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Abstract

We introduce a generalized physics-informed machine learn-
ing workflow to accurately predict the behavior of a tran-
sient physical system with enhanced physics conformity. A
physics-guided machine learning (PGML) model is devel-
oped to achieve this goal. Our model consists of two main
parts for a given transient system: (1) a physics-based numeri-
cal model which solves the system using conventional numer-
ical methods and returns the stiffness matrix and force vector
at each time step; (2) a neural network (NN) based machine
learning (ML) surrogate model which predicts the solution
of the system using a custom physics-guided loss function
constructed from system matrix and force vector. The pro-
posed workflow results in a physics-aware Machine Learn-
ing (ML) model. Such a trained model can be used to avoid
the prohibitively expensive step of running a transient system
simulation at the desired resolutions in space and time. We
demonstrate and test the model on single-degree-of-freedom
(SDOF) and multiple-degree-of-freedom (MDOF) system’s
examples from structural dynamics. Our results show that the
method predicts the simulation results accurately. The pro-
posed workflow can be directly adapted to any other physics
and numerical method as it is not tailored towards a specific
physics or a numerical method.

1 Introduction
The partial differential equations (PDE) which govern tran-
sient physical systems are solved using numerical methods
such as Finite Element Method (FEM) (Zienkiewicz et al.
2000) and Finite Difference Method (FDM) (Forsythe and
Wasow 1960). However, it is computationally intensive to
run simulations for these models for long time durations at
desired resolutions in space and time. This cost scales lin-
early when the required number of simulations is large. Over
the recent years, a common technique to reduce this cost
has been to use Machine Learning (ML) models as a surro-
gate for the solution in engineering and natural science disci-
plines (Reich and Barai 1999; Kutz 2017; Tarca et al. 2007).
Nonetheless, there are two major constraints faced by ML
models:
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1. Lack of training data. Reliable ML models require large
amounts of data which needs enormous computing re-
sources. It also takes painstakingly long to generate be-
cause we need to run simulations for long duration at de-
sired spatial and time resolutions.

2. Lack of physics conformity. Due to their black box na-
ture, standalone ML-based models are often incapable of
producing physics-conforming results and lead to poor
generalization.

These two shortcomings have made researchers explore the
possibilities of integrating knowledge of physical laws into
ML models. (von Rueden et al. 2019) introduces the um-
brella term informed machine learning and surveys different
approaches on the explicit integration of prior knowledge
into machine learning pipelines. He explains that one of the
approaches to achieve informed machine learning is by in-
corporating physical laws (in the form of PDEs) as custom
loss terms. More recently, (Willard et al. 2020) provides an
overview of approaches which integrate traditional physics-
based modeling techniques with ML. The authors catego-
rize these approaches into five classes; (i) Physics-guided
loss function, (ii) Physics-guided initialization, (iii) Physics-
guided design of architecture, (iv) Residual modeling, (v)
Hybrid physics-ML models. Our proposed model falls un-
der (i) Physics-guided loss function. ML models based on
physics-guided loss function provide synergistic integration
of prior physics knowledge into ML pipelines resulting in
reduced ”black-box” nature and improved data-efficiency of
the models. We demonstrate our method with the help of
SDOF and a MDOF systems from the Structural dynamics
domain. The transient response of SDOF and MDOF sys-
tems to external excitation is a classical topic in Structural
Dynamics due to its application in many engineering sys-
tems.

Related Work (Wu and Jahanshahi 2019) predict the tran-
sient response of SDOF and MDOF systems using multi-
level perceptron and convolutional neural networks (CNN).
Their ML model forecasts displacement in SDOF systems
while taking velocity, acceleration and excitation as inputs.
In another work, (Stinis 2019) elucidate integration tech-
niques to enforce the constraints from physical system in
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Figure 1: Overview of generalized physics-informed machine learning workflow for transient physical systems. This workflow
eliminates modification of a ML model’s training loss function or its architecture prior to the start of model training when
presented with a new transient system.

supervised, semi-supervised and reinforcement learning for
predicting flow-map of a dynamic system. Their model pre-
dicted the flow-map of a system iteratively using the present
state. The error correcting terms and extra physics based
constraints resulted in striking improvement during predic-
tion of the Lorenz System.

Recently, (Zhang, Liu, and Sun 2020) apply a multi-
LSTM neural network which maps the excitation force to
the response of the system. They couple custom model ar-
chitecture and loss functions to represent the underlying
physics resulting in a model which outperforms conven-
tional data driven LSTM models in terms of robustness and
accuracy. Latterly, (Wang and Wu 2020) devise and present
a Knowledge-Enhanced Deep Learning (KEDL) algorithm
which trains a neural network (NN) to predict response of a
system for a specific excitation. The authors used both input-
output data and prior knowledge in the form of equations
into the NN’s training loss function.

Our Contribution It is important to note that almost all
of the previous work explicitly define the governing PDE(s)
of the given physical system as the NN’s training loss func-
tion or, constitute a ML model architecture specific to the
given physical system. A major drawback of such approach
is that it is not generalizable. When a new transient system is
provided, one needs to modify the ML model’s training loss
function or its architecture prior to the start of model train-
ing. To overcome this problem, we introduce a generalized
physics-informed machine learning workflow for transient
problems. The proposed approach is highly generalizable,
makes use of physics-guided loss function which results in
physics-conforming and data-efficient ML model. The pro-

posed method can be used with any numerical method which
results in a matrix form of equation system as in 1 .

Kxh = F (1)

Where xh is the unknown of the problem and K, F are the
matrices results from the numerical method used, discretiza-
tion scheme used and boundary and initial conditions ap-
plied.
We analyze the predictive ability of our approach on time-
series data of a linear SDOF and MDOF systems from struc-
tural dynamics.

2 Methodology
Consider a transient physical system characterized by a par-
tial differential equation (PDE) defined on a domain Ω given
by:

L(x) = 0 on Ω, (2)
x = xd on ΓD, (3)

∂x

∂n
= g on ΓN , (4)

where xd and g are the Dirichlet and Neumann boundary
conditions given by equations 3 and 4 respectively. The so-
lution to equation 2 can be computed using various methods
such as FEM and FDM. In this contribution, we restrict the
discussion to Galerkin-based FEM (Thomée 1984). A finite
element formulation of Equation 2 on a domain with n nodes
with given boundary conditions will result in the system of
Equations as in 5 for each time step. Here, we assume all the
necessary conditions on the test and trial spaces are fulfilled.
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where K(xh) is the non-linear stiffness matrix, xh is the
discrete system response, and F is the Force vector. The el-
ements of the stiffness matrix and force vector depends upon
the time integration, numerical method and space discretiza-
tion used.
Application of FDM or FVM also results in such system
equations represented by matrices. The proposed method
can also be applied with other numerical methods too.

2.1 Generalized physics-informed ML workflow
We propose a generalized physics-informed ML workflow to
devise physics conforming ML models. Our workflow con-
sists of the following steps (see Figure 1): Input Z to the
system are the physical system parameters and numerical
method specific parameters of the problem. A subset of this
which varies for each timestep are the input to the neural
network.

1. A conventional physics-based FEM model applies some
numerical method to solve the PDE and outputs; response
of the system xh, stiffness matrix K(xh) and force vector
F at discrete intervals of time.

2. The matrices from the physics-based FEM model are used
in the custom loss function of the NN-based ML model.
The ML model is a surrogate for the solution to the sys-
tem described in equation 2. It takes last three timestep
response as input and predicts the response at the present
timestep. Last three timestep responses are taken as input
since most of common time-integration schemes uses last
two or three timesteps. The model is trained with the help
of a physics-guided loss-function.

3. Upon completion of training, deploy the trained model to
avoid the computationally expensive step of using con-
ventional time-integration schemes and forward linear
solvers to run simulations of transient physical systems. In
the following, we tested the accuracy of the trained model
on the untrained region instead of recursive prediction.

2.2 Physics-guided loss function
In conventional training setting, the actual response of the
system (x) is compared with the one predicted by ML
model. This comparison is done using an loss (error) func-
tion and the model tries to minimize the output of the loss
function during training. Mean Squared Error (MSE) is one
of the most common choice. As mentioned in Section 1, this
approach has a major drawback – the resulting model is a
”blackbox”.

Our approach addresses the latter by making use of a cus-
tom physics-guided loss function in the training process in-
stead of a conventional MSE loss function. This custom loss

function operates on the stiffness K(xh) and force F matri-
ces produced by the physics-based FEM model. It is given
by:

Loss =

T∑
t=1

 n∑
i=1

 n∑
j=1

Ki,jxj

− Fi

2

(6)

where T indicates the number of time steps used for train-
ing the model, n represents the number of unknowns which
describe the discrete system response (xh). The loss term
represents the residual R of the equation in numerical meth-
ods. The prediction error gets magnified by K and results in
”NaN” for some physical problems where K is high. This
is avoided by scaling the loss term with Fnorm,the L2 norm
of the force matrices used for the training. It also brings all
the rows of the

∑n
i=1

(∑n
j=1Ki,jxj

)
− Fi in same scale

and avoid the optimizer in concentrating on one row of the
prediction array. Thus, the final loss function is given by:

Loss =

T∑
t=1

 n∑
i=1

 n∑
j=1

(
Ki,j × xj
Fnorm

)− ( Fi

Fnorm

)2

(7)

3 Experiments and Results
This section discusses the results of the proposed method
in predicting the transient simulation results for SDOF and
MDOF systems in structural dynamics. In both the exam-
ples, the model takes last three time-step values as input to
predict the present time-step value. Currently the method is
tested on the untrained data, not for a recursive prediction.
Even though we focus on these two problems, the method
can be directly used with any transient simulation solved us-
ing any numerical methods.

3.1 Single-degree-of-freedom system
A simple vibration system can be represented by a single
mass connected to a spring and a damper. Such systems are
called SDOF system and governed by the second order dif-
ferential equation of single variable given by:

m
d2x

dt2
+ c

dx

dt
+ kx = f(t) (8)

where m is the mass, c the damping constant, k the stiffness
and f(t) the excitation force. The response of the system can
be represented as [x, ẋ, ẍ], where x is the displacement, ẋ is
the velocity and ẍ is the acceleration of the system.

m 10 kg
c 10 Ns/m
k 1580 N/m
f(t) 1000sin(4πt)N

Table 1: System parameters

We use a physics-based solver to solve the equation and
compute response of the system for a given excitation force



f(t) with the help of (Newmark 1959) time integration
scheme. The time integration used a time-step of ∆t = 0.01
and beta of β = −0.3. A timestep of size 0.01 is used. Table
1 list down the system parameters used for carrying out the
experiments. There are three unknowns which characterize
the system described in Equation 8 – displacement x, veloc-
ity ẋ and acceleration ẍ. The response of the system for the
first 10 seconds is given in Figure 2a and the response in a
shorter time window is shown in Figure 2b.
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Figure 2: Response of SDOF system under external excita-
tion

We devise a physics-guided ML model (PGML) based on
neural network and uses a custom physics-guided loss func-
tion during training. The model’s architecture is composed
of a simple Long-short-term-memory (LSTM) network with
60 hidden units. We train this model on the system response
of first 500 time-steps and the model is tested on the next 500
time-steps. The proposed neural network model takes sys-
tem response from the previous three time-steps as input and
predicts the response at the subsequent time-step. Adamax
optimizer with a learning rate of 1e−4 is used for the train-
ing. A dropout value of 0.2 , β1 = 0.9 and β2 = 0.99 are
used in the network.

Figure 3 shows the displacement of the system predicted
using the trained network. It also shows the reference solu-
tion calculated using the physics-based FEM model with the
help of Newmark time-integration scheme. A good accuracy
is maintained between the predicted (PGML) and numerical

5 6 7 8 9 10
Time (s)

60

40

20

0

20

40

60

Di
sp

la
ce

m
en

t (
m

)

Newmark
PGML
Absolute Error

(a) Displacement

5.0 5.2 5.4 5.6 5.8 6.0
Time (s)

60

40

20

0

20

40

60

Di
sp

la
ce

m
en

t (
m

)

Newmark
PGML
Absolute Error

(b) Zoomed-in displacement
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(d) Zoomed-in velocity
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Figure 3: Plots of predicted displacement, velocity and ac-
celeration

method computed (Newmark) solutions. The plot of abso-
lute values of errors between Newmark and PGML are also
shown in Figure 3. The prediction of velocity and accelera-
tion also follows the same behavior as that of displacement.
It is to be noted that the proposed method is able to pre-
dict all three variables accurately even when their magnitude
were in different scales.

The error distribution in predicting displacement, veloc-
ity and acceleration are given in Figure 4. The relative error
is plotted against the number of occurrence. It can be seen
that error in all three variables are concentrated near zero.
The relative error have a mean of 0.0401, 0.0299, 0.0033
for displacement, velocity and acceleration respectively. It
is found that relative prediction error in acceleration have a
high standard deviation of 0.1534. Whereas, standard devia-
tion for relative error is 0.0463 and 0.0200 for displacement
and velocity respectively.

3.2 Multiple degree of freedom system
The equation of motion of a multi degree of freedom system
(MDOF) in structural dynamics is given by

M
d2X

dt2
+ C

dX

dt
+ KX = F(t) (9)

where, M, C and K are the global mass, damping and
stiffness matrices and F is the external force on the system.
Here X represents the collection all degrees of freedoms of
the system. We use a 20 DOF system to demonstrate the
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Figure 4: Distributions of relative error in prediction for
SDOF system

model. Each DOF in this system is either the x−direction
or the y−direction displacement of one of the 10 masses in
the system. The external force applied is F(t) = sin(1.25×
2πt)N on all masses. The displacement of the masses of the
system for the first 10 seconds is given in Figure 5. It is cal-
culated using FEM with generalized alpha time integration
scheme. We used a timestep of ∆t = 0.001. Only selected
DOFs are plotted in the figure.
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Figure 5: Response of MDOF system under external exci-
tation

Each curve in the Figure 5 represents one degree of free-
dom, such as the first mass displacement in the x−direction
1x and the first mass displacement in the y−direction 1y.
Each DOF behave differently according the properties of the
system and applied force. It makes the MDOF system more
complex in comparison to the SDOF system.

The PGML model used consisted of a three layer LSTM
network with 200 hidden units. The training used first 5000

time-steps for training the network. The trained model is
used to predict the solutions of the remaining part of the
simulation. We used Adamax optimizer with a learning rate
of 1e−4, dropout value of 0.3 , β1 = 0.9 and β2 = 0.99.
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Figure 6: Plots of predicted displacement for the selected
DOFs

Figure 6 shows the prediction using the trained network
for the next 5000 time steps (5-10 seconds). It is compared
against the actual solution calculated using FEM with Gen-
eralized Alpha time integration scheme. Only selected DOFs
from the 20 DOFs are plotted. The results show a good
agreement between the model prediction and the FEM so-
lution. The model maintained the prediction accuracy for all
the twenty DOFs. Even though the displacements of various
DOFs differ in scale and pattern across time, the model is
able to capture these variations and make accurate predic-
tion.

The error between the prediction and the FEM solution
are also plotted in Figure 6. The prediction error is close to
zero for all the DOFs. But, it is observed that the prediction
error is high close to the crest and trough of the response
for some of the DOFs. We think that the high gradient of



displacement at crests and troughs is causing this behavior.
This can be solved by taking excitation force also as an input
parameter as this is what triggering the change in displace-
ment.
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MDOF prediction for longer duration The trained net-
work is used to predict the solution of the simulation for
longer duration (5-30 seconds). Figure 7 shows the predic-
tion of displacement for 9x. The model maintains the accu-
racy even for varying amplitude and slope of the displace-
ment curve. The same is observed with other DOFs too.

4 Conclusion
We introduced a generalized physics-guided machine learn-
ing workflow to train a neural network for transient simu-
lations. The PGML model developed to achieve this goal
takes system matrix and force vector constructed from the
numerical method for the training. Since the loss function
used directly reflects the residual from the numerical meth-
ods, the trained model is physics conforming in compari-
son to a conventional ”black box” neural network. The pro-
posed model can be easily adapted to different physics and
numerical methods. The prediction capacity of the proposed
model is demonstrated with the help of two examples from
structural dynamics, SDOF and MDOF systems. The results
point towards a promising algorithm for training neural net-
works for transient simulations. Such a trained model can be
deployed in a real system and the signals from real system
can be compared with prediction for anomalies.

5 Future Work
Transient simulations for real applications typically consist
of large DOF systems. Such systems also involve complex
input forces, which vary in time. The proposed algorithm
needs to be tested with such complex scenarios for its ro-
bustness. In such a case, more parameters such as force
and system parameters might be needed at the input side
of the neural network. Another drawback of the current im-
plementation is that there is no mechanism to correct the

error that accumulates over a long series of recursive predic-
tions. Presently, recursive prediction using the same model
diverges due to the accumulation of the error. Algorithms
and architectures tailored for recursive prediction also to be
tested with our model in the future work.

The proposed algorithm can only be used for predicting
the simulation for later timesteps once trained with the sim-
ulation done so far. The next step includes training a model
that can produce a generalized model, performing a com-
plete simulation given the initial conditions and system pa-
rameters.
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Drăghici, S. 2007. Machine learning and its applications
to biology. PLoS Comput Biol 3(6): e116.
Thomée, V. 1984. Galerkin finite element methods for
parabolic problems, volume 1054. Springer.
von Rueden, L.; Mayer, S.; Beckh, K.; Georgiev, B.; Giessel-
bach, S.; Heese, R.; Kirsch, B.; Pfrommer, J.; Pick, A.; Ra-
mamurthy, R.; et al. 2019. Informed Machine Learning–A
Taxonomy and Survey of Integrating Knowledge into Learn-
ing Systems. arXiv preprint arXiv:1903.12394 .
Wang, H.; and Wu, T. 2020. Knowledge-Enhanced Deep
Learning for Wind-Induced Nonlinear Structural Dynamic
Analysis. Journal of Structural Engineering 146(11):
04020235.
Willard, J.; Jia, X.; Xu, S.; Steinbach, M.; and Kumar, V.
2020. Integrating physics-based modeling with machine
learning: A survey. arXiv preprint arXiv:2003.04919 .
Wu, R.-T.; and Jahanshahi, M. R. 2019. Deep convolutional
neural network for structural dynamic response estimation
and system identification. Journal of Engineering Mechan-
ics 145(1): 04018125.
Zhang, R.; Liu, Y.; and Sun, H. 2020. Physics-Informed
Multi-LSTM Networks for Metamodeling of Nonlinear
Structures. arXiv preprint arXiv:2002.10253 .
Zienkiewicz, O. C.; Taylor, R. L.; Taylor, R. L.; and Taylor,
R. L. 2000. The finite element method: solid mechanics,
volume 2. Butterworth-heinemann.


