for 𝑝.

This algorithm can be performed in two implementations: pixelwise and patchwise. In our work
we use pixel implementation, because in fact there is not much difference between the two options, so
the overall quality in terms of saving details is not improved with the use of patchwise
implementation.

Let's introduce the noise reduction of the color image 𝑢 ൌ ሺ𝑢ଵ,𝑢ଶ,𝑢ଷሻ and a specific pixel 𝑝 as

follows: 𝑢ොሺ𝑝ሻ ൌ
ଵ

ሺሻ
∑ 𝑢ሺ𝑞ሻ𝑤ሺ𝑝, 𝑞ሻ∈ሺ,ሻ , 𝐶ሺ𝑝ሻ ൌ ∑ 𝑤ሺ𝑝, 𝑞ሻ,∈ሺ,ሻ where 𝑖 ൌ 1, 2, 3 and

𝐵ሺ𝑝, 𝑟ሻ denote the environment centered at the point 𝑝 with dimensions ሺ2𝑟 1ሻ ൈ ሺ2𝑟 1ሻ pixels.
The search area is limited by a square circumference of a fixed size, which is due to the limitation of

calculations. This is a window 21 ൈ 21 for small and medium values 𝜎. The window size increases to
35 ൈ 35 for large values 𝜎 due to the need to detect more similar pixels to reduce additional noise.

Weight 𝑤ሺ𝑝, 𝑞ሻ will depend on the Euclidean distance 𝑑ଶ ൌ 𝑑ଶሺ𝐵ሺ𝑝, 𝑓ሻ,𝐵ሺ𝑞, 𝑓ሻሻ for ሺ2𝑟 1ሻ ൈ
ሺ2𝑟 1ሻ color patches centered accordingly 𝑝 and 𝑞:

𝑑ଶ൫𝐵ሺ𝑝, 𝑓ሻ,𝐵ሺ𝑞, 𝑓ሻ൯ ൌ
1

3ሺ2𝑓 1ଶሻ
 ሺ𝑢ሺ𝑝 𝑗ሻ െ 𝑢ሺ𝑞 𝑗ሻሻଶ

∈ሺ,ሻ

ଷ

ୀଵ

.

That is, each pixel value is restored as the average of the most similar pixels, where this similarity
is calculated in the color image. Therefore, for each pixel, each channel value is the result of the
average of the same pixel [15].

To calculate the weight 𝑤ሺ𝑝, 𝑞ሻ we will use the exponential function: 𝑤ሺ𝑝, 𝑞ሻ ൌ 𝑒ି
ౣ౮ ሺమషమమ , బ.బሻ

మ ,
where 𝜎 indicates the standard deviation of the noise and ℎ is the filtering parameter set relative to the
value 𝜎 ሾ12, 15ሿ. The weight of the function is set to average similar noise patches. That is, patches
with square distances less than 2𝜎ଶ are installed to 1, while larger distances decrease faster due to the
exponential function.

The weight of the reference pixel 𝑝 on average, is set as the maximum weight in the vicinity
𝐵ሺ𝑝, 𝑟ሻ. This parameter avoids excessive weighing of the reference point in the middle.
Otherwise 𝑤ሺ𝑝, 𝑞ሻ should be equal to 1 and as a result, more value will be required to reduce noise ℎ.
Therefore, using the above procedure, we will be able to restore the noiseless value for each pixel 𝑝.

To objectively assess the basic metrics of our noise reduction using the NLM algorithm, consider
an additional algorithm – KNN [Ошибка! Источник ссылки не найден.6]. The main principle of
KNN is that the category of the data point is determined according to the classification of the nearest
𝐾 neighbors. The KNN (k-Nearest Neighbors) filter was developed to suppress white noise, which is
based on the Gaussian Blur Filter algorithm [17]. Consider how it works.

Let 𝑢ሺ𝑥ሻ – the value of the input noisy image at the point 𝑥, a 𝑓ሺ𝑦ሻ – the result obtained by the
KNN filter with parameters ℎ and 𝑟 at some point 𝑦. Ω is the space of a given size around the selected
pixel, i.e. it is a block of pixels in size 𝑁 ൈ N, so that the selected pixel (dot 𝑦) is located in the center
of this block. Then the filtration formula can be represented as: 𝑓ሺ𝑦ሻ ൌ
ଵ

ሺ௫ሻ
∑ 𝑢ሺ𝑦ሻஐሺ௫ሻ 𝑒

ି൬
ሺషೣሻమ

ೝమ
൰
𝑒
ሺೠሺሻషೠሺೣሻሻమ

మ , where 𝐶ሺ𝑥ሻ – normalizing factor.

Since the purpose of our study is to accelerate the noise reduction of images using the GPU, for
such purposes we will use CUDA [Ошибка! Источник ссылки не найден.]. Is a software-
hardware architecture of parallel computing, which allows you to significantly increase computing
performance through the use of graphics processors from Nvidia. CUDA allows you to reduce the
load on the processor, which gives significant benefits over time. Given the power of modern video
cards, we can get a significant acceleration in the calculations. And because we will be working with
images, this technology should be ideal for this type of task.

Both methods can be easily implemented using CUDA technology. Since this technology uses the
SIMD parallel computing model [19], we do not need to parallelize the algorithm itself (NLM, KNN).
It is enough to implement a standard version of the algorithm in the form of a kernel function. The
kernel function is actually a normal sequential program, without organizing the launch of threads.
Instead, the GPU runs many copies of a given function in different threads.

Consider in more detail the mechanism for organizing parallel calculations:
 Host – CPU. Performs a control role – runs tasks on the device, allocates memory on the
device, moves memory to/from the device.
 Device – GPU. Performs the role of "subordinate" – does only what the CPU tells him.
 Kernel – a task (NLM, KNN), which runs the host on the device.
Threads are grouped into blocks, in the middle of which they have shared memory and run

synchronously. The blocks are combined into grids, the main task of which is to serve as an isolated
container to which the kernel function applies (a separate function can be applied to each grid). As
part of our problem, the calculation creates three grids for a color image, and one for black and white
(because algorithms split images into RGB color vector). The number of threads is equal 2, where
1 ൏ 𝑛 10 (2ଵ ൌ 1024, the maximum number of threads per block). The input noisy image is

divided by 𝑘 blocks where 𝑘 ൌ 𝑛 ൈ 𝑛, 𝑖 ∈
ே

, 𝑗 ∈

ெ

, where 𝑁 – width, a 𝑀 – image height,

respectively. Everyone 𝑘 the grid block corresponds 𝑘 an image block, where for each pixel of the
image the weight in a separate stream is calculated.

To conduct experiments, it was decided to develop a software product in the Python programming
language. Accordingly, the PyCuda library was used to use the CUDA parallel computing
architecture. As well as an OpenCV library for image processing. All calculations were performed in
Google Colab [20],which allows you to write and execute Python code in a browser with a minimum
of settings and free access to powerful computing capabilities. The configuration includes a graphics
professor NVIDIA Tesla T4 with 2560 CUDA cores and 16 Gb of video memory and an Intel Xeon
CPU with a clock speed of 2.20Ghz with two cores and two threads.

4. Results of numerical experiments

First, we evaluate the quality of both algorithms and evaluate the effect of noise reduction of
various images. First we test the work of KNN.

Figure 1: Comparison of 1 image fragment before (left) and after (right) noise reduction using KNN
algorithm

Figure 2: Comparison of 5 fragments of the image before (left) and after (right) noise reduction using
the KNN algorithm

Now let's perform the same tests for the NLM algorithm.

Figure 3: Comparison of 5 fragments of the image before (left) and after (right) noise reduction using
the NLM algorithm

Figure 4: Comparison of 6 fragments of the image after noise reduction using KNN (left) and NLM
(right)

Figure 5: Comparison of 8 fragments of the image after noise reduction using KNN (left) and NLM
(right)

In addition, studies were performed on images of different dimensions and with different
configurations of computing power to measure the runtime of algorithms with CPU/GPU comparison.
The calculations were performed for images of different dimensions, where 𝑃 – the number of pixels
in the image 𝑛 ൈ 𝑚 pixels, and for GPUs with different number of threads per block (4, 16, 64, 256
and 1024 threads, respectively).

Table 1
Program execution time in seconds for KNN algorithm with different CPU/GPU startup configuration

P CPU
GPU 4
tpb

GPU 16 tpb
GPU 64
tpb

GPU 256
tpb

GPU 1024
tpb

175k 0.056724 0.009772 0.005263 0.005370 0.005531 0.004922
700k 0.204899 0.030974 0.014606 0.011442 0.013098 0.011224
3kk 0.799452 0.102840 0.048849 0.038600 0.037616 0.033931
11kk 3.366155 0.405643 0.144978 0.118630 0.124715 0.121243
45kk 12.349476 1.169624 0.490328 0.418505 0.433192 0.396563
81kk 21.875035 2.154644 0.869768 0.721381 0.657146 0.594174

Figure 6: Execution time of parallel KNN algorithm using CPU/GPU in seconds for different image
dimensions and with different program startup configuration

Figure 7: Comparison of runtime results in seconds for KNN algorithm executed using GPU

Table 2
NLM algorithm execution time in seconds with different CPU/GPU startup configuration

P CPU
GPU 4

tpb
GPU 16 tpb

GPU 64
tpb

GPU 256
tpb

GPU 1024
tpb

175k 0.062403 0.023235 0.009618 0.007488 0.005829 0.004538
700k 0.230475 0.083275 0.028574 0.017382 0.010574 0.006732
3kk 0.853824 0.316450 0.066979 0.047274 0.033365 0.023549

11kk 3.264484 0.800226 0.204644 0.157260 0.120847 0.087866
45kk 13.059060 2.331046 0.811966 0.607054 0.453854 0.339316
81kk 23.748522 3.996524 1.333901 1.009624 0.720390 0.543901

We calculate the acceleration for the measurements of each algorithm. To do this, divide the
execution time by CPU by the execution time by GPU.

Table 3
Acceleration factor for the KNN algorithm performed using the GPU

P
GPU 4

tpb
GPU 16 tpb

GPU 64
tpb

GPU 256
tpb

GPU 1024
tpb

175k 5.804566 10.777158 10.562708 10.255388 11.524214
700k 6.615167 14.028813 17.907669 15.643454 18.254952
3kk 7.773751 16.365716 20.711111 21.252815 23.561176

11kk 8.298323 23.218389 28.375263 26.990804 27.763618
45kk 10.558499 25.186156 29.508552 28.508098 31.141290
81kk 10.152507 25.150428 30.323849 33.287953 36.815880

Figure 8: Dependence of the acceleration factor on the GPU on the number of threads per block at
different image dimensions for the KNN algorithm

Table 4
Acceleration factor for the NLM algorithm performed using the GPU

P
GPU 4

tpb
GPU 16 tpb

GPU 64
tpb

GPU 256
tpb

GPU 1024
tpb

175k 2.685736 6.488113 8.334059 10.705201 13.750961
700k 2.767646 8.065955 13.259593 21.797397 34.235835
3kk 2.698137 12.747567 18.061340 25.590138 36.257286

11kk 4.079453 15.952002 20.758530 27.013322 37.153126
45kk 5.602232 16.083252 21.512204 28.773715 38.486371
81kk 5.942295 17.803809 23.522147 34.966196 43.663300

Figure 9: Dependences of the acceleration factor on the GPU on the number of threads per block at
different image dimensions for the NLM algorithm

5. Discussion

Now let's analyze our experiments. To begin with, let's summarize the results of the noise
reduction using each of the NLM and KNN algorithms.

As we can see from the above Figures 1-3, the algorithms reduce noise well and restore the
original image even with loud noise. For comparison, in Figure 2 using the KNN algorithm, the image
fragment after clearing loses the clarity of the contours, the image becomes slightly pixelated. At the
same time in Figure 3 algorithm NLM visually makes less noise, so the image is still quite blurred,
but the boundaries of the contours are not as violated as when noise reduction using the KNN
algorithm. However, this is just one example, so don't judge by just one piece.

In Figure 4 shows that the image obtained with NLM, less clear compared to KNN. This is best
seen in detail when looking at cars parked in the parking lot in the upper right corner of the image.
Similar results can be observed in Figure 5. The image obtained during the KNN algorithm is clearer
and richer. An example is the road marking lines at the bottom of the image, which in the first case,
retained their geometry, not to mention the image on the right, where the lines are almost invisible,
the image obtained by NLM was "blurred".

A similar problem is mentioned in [21], where the authors emphasize that in high-detail images,
after the noise reduction with NLM, the geometry of objects deteriorates.

The next step is to analyze our program execution time metrics and GPU acceleration factors. For
clarity, tests were performed on different image sizes. Therefore, it is clear from Table 1 and Table 2,
that the largest time difference between CPU/GPU we get for scale images. This confirms the
correctness of the choice of subject area for our task of accelerating noise reduction.

Considering the visualization in Figure 6 and Figure 7, respectively, we can see that the
calculations on the CPU significantly exceed the time spent on execution compared to the GPU. This
is due to the need for a large number of parallel calculations for image processing. For tasks of this
type, multiple threads on the CPU are not able to compete with thousands of graphics core threads.
We can also observe that as the number of GPU threads increases, the time decreases significantly.

In Table 3 and Table 4 there is a tendency to increase the rate of acceleration with increasing
number of flows per unit. This is because the more threads, the fewer blocks, and therefore less time
spent on memory operations.

Comparing the acceleration rates of both algorithms. We can see that the parallel NLM algorithm
loses with a small number of threads, but wins with the largest number of threads per block. We can
also see that the KNN algorithm does not receive such a large increase in acceleration as the NLM
algorithm when increasing the image size for noise reduction from 45 million pixels to 81. This is
well observed in Figure 8 and Figure 9, where the acceleration coefficient graph for the NLM
algorithm grows faster than the KNN. Although KNN at 4 threads gets twice as fast as NLM.

If we compare the time spent on both algorithms, we can conclude that there is no clear favorite,
although KNN shows better results with a small number of threads per block, due to the peculiarity of
the algorithms. This can affect the results if the calculations are performed using older generation
video cards, where the maximum possible number of threads per unit is many times less. In the
conditions of use of modern video cards NLM, with the maximum number of threads, is ahead of the
competitor.

6. Conclusions

This paper compares KNN and NLM algorithms in the context of parallel computations to
accelerate the noise reduction of large images. To do this, using the Python programming language,
implemented two algorithms with versions for CPUs and GPUs using the CUDA architecture.

In the course of the work, the results of each algorithm were analyzed and it was found that both
algorithms cope well with the task of noise reduction and recovery of the original images obtained as
satellite images.

Comparative tables are also constructed for each algorithm with a different configuration of the
program start, in which you can evaluate the obtained time measurements and calculated acceleration
rates. These data were visualized on graphs, which allowed us to objectively compare the obtained

metrics. Regarding the obtained time metrics and acceleration metrics, we can conclude that parallel
computing with CUDA on GPUs is many times better than computing on CPU. It is for these
algorithms that the GPU and CUDA technology can achieve an acceleration of approximately 40
times. Thanks to these results, we can use algorithms such as KNN and NLM in real-time video
processing. It will also save a lot of time on processing images obtained from telescopes and satellites,
which are high resolution.

7. References

[1] L. Guo, H. Zhang, H. Zhai, Ch. Gong, B. Song, Sh. Tong, Zh. Cao, X. Xu, Research on image
processing and intelligent recognition of space debris, Proceedings Volume 10988, Automatic
Target Recognition XXIX;1098817 (2019). doi:10.1117/12.2525058.

[2] Unsupervised Denoising for Satellite Imagery using Wavelet Subband CycleGAN [Electronic
resource]. – 2020. – Resource access mode:https://arxiv.org/pdf/2002.09847.pdf.

[3] L. Fan, F. Zhang, H. Fan, et al, Brief review of image denoising techniques, Vis. Comput. Ind.
Biomed. Art 2, 7 (2019). doi:10.1186/s42492-019-0016-7.

[4] Sameera V. Mohd Sagheer, Sudhish N. George, A review on medical image denoising
algorithms, Biomedical Signal Processing and Control, volume 61 (2020), 102036.
doi:10.1016/j.bspc.2020.102036.

[5] A. Asokan, J. Anitha, M. Ciobanu, A. Gabor, A. Naaji, D. Hemanth, J. Image Processing
Techniques for Analysis of Satellite Images for Historical Maps Classification — An Overview.
Appl. Sci. (2020), 10, 4207. doi:10.3390/app10124207.

[6] C. He, K. Guo, H. Chen, An Improved Image Filtering Algorithm for Mixed Noise, Appl. Sci.
(2021), 11, 10358. doi: 10.3390 / app112110358.

[7] S. Kushwaha, R. Singh, Performance Comparison of Different Despeckled Filters for Ultrasound
Images, Biomed Pharmacol J., (2017), 10(2). doi:10.13005/bpj/1175.

[8] G. Shweta, Meenaksh, A Review and Comprehensive Comparison of Image Denoising
Techniques, International Conference on Computing for Sustainable Global Development.
(2014), P. 975.

[9] K. Chen, X. Lin, X. Hu, et al, An enhanced adaptive non-local means algorithm for Rician noise
reduction in magnetic resonance brain images, BMC Med Imaging 20, 2 (2020).
doi:10.1186/s12880-019-0407-4.

[10] X. Zhang, Two-step non-local means method for image denoising, Multidim Syst Sign Process
(2021). doi:10.1007/s11045-021-00802-y.

[11] Haiyan Wang, Peidi Xu, Jinghua Zhao, Improved KNN Algorithm Based on Preprocessing of
Center in Smart Cities, Complexity, vol. 2021, Article ID 5524388, 10 pages, (2021).
doi:10.1155/2021/5524388.

[12] M. Colom, A. Buades, Analysis and Extension of the Ponomarenko et al. Method, Estimating a
Noise Curve from a Single Image [Electronic resource], IPOL. (2013) Resource access
mode:http://www.ipol.im/pub/art/2013/45//article_lr.pdf.

[13] Chunjie Wu, Yi Zhao & Zhaojun Wang, The median absolute deviations and their applications to
shewhart control charts, Communications in Statistics – Simulation and Computation, 31: 3,
425-442, (2002). doi:10.1081/SAC-120003850.

[14] Sidharth Mishra, Uttam Sarkar, Subhash Taraphderet al, Principal Component Analysis,
International Journal of Livestock Research. (2017). doi:10.5455 / ijlr.20170415115235.

[15] Suarez-Perez Alex, Gabriel Gemma, Rebollo Beatriz et al, Quantification of Signal-to-Noise
Ratio in Cerebral Cortex Recordings Using Flexible MEAs With Co-localized Platinum Black,
Carbon Nanotubes, and Gold Electrodes. Frontiers in Neuroscience, 12. (2018). doi:10.3389 /
fnins.2018.00862.

[16] Yanhui Guo,Siming Han,Ying Li,Cuifen Zhang,Yu Bai, K-Nearest Neighbor combined with
guided filter for hyperspectral image classification, Procesia Computer Science, volume 129.
(2018), pp. 159-165. doi:10.1016/j.procs.2018.03.066.

[17] P. Singhal, A. Verma and A. Garg, "A study in finding the effectiveness of Gaussian blur filter
over bilateral filter in natural scenes for graph based image segmentation," 2017 4th International

Conference on Advanced Computing and Communication Systems (ICACCS). (2017), pp. 1-6.
doi:10.1109 / ICACCS.2017.8014612.

[18] L. Mochurad, G. Shchur, Parallelization of Cryptographic Algorithm Based on Different Parallel
Computing Technologies,. Proceedings of the Symposium on Information Technologies &
Applied Sciences (IT&AS 2021). Bratislava, Slovak Republic, March 5. (2021), Vol-2824, 20-
29 p.

[19] L. Mochurad, N. Boyko, Technologies of distributed systems and parallel computation:
monograph. Lviv: Publishing House “Bona”, (2020), 261 p.

[20] Google Colaboratory [Electronic resource] – Resource access
mode:https://research.google.com/colaboratory/faq.html.

[21] A. Buades, B. Coll, and J. Morel, On image denoising methods, Technical Report 2004-15,
CMLA. (2004).

