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Abstract. This position paper introduces a general frame-

work for theory learning based on probabilistic Description

Logics (DL). The formal base of the framework is brie
y de-

scribed. The paper also argues that the general theory learn-

ing approach is suitable to be used for NLP tasks; and it can

be specially useful to investigate interrelations among di�er-

ent types of natural language information in order to produce

better NLP systems.

1 Introduction

In this paper, I advocate for a general theory learning frame-

work. The representation formalism used in our framework is

an extension of Description Logics (DL) that allows to express

probabilistic knowledge. A general learning procedure based

on the previous framework has been implemented as part of

a system called YAYA [2]. This learning procedure is a re-

lational learning procedure that performs computations very

similar to those performed by Inductive Logic Programming

(ILP) systems.

The learning procedure allows the usage of large taxonomies

as background knowledge. The main goal of the learning

system can then be seen as that of ontology acquisition or

completion (if an initial ontology is available as background

knowledge).

2 Knowledge Representation

A probabilistic extension of Description Logics (DL) is used

as the underlying knowledge representation and reasoning for-

malism. DL distinguishes between intensional and extensional

knowledge. It provides a concept language L that is used to

build concept expressions. A knowledge base � is de�ned as

a pair < T ;A > where T is called TBox and consists of a

set of axioms that provide the intensional knowledge; and A

is called ABox and consists of a set of assertions about in-

dividual objects that provide the extensional knowledge. DL

semantics is de�ned in a model-theoretic way. The reader can

check [7] for details on DL formalism and concept languages.

A number of concept languages appear in DL literature.

YAYA concept language (YCL) is an extension of ALCN 2
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2 ALCN contains top, bottom, conjunction, disjunction, existen-
tial quanti�cation, universal quanti�cation, negation, and un-
quali�ed number restrictions (for example, number restrictions
allow to de�ne concepts for women having more than 5 children;

that allows inverse roles, role composition, and a construction

equivalent to the CLASSIC SAME-AS construct [3].

Why this language? Because in the �rst experiments done

for NLP problems, it seems to be the less expressive language

that is expressive enough to solve the problem only by de�ning

a set of axioms and using the reasoning capabilities provided

by DL3.

The axioms allowed by YAYA are of the form C � D,

where C and D are concept expressions in L; that is, they

are general concept inclusion axioms. So, YAYA TBoxes are

free TBoxes. This, in combination with language complex-

ity would make the reasoning procedures intractable. But in

problems in which taxonomic knowledge is important, an ac-

curate representation of it in combination with the implemen-

tation of some optimization techniques for DL reasoning pro-

cedures [10] can make the overall reasoning process tractable

for practical situations.

2.1 Probabilistic Knowledge

In order to represent probabilistic knowledge, axioms are ex-

tended to a more general form: C ��;� D; where � is a proba-

bility and � is a positive real number. Axiom C ��;� D states

that the conditional probability P (DjC) follows a normal dis-

tribution centered in � and with a standard deviation of �

in the set of models of the axiom. This is somewhat similar

to the p-conditioning notion introduced in [9], but intuitively

more precise by the use of the normal distribution. Unlike

[12], YAYA does not allow probabilistic assertions.

Model theoretic semantics on which DL is usually de-

�ned has to be adapted for probabilistic axioms. For non-

probabilistic DL we can divide the set of interpretations of a

knowledge base � =< T ;A > in two di�erent sets: the set of

models of �, and the rest of interpretations. Intuitively, for

probabilistic DL we forget about this clear distinction. For

probabilistic DL we cannot make this clear distinction be-

cause given an interpretation we cannot decide whether it is

a model of � or not. Instead, the set of axioms in T deter-

mines a probability distribution over � interpretations. Every

� interpretation I is then assigned a probability. This proba-

bility may be 0 if I has no chance to be a model of �. Details

are out of the scope of this position paper and can be found

at [1].

or roads with less than 3 lanes).
3 Role axioms also seem interesting, and can easily be introduced
following [11].



Probabilistic axioms have two important properties: (a) of-

ten a given behaviour can be stated with less and more \nat-

ural" axioms if probabilities can take part in axioms4; and

(b) Given a behaviour to be de�ned by a set of axioms and

two concepts C and D, there always exist some � and � such

that axiom C ��;� D is consistent with the behaviour to

be learned (and � and � can be estimated from the set of

examples given to the learning procedure).

These two properties make probabilistic axioms specially

interesting for learning purposes. The �rst property states

that the theory to be learned will probably be easier to learn

if we allow probabilistic axioms. The second one may provide

a path of \intermediate" axioms that are completely consis-

tent with the theory to be learned and may help to �nd out

real theory axioms (those \de�nitive" axioms may convert

intermediate axioms into unnecessary ones).

3 Theory Learning

Theory learning is formalized as the process of determining a

theory/TBox T � from a set of models of T �. So, the examples

used in the learning process are complete models5. This di�ers

from usual machine learning approaches in which examples

are individual entities.

In order to de�ne what theory learning is, we �rst adapt

Shannon information theory notions to DL domain. An in-

terpretation can be directly represented as a set of boolean

variables: for every concept name A and every element d 2 �I

we have a boolean variable (stating whether d 2 A
I or

d 62 A
I); and for every role name P and every pair of ele-

ments d1; d2 2 �I we have another boolean variable (stating

whether (d1; d2) 2 P
I). The entropy of I is de�ned as the

number of boolean variables necessary to represent I when

no additional knowledge is available. This is, in fact, a direct

interpretation of Shannon information theory notions.

The amount of information provided by a TBox T with

respect to I can be intuitively de�ned as the di�erence be-

tween the necessary number of boolean variables to represent

I when no additional knowledge is available, and the the min-

imum number of boolean variables necessary to represent I

when T is available6. Then, the learning procedure has to

maximize the amount of information provided by T with re-

spect to a training set. An axiom � will be interesting for T

if T [ f�g provides more information than T .

Computing the amount of information provided by a TBox

is intractable. Instead, some measures that provide an idea

of the information added by an axiom �1 given another ax-

iom �2 can be eÆciently computed [2]. These measures have

4 A very simple and illustrative example is the penguin excep-
tion so widely used: the following probabilistic axiomatization
fbird �0:95;0:05 can fly; penguin � bird; penguin � : can flyg
(supposing probabilities are correct) is simpler than its corre-
sponding non-probabilistic axiomatization: fbird u : penguin �
can fly; penguin � bird; penguin � : can flyg. Yes, only an
antecedent is a bit larger. But this is a quite simple theory; for
larger theories di�erences will sure be bigger.

5 For example, if we are working in NLP, an example could corre-
spond to a whole sentence, with all the information we want to
learn and from which we want to learn (syntactic groups, syntac-
tic relations between them, word senses : : : ).

6 This captures the fact that some of the boolean variables neces-
sary when no knowledge is available can be deduced from other
boolean variables when T is available.

shown to be very useful to reduce the search space explored

by a learning procedure.

YAYA learning procedure is not involved with PAC learn-

ability nor Least Common Subsumer (LCS) computation [4],

as most work in learning DLs does (see [5, 8] for example).

Instead, our learning procedure is a general axiom explo-

ration procedure that is heuristically guided by the informa-

tion theory measures mentioned above. An initial theory T0 is

evolved7 through the addition of new axioms. This is done by

the application of a set of induction rules that produce new

axioms from axioms already existing in the theory.

There are 19 di�erent induction rules that can be classi�ed

mainly into generalization, specialization, and general explo-

ration rules8. In addition, some of these rules are specially

designed to work with taxonomic knowledge.

Although there is no space to explain the whole 19 rules,

we can sketch some of them to see how they work:

expand antecedent rule It adds an existential construc-

tion to the \end" of the antecedent of an axiom.

For example, suppose we are acquiring a theory about

family relationships from a a group of families9. Suppose

�1 = man �0:5;0:3 9has wife:woman 2 Tt
10.

Then, this rule would explore axioms by adding sim-

ple existential constructions to the end of � antecedent.

Among others it will produce the axiom Phi2 = man u

9has child:person �0:87;0:1 9has wife:woman, where the

parameters for the distribution are supposed to have been

inferred from the training set.

As �2 provides more information in what refers to man

having childs than �1, it will be added to Tt.

same-as axiom rule It builds new axioms with SAME-

AS constructions in the consequent. Going on with the

previous example, suppose we have �3 = person u

9has grandparent �1;0 9has parent:9has parent:person;

and we have that �3 2 Tt.

The application of the same-as axiom rule to �3

would build an axiom �4 with the same antecedent

and a consequent constituted by a SAME-AS construct

built from the antecedent and the consequent of �3.

That is, �4 = person u 9has grandparent �1;0

[SAME AS has parent Æ has parent; has granparent].

�4 increases the amount of information of Tt, as �4 con-

sequent is more speci�c than �3 one. So, YAYA learning

procedure would add �4 to Tt.

The iterative rule application process is repeated until all

the axioms \reachable" through the application of an induc-

tion rule are not interesting for T . YAYA learning procedure

has been designed from practical principles. Unfortunately

there is no theoretical bound on the amount of information

captured by the TBox resulting from the learning process with

respect to T �.

7 This initial theory may be empty, it may contain a subset of the
theory to be learned, and it may also take into account ontological
knowledge.

8 The �rst two types are similar to ILP generalization and special-
ization operators.

9 Note that here the examples correspond to families and not to
individuals, as it would correspond in most ILP systems.

10 Throughout this example, it is supposed that man, woman, and
person are concept names that appear in the training set, and
that has wife and has child are role names.



The big number of YAYA induction rules makes possible

that an interesting axiom may be reached from a lot of di�er-

ent search states. This is important because in some sense it

reduces the amount of local minima in the search space. And

as the procedure sketched above is in fact a greedy search, it

may be a�ected by local minima.

By other hand, the YAYA learning procedure is not com-

plete; that is, it does not guarantee it will �nd a given axiom

or a given theory. Nevertheless, it has been tested successfully

on some typical ILP benchmarks such as the family relation-

ships, and the chess king-rook-king illegal position ones [16].

4 YAYA and Natural Language Processing

The main goal of YAYA is to be applied to NLP problems.

Relational learning systems have been shown to be well suited

for Natural Language Learning (NLL). ILP has been success-

fully applied in a number of NLP problems [15, 14, 6].

With this purpose, the widely used WordNet lexical ontol-

ogy [13] has been integrated into YAYA. WordNet is auto-

matically converted into a set of axioms that can be used: (1)

To provide a background theory to the learning procedure;

and (2) For reasoning purposes (once the learning procedure

has done its job).

Despite the big amount of concepts (synsets in WordNet

terminology) in the mentioned ontology, a careful selection of

the axioms into which the taxonomy is mapped, and the im-

plementation of some optimization techniques from [10] main-

tain the reasoning tasks tractable.

YAYA provides a powerful representation, reasoning, and

learning framework for NLP tasks. This has the immediate

advantage to make possible to board di�erent NLP tasks using

the same environment. But most important, it provides a way

to experiment with the integration of several of these tasks;

and to study the interaction among them. Additionally, and

di�erent to ILP systems, YAYA has been designed specially

to take bene�t from available taxonomic knowledge.

Traditionally, several phases have been de�ned in NLP:

morfological analysis, syntactical analysis, word sense disam-

biguation, contextual resolution, conceptual representation,

etc. The complete analysis of a natural language text consists

of solving each one of the phases in an ordered way. Then,

one phase can use information produced by previous phases;

but, of course, it cannot use information from later phases as

it has not already been produced.

The goal of the phases analysis is to maintain the complex-

ity of the problem below certain limits; but it may miss some

important interactions between di�erent phases. For NLL sys-

tems this may result in the substitution of a missed interaction

by a set of special situations that approximate it taking into

account only information in previous phases.

Reducing NLP to an only big phase is not realistic at this

moment. The number of interactions that should be taken

into account by a learning procedure is probably too large to

obtain interesting results in a reasonable amount of time. In-

stead, a restricted interaction model can be used to explore in-

teresting interactions. YAYA provides the necessary elements

to experiment with di�erent interaction models. Nevertheless,

this work is at its initial stage at this moment.

Some experiments have been performed for NLP. More con-

cretely, over 300 sentences from the training set in [17] have

been used to learn restrictions between senses and semantic

roles. The whole set of restrictions implicitly present in the

training set has successfully been learned.
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