
JSON towards a simple Ontology and Rule
Language

Kevin Angele23 and Jürgen Angele1

1 adesso, Competence Center Artificial Intelligence
juergen.angele@adesso.de

http://adesso.de
2 Onlim GmbH

kevin.angele@onlim.com

http://onlim.com
3 Semantic Technology Institute Innsbruck

Department of Computer Science, University of Innsbruck, Innsbruck, Austria
kevin.angele@sti2.at

http://sti2.at

Abstract. In recent years knowledge graphs gained much attention.
Many big companies, like Amazon, Facebook, or Google, are building
a knowledge graph. This movement also affected smaller companies, as
a growing number of those ask for knowledge graph solutions or start
to build them themselves. The Semantic Web provides a long list of
knowledge representation formalisms and ontology languages to build
knowledge graphs. Those formalisms and languages cover a broad range
of computational complexity, from simple to even undecidable. Focus-
ing on the manifoldness of companies building knowledge graphs, a lan-
guage that many people understand and accept is intended. Therefore,
we present an alternative approach to existing knowledge representation
formalisms and ontology languages based on JSON. JSON is the most
popular format for exchanging information between systems. Also, JSON
comes with its schema language called JSON Schema, allowing to define
the structure of a given JSON document. Our paper provides an on-
tology language based on JSON Schema and extends it by inheritance,
arbitrary relationships between different JSON documents (classes), and
rules. The rules are based on OO-logic, a successor of F-logic, and are
seamlessly embedded. As we see in our current projects, this language is
quickly adopted and used by software developers.

Keywords: Ontologies · JavaScript Object Notation (JSON) · JSON
Schema · JSON-LD · OO-logic.

Copyright © 2021 for this paper by its authors. Use permitted under Creative
Commons License Attribution 4.0 International (CC BY 4.0).

http://adesso.de
http://onlim.com
http://sti2.at

1 Introduction

Data has become an essential asset for many companies worldwide. Gartner1 pre-
dicts that “Data and analytics will become the centerpiece of enterprise strategy,
focus and investment” [9]. When it comes to managing and integrating data,
maybe also from heterogeneous sources, knowledge graphs come into play. In
Gartner’s Hype Cycle from 2020, knowledge graphs were listed on top of the peak
(“Peak of Inflated Expectation”)[12]. Many big companies (like Amazon, Face-
book, Google, or Microsoft) build knowledge graphs containing vast amounts of
data. Also, smaller companies want to use knowledge graphs to power their sys-
tems. For building knowledge graphs, the Semantic Web provides many ontology
languages and knowledge representation formalism. Besides simple concepts also
undecidable ones are provided. For many use cases, companies face, those ontol-
ogy languages or knowledge representation formalisms might be overly complex
with a steep learning curve. Therefore, an ontology language based on an exist-
ing widespread format is required with a flat learning curve allowing companies
to define their knowledge graphs.

A widespread format that is used for exchanging data between systems2 is
JSON [5]. JSON comes along with a schema language called JSON Schema3

[10]. JSON Schema is intended to be a vocabulary to annotate and verify JSON
documents (JSON-Schema for JSON is like RDFS [6] for RDF [7]). JSON Schema
is used as a basis for our proposal of a bottom-up enhancement of JSON towards
a simple ontology language. JSON-Schema is still in design, and therefore the
paper is based on the latest draft version (2020-124).

In order to provide an alternative to existing ontology languages, we pro-
vide an ontology language based on JSON-Schema that extends JSON-Schema
with complex constraints, inheritance, relationships, and rules. JSON Schema
provides constraints for single property values only. In this paper, inheritance
is introduced, as it is not provided by JSON Schema so far. Inheritance is di-
vided into a top-down and a bottom-up part. Top-down specifies that subtypes
inherit all properties from the supertype, and bottom-up defines that instances
of subtypes are also instances of supertypes. JSON Schema can not yet handle
relationships between different JSON documents (classes). However, for model-
ing ontologies, this is an essential requirement. Finally, to be able to reason over
the given data, rules must be provided. Therefore, JSON Schema is extended
to be usable with OO-Logic [2] rules. The ease of using the extension of JSON
Schema towards an ontology language is motivated by a demonstration of a use
case.

To begin with, we present preliminaries relevant to understand the concepts
introduced within this paper. The preliminaries include a brief introduction to

1 www.gartner.com
2 https://www.cs.tufts.edu/comp/150IDS/final_papers/tstras01.1/

FinalReport/FinalReport.html#software
3 http://json-schema.org
4 https://json-schema.org/specification.html

www.gartner.com
https://www.cs.tufts.edu/comp/150IDS/final_papers/tstras01.1/FinalReport/FinalReport.html#software
https://www.cs.tufts.edu/comp/150IDS/final_papers/tstras01.1/FinalReport/FinalReport.html#software
http://json-schema.org

JSON, JSON-LD, and JSON Schema. In Section 3, extensions for JSON Schema
towards a simple ontology language are introduced. Then, rules that make use
of the JSON data are described. Afterward, we present a use case using the
extensions of JSON Schema and the rules. The last but one section (Section 6)
mainly introduces SHACL, which is comparable to JSON Schema and briefly
also other rule languages present in the Semantic Web. Finally, we conclude our
paper and give an outlook on future work.

2 Preliminaries

The proposal of this paper is based on an adaptation of JSON Schema, a schema
language for JSON. In order to follow the extensions made, we will present the
basic terms used within this paper. Therefore, we briefly introduce JSON and
JSON-LD, and afterward, relevant concepts of JSON Schema are introduced.

2.1 JSON and JSON-LD

JavaScript Object Notation (JSON) [5] is designed to be a text format for
the serialization of structured data. JSON is used as a lightweight, language-
independent data interchange format on the Web. Nowadays, many Web APIs
provide JSON as a response format. The JSON specification provides a small
set of formatting rules for structuring the data. In general, JSON allows four
primitive types and two structured types. The primitive types are string, num-
ber, boolean, and null. Objects, an unordered collection of name-value pairs, and
arrays, an ordered sequence of values (either of primitive type or object), are
the structured values. JSON was designed to be minimal, portable, textual, and
to be a subset of JavaScript.

JSON-LD [13] is an extension of JSON to be used for serializing Linked
Data. Machine interpretable data linked across different documents may also be
stored in different Websites, referred to as Linked Data. Documents stored across
the Web can be accessed by following links going out of the current document.
JSON-LD is a lightweight syntax to serialize Linked Data based on the previ-
ously introduced JSON format. Only minimal changes are made to JSON, and
therefore JSON-LD is 100% compatible with JSON. This allows reusing tools
and libraries that already work with JSON. On top of JSON, JSON-LD intro-
duces a universal identifier mechanism to identify JSON objects using IRIs5.
Besides, to distinguish keys from different vocabularies, JSON-LD allows defin-
ing vocabularies via a so-called context. Additionally, a language is assignable
to string values, and JSON-LD allows expressing directed graphs within a single
document.

2.2 JSON Schema

JSON Schema [10] for JSON is comparable to XML Schema for XML docu-
ments, it defines and ensures the structure of JSON data. Specifications using

5 https://www.w3.org/International/O-URL-and-ident.html

https://www.w3.org/International/O-URL-and-ident.html

the JSON Schema syntax are themselves JSON documents. The keywords in
JSON schema can be used to define constraints on JSON instances or annotate
them with additional information. Assertions on instances can either be true,
the given property value of the JSON instance complies with the defined con-
straint, or false if the property value is not compliant. For a JSON instance to
be valid, it must fulfill all the previously defined assertions. Besides, annotations
can provide additional information for application usage, e.g., a help text for a
form created based on a JSON schema. Keywords can also be present in both
categories simultaneously, specifying a constraint and providing additional in-
formation. Unknown keywords in a JSON Schema document are ignored and do
not affect the validity of the validated instance. An empty schema, a schema
without keywords or unknown keywords only, matches every instance. JSON
Schema is still work in progress. Hence, there might be slight changes until the
final version6. Listing 1 presents a simple JSON Schema defining the structure
of JSON documents of type Person.

{
"title":"Person",
"@id":"http://example.org/Person",
"@type":"Class",
"properties":{

"name":{
"type":"string"

},
"age":{

"type":"integer"
}

},
"required":["name", "age"]

}

Listing 1: A JSON Schema defining the structure of instances of type person

This schema defines two required properties, namely name and age. Val-
ues given for property name must be strings and integers for property age.
Since those properties are marked as required, a given instance must provide
those properties to be valid. The keyword additionalProperties is not used
in this schema. Hence, an instance validated against the given schema can
also have more than the defined properties and is still valid. When setting
additionalProperties to false, only the two defined properties are allowed.

JSON Schema supports linking different schemas to reuse parts of a schema
used in many places. A reference to another schema is introduced using the
$ref keyword. The value of this keyword is an identifier of the other schema
that should be included in the specified place. When the schema is validated,

6 we rely on the draft 2020-12 http://json-schema.org/draft/2020-12/

json-schema-core.html

http://json-schema.org/draft/2020-12/json-schema-core.html
http://json-schema.org/draft/2020-12/json-schema-core.html

the reference is replaced by the referenced schema. Before evaluating, the content
of the other schema is embedded into the source schema and then applied to the
given instances. Listing 2 presents a schema including a reference to a schema
representing the structure of a DegreeCourse (Listing 3).

{
"title":"Student",
"@id":"http://example.org/Student",
"type":"object",
"properties":{

"matriculation_number":{
"type":"integer"

},
"degree_course":{

"$ref":"definitions.json#/degreeCourse"
}

},
"required":["matriculation_number"]
}

Listing 2: Student schema referencing the DegreeCourse schema

{
"title":"DegreeCourse",
"@id":"http://example.org/DegreeCourse",
"type":"object",
"properties":{

"name":{
"type":"string"

},
"course_number":{

"type":"integer"
}

},
"required":["name"]
}

Listing 3: Schema representing the structure of DegreeCourses

For the evaluation the DegreeCourse schema is embedded into the root
schema (see Listing 4).

Given instances must have the DegreeCourse embedded as well. Only a link
to a DegreeCourse instance would be marked as invalid according to the given
schema.

{
"title": "Student",
"@id": "http://example.org/Student",
"type": "object",
"properties": {

"matriculation_number": {
"type": "integer"

},
"degree_course": {

"title": "DegreeCourse",
"@id": "degreeCourse",
"type": "object",
"properties": {

"name": {
"type": "string"

},
"course_number": {

"type": "integer"
}

},
"required": ["name"]

}
},
"required": ["matriculation_number"]

}

Listing 4: Student schema with the DegreeCourse schema embedded

3 Extending JSON Schema to an ontology language

JSON Schema usually is used for validating JSON data which have to be struc-
tured according to the schema. In our case, we use JSON schema for describing
classes and properties of classes of an ontology. So, in this case, JSON schema is
not used as a constraint language. On the other hand, using JSON schema for
describing ontologies has a nice side effect, that it can be used in other applica-
tions for validation purposes. Using JSON Schema as ontology language requires
inheritance as an extension and adapting the semantics of relationships. In this
section, we first introduce inheritance for JSON Schema and then the adapted se-
mantics of relationships. In the following, we refer to a JSON Schema describing
the structure of a JSON object as class.

3.1 Inheritance

For referring to a superclass relevant for the inheritance, a new keyword is in-
troduced. In the current JSON Schema draft, keywords have the $ as the prefix.
Our keywords are based on the syntax of JSON-LD with @ as the prefix. The
keyword for representing the relationship between a class and its superclass is
@subClassOf. A class with a @subClassOf property will inherit all the proper-
ties and definitions from its superclass. The following example (Listing 5) shows
a subclass of Person describing the structure of a Student. It defines the super-
class Person via the @subClassOf keyword and therefore inherits all the prop-
erties from the superclass. In addition to the inherited properties the Student

{
"title":"Student",
"@id":"http://example.org/Student",
"@type":"Class",
"@subClassOf":"http://example.org/Person",
"properties":{

"matriculation_number":{
"type":"integer"

},
"degree_course":{

"type":"string"
}

},
"required":["matriculation_number"]

}

Listing 5: Subschema

class adds another required property named matriculation number. A JSON
object of type Student must fulfill the requirements from Person and Student

class to be valid.

3.2 Relationships

JSON Schema provides a reference mechanism that looks like a relationship
definition at first glance. However, the original reference mechanism expects
the referenced object to be embedded in the JSON instance. This is infeasible
when modeling knowledge graphs. Hence a more flexible approach is needed to
describe references between classes. These relationships will be defined in the
type definition property. Instead of giving a primitive data type (like integer

or boolean), the reference to another class will be given using the @id property.
During the verification, the referenced class will not be embedded into the root
class. However, the referenced object will be validated against the defined class
by considering the hierarchy. The following example (Listing 6) will illustrate a
relationship definition.

In that way, it is possible to refer to an object of a subclass of DegreeCourse.

3.3 Semantics

The semantics of the presented extensions is described by mapping JSON to
Horn-Logic. Mapping means translating the incoming JSON to three types of
predicates. First, the member/2 predicate, describing the type of the given triple.
Second, the subclass/2 predicate and third, the value/3 predicate. For this
mapping the two keywords @id and @type are used. The value of the property
@id is always the unique identifier of each triple, and the according class of the
object is given using the @type property. Listing 7 shows the predicates resulting
from the mapping of the schema of class Person (see Listing 1). In this example,
we skipped the quotes of the predicate values for better readability.

{
"title":"Student",
"@id":"http://example.org/Student",
"@type":"Class",
"properties":{

"matriculation_number":{
"type":"integer"

},
"degree_course":{

"type":"http://example.org/DegreeCourse"
}

},
"required":["matriculation_number"]
}

Listing 6: Schema definition containing relationship

value(http://example.org/Person,title,Person).
value(http://example.org/Person,@id,http://example.org/Person).
value(http://example.org/Person,@type,Class).
member(http://example.org/Person,Class).
value(http://example.org/Person,properties,name).
value(http://example.org/Person,properties,age).
member(name,Property).
member(age,Property).
value(age,type,integer).
value(name,type,string).
value(Person,required,name).
value(Person,required,age).

Listing 7: Triple representation of class Person

subclass(?X, ?Z) :- subclass(?X, ?Y), subclass(?Y, ?Z).
member(?O, ?C) :- subclass(?C1, ?C), member(?O, ?C1).
value(?Sub,properties,?P) :- subclass(?Sub,?Super),

value(?Super,properties,?P).

Listing 8: Inheritance closure rules

Listing 8 presents closure rules added for describing the inheritance.
The semantics is then defined by the minimal model of the resulting atoms

and rules.

4 Rules for JSON

Our approach allows us to define the terminology and the structure of informa-
tion with simple ontology means. As soon as we describe more complex rela-
tionships between data, we have to add additional means. We already mapped

JSON objects as well as our extended JSON schema to a logic-based representa-
tion. So it is pretty obvious to add a rule-based language for expressing complex
relationships. Rules are not meant here to be used for constraints but for deduc-
ing additional facts. In [2] we have presented OO-logic as a rule and ontology
language. We will show in the following that this rule language seamlessly em-
beds into our JSON ontology language. OO-logic is a successor of F-logic [3].
The major goal of developing F-logic was to have a rule language with a syntax
easy to read and understand. Therefore conceptually different things are also
represented with a different syntax. For instance, membership to a class is dif-
ferentiated to a property value. We first introduce the essential ingredients of
OO-logic in this chapter. Then we show how those rules can easily access JSON
elements.

4.1 A brief introduction to OO-logic

OO-logic allows describing the essential parts of an ontology, i.e., classes, prop-
erties of classes with their ranges, hierarchies of classes, and relationship types
between classes. In addition, instances of classes together with their property
names and their relationships can be described in OO-logic easily (see Listing
9).

// every student is a person
Student :: Person.
// additional properties for students
Student[properties:/matriculation_number,degree_course/].

// DegreeCourse is also a class
degree_course[range:DegreeCourse].

// Sabine is a student
sabine : Student.
// Sabine has the matriculation number 5
sabine[matriculation_number:5].
// physicsA is the uid for the degree course
sabine[degree_course:physicsA].

Listing 9: Ontology with instances in OO-logic

Rules derive new facts from existing ones. We can now express that if a stu-
dent is studying the course, then all course members can be derived. Afterward,
a query to ask for all courses of Sabine can be executed (see Listing 10).

4.2 Accessing JSON by rules

OO-logic rules allow seamless access to all properties of our JSON objects. They
use the same structure as the JSON objects. That a JSON object is element of
a certain class (type) is expressed by colon ”:”, that a JSON object is a subclass

CourseMembers: ?C[member:?S] :- ?S:Student, ?S[degree_course:?C]:

?- ?C[member:sabine].

Listing 10: Query courses of sabine

of another class is expressed by two colons ”::”, and properties are declared by
expressions in brackets ([..]). Sub-objects are addressed like related objects. A
question mark precedes variables.

OO-logic provides a vast amount of so-called built-ins. All Java methods from
the Math- and String libraries are available. Values can be compared; complex
mathematical and boolean formulas can be expressed in rule bodies. Rule heads
allow to derive new values for JSON objects’ properties, create new JSON objects
with their properties and relations to other JSON objects, and classify JSON
objects.

// what are the sub-classes of class Person
?Subclass :: Person

// which members has class person, including the members of the sub-classes
?Person : Person

// the matriculation numbers of all students
?Person:Student, ?Person[matriculation_number:?MatriculationNumber]

Listing 11: Examples for conditions usable in rule bodies to access JSON objects

An example for creating new values for JSON objects and classifying them
using built-ins to access the current time and to compute the age is given in
Listing 12.

?P:YoungPerson, ?P[age:?Age] :-
?P:Person, ?Person[birthDate: ?Born], _now(?Now),
?Age := ?Now-?Born, ?Age < 25.

// compute age of a person by subtracting the birth date from the current time
// classify person as young person if the age is less than 25

Listing 12: Rule accessing JSON objects, classifying them and creating new
property values

Together with the extensions of JSON Schema, those rules are implemented
in a deductive database called SemReasoner (Semantic Reasoner). SemReasoner
is the successor of OntoBroker [1]. In addition to OntoBroker, SemReasoner
provides a powerful persistency layer and is also a stream reasoner. The syntax
for the logic used by SemReasoner is OO-logic7 [2]. Dissolving JSON objects
into triples like described before (see 3.3) applies in the same way to JSON
Schema as well. The internal representation of SemReasoner is based on pure
Horn logic with negation. Inside SemReasoner, OO-logic is mapped to Horn logic
with negation. So every Horn logic-based reasoner could be used to implement
the same approach. SemReasoner also provides an inductive logic component
that allows deriving rules from data similar to FOIL [11].

The JSON Schema extensions without the rules8 can easily be implemented
by extending an available open-source JSON Schema validator9.

5 Use case

At adesso10 we support the effort of our customers towards better digitalization
processes in our projects. Input management is still an area where much manual
work takes place. Our current use case for applying our technology is a KYC
(know your customer) process in the banking field. If a corporate customer re-
quests a new bank account, regulations enforce the bank to gather information
about the customer to estimate the risks. Therefore, the bank will request infor-
mation about the customer from risk assessment organizations like Schufa11 or
Credit Reform12 in Germany, and the bank will analyze information delivered
by the customer himself. One piece of information is the balance sheet of the
company. Still, such information is often not delivered in structured form but as
texts either by a PDF or even in paper form. Often, those documents are read,
interpreted, and analyzed by humans, which is much effort. adesso has devel-
oped a system for analyzing balance sheets for those purposes. Classes describe
different types of balance sheets with different properties. For instance, individ-
uals and small businesses have more straightforward balance sheets while larger
businesses have more complex balance sheets. Properties describe the assets and
the financing. An example for a JSON schema describing an IFRS balance is
given in Listing 13.

Different types of rules are used for different purposes. The terminology in
such balance sheets is not standardized. In addition, it often contains typos,
especially if OCR has created the balance document (if it has been received

7 For a more detailed description of OO-Logic and the reasoning, we refer to [2], and
in the future, we will publish a paper on SemReasoner.

8 However, JSON as an ontology language can be implemented using any other rea-
soner and also other rule languages.

9 https://json-schema.org/implementations.html
10 https://www.adesso.de/de/
11 https://www.meineschufa.de/
12 https://www.creditreform.com

https://json-schema.org/implementations.html
https://www.adesso.de/de/
https://www.meineschufa.de/
https://www.creditreform.com

{
"title":"IFRSBalance",
"@id":"http://example.org/balance",
"@type":"Class",
"@subClassOf": "Balance",
"properties":{

"non-current assets":{
"type":"float"

},
"current assets":{

"type":"float"
},
"shareholders equity":{

"type":"float"
},
"non-current liabilities":{

"type":"float"
},
"current liabilities":{

"type":"float"
},
"company":{

"type":"Company"
}

}
}

Listing 13: A JSON Schema defining the structure of an IFRS balance

// cell C1 contains the sum of the equity in the document
// cell C1 is in the same row as the word "total shareholders equity"
// the words are compared with similarity measure Levenshtein

?BS["shareholders equity": ?Sum] :-
?BS: Balance,
?T:Table,?T[cells:{?C2}], _levenshtein(?C2.value,"total shareholders

equity",0.8), ?T[cells:{?C1}],?C1.row=?C2.row, ?C1.column=1.↪→

// if the computed sum of all equity values is different from
// the sum written in the document a warning is given

plausibilityTableBalance("sum for shareholders equity is wrong") :-
?BS:Balance, sumEquity(?BS,?S), ?BS["shareholders equity":?E], ?E != ?S.

Listing 14: Rule to check for a plausibility

as a picture or a sheet of paper). Rules together with string similarity built-
ins like Levenshtein are used to map the terms to our properties. Those rules
also take the geometry, e.g., the table structure of the document, into account.
Another type of rule is used for plausibility checks. For instance, a rule sums
up the different positions for equities and compares it to the sum mentioned in
the document. An example for a rule performing a plausibility check is given in
Listing 14. Finally, the last type of rules do the analysis itself, i.e., determine

whether the customer is in good financial shape or the risk with this customer
is high.

At adesso this technology is also used in other applications, e.g., in a chatbot
platform [4].

6 Related work

When considering the web developer community, most developers are more fa-
miliar with JSON and JSON Schema compared to standards provided by the
W3C (e.g., RDF, RDFS, SHACL). However, a similar approach to JSON Schema
is SHACL.

A standard of the W3C consortium for defining the structure of entities
in a knowledge graph based on RDF is the SHApes Constraint Language
(SHACL)13. Similar to JSON Schema, the SHACL definitions can be used to
generate user interfaces.

For defining constraints over a knowledge graph, SHACL differentiates two
types of shapes, Node shapes and Property shapes. A node shape defines con-
straints for instances, and property shapes define constraints for the properties
of those instances. Node shapes together with property shapes are used to define
the structure of instances of a specific type. Listing 15 shows the SHACL shape
for the class Person (see Listing 1).

@prefix ex: <http://example.org/> .
@prefix sh: <http://www.w3.org/ns/shacl#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

ex:Person
a sh:NodeShape ;
sh:targetClass ex:Person ;
sh:property [

sh:path ex:name ;
sh:datatype xsd:string ;

] ;
sh:property [

sh:path ex:age ;
sh:datatype xsd:integer ;

] .

Listing 15: Node shape for the Person schema

Besides defining the structure of instances, SHACL allows the usage of infer-
ence rules for inferring new facts. The SHACL documentation presents SPARQL
and Triple rules. Based on the implementation of the underlying reasoning en-
gine, other rule types can be supported. For example, SHACL JavaScript Ex-
tensions14 defines another rule type called JavaScript rules.

13 https://www.w3.org/TR/shacl/
14 https://www.w3.org/TR/shacl-js/

https://www.w3.org/TR/shacl/
https://www.w3.org/TR/shacl-js/

Rule Interchange Format (RIF)15 is a rule language from the Semantic
Web Community based on Horn rules without function symbols. The semantics
of RIF is standard first-order semantics. Datalog extensions in RIF are used to
support F-Logic features as objects and frames. RIF is not intended as a rule
language for modeling but is intended as a common format for exchanging rules.

Rewerse Rule Markup Language (R2ML)16 is a rule language based on
XML supporting integrity, derivation, production and reaction rules.

Semantic Web Rule Language (SWRL)17 combines OWL DL or OWL
Lite with a subset of the Rule Markup Language. The expressivity of SWRL
is equal to OWL DL, which comes at a price of decidability. Also, this makes
practical implementations harder. SWRL rules consist of a body and a head.
Whenever the conditions in the body are fulfilled, the condition in the head
must hold as well.

OO-logic supports full Horn logic with negation. Despite using JSON Schema
in contrast to SHACL, our approach is not a constraint language. In OO-logic,
seamlessly embedded built-ins allow for procedural extensions. All Java built-ins
from the Java packages Math and String are integrated systematically. Using a
plugin API built-ins can easily be extended. RIF as an exchange format has
different dialects that support negation and a restricted set of built-ins, namely
functions and propositional logic [14], the same holds for SWRL. OO-logic built-
ins also support aggregations like sum, average, max, which are not given by the
other rule languages. A mapping between different rule languages in the Semantic
Web (excluding OO-logic but including F-logic) is shown in [8].

7 Conclusion and future work

This paper presented a proposal for a bottom-up enhancement of JSON, es-
pecially JSON Schema, towards a simple ontology language. Therefore, it was
necessary to extend the existing functionality of JSON Schema with inheritance
and relationships. Relationships are a significant concept in Linked Data and
therefore also for building knowledge graphs. Besides the extension of JSON
Schema, we presented the mapping from JSON towards triples that can be
stored in a triple store used to reason over them. This extension towards an
ontology language allows describing classes, including properties. Those classes
and properties are then accessible by the rules we introduced for JSON. Those
rules are based on OO-logic, a successor of F-Logic. Both the extension of JSON
Schema and the OO-logic rules are implemented in a deductive database called
SemReasoner. However, the extensions without the rules are easily realizable
by adapting an existing JSON Schema validator implementation. Finally, we
demonstrated a use case using the JSON Schema extensions and OO-logic rules.

Currently, the described concepts and technology are used in several adesso
projects. JSON is used in many modern software applications. This has famil-

15 https://www.w3.org/TR/rif-core/#Overview
16 https://www.w3.org/2005/rules/wg/wiki/R2ML.html
17 https://www.w3.org/Submission/SWRL/

https://www.w3.org/TR/rif-core/##Overview
https://www.w3.org/2005/rules/wg/wiki/R2ML.html
https://www.w3.org/Submission/SWRL/

iarity, ease of use, and a short learning period for our software developers as a
consequence. Indeed we achieved a high level of acceptance among our software
developers in those projects. As a side effect, our JSON schema export is also
used in other applications in forms and adessos form generator for validation
purposes. So we see that JSON, together with related technologies, closes the
gap between semantic technologies and conventional software engineering. From
our projects, we also get valuable feedback for our further work. Currently, we
are working on integrating GraphQL as an additional simple query language and
a cluster version of SemReasoner.

In future, we plan to publish several papers on SemReasoners reasoning en-
gine describing the reasoning algorithms used and specific features that are rel-
evant for many of our current use cases.

References

1. Angele, J.: Ontobroker. Semantic Web 5(3), 221–235 (2014)
2. Angele, J., Angele, K.: Oo-logic: a successor of f-logic. In: RuleML+ RR (Supple-

ment) (2019)
3. Angele, J., Kifer, M., Lausen, G.: Ontologies in f-logic. In: Handbook on Ontologies,

pp. 45–70. Springer (2009)
4. Angele, K., Angele, J.: Derool: A rule-based dialog engine. In: RuleML+ RR (Sup-

plement). pp. 157–168 (2020)
5. Bray, T.: The javascript object notation (json) data interchange format pp. 1–16

(2017). https://doi.org/10.17487/RFC8259, http://www.rfc-editor.org/info/

rfc8259

6. Brickley, D., Guha, R.V., McBride, B.: Rdf schema 1.1. W3C recommendation 25,
2004–2014 (2014)

7. Lassila, O., Swick, R.R.: Resource description framework (RDF) model and syntax
specification. World Wide Web Consortium Recommendation (October) (1999),
http://www.w3.org/TR/REC-rdf-syntax

8. Ma, Z.M., Wang, X.: Rule interchange in the semantic web. Journal of information
science and engineering 28(2), 393–406 (2012)

9. Pettey, C.: Why Data and Analytics Are Key to Digital Transforma-
tion - Smarter With Gartner, https://www.gartner.com/smarterwithgartner/

why-data-and-analytics-are-key-to-digital-transformation/

10. Pezoa, F., Vrgoč, D., Ugarte, M., Suarez, F., Reutter, J.L.: Foundations of JSON
Schema pp. 263–273 (2017). https://doi.org/10.1145/2872427.2883029

11. Quinlan, J.R.: Learning logical definitions from relations. Machine learning 5(3),
239–266 (1990)

12. Rimol, M.: Why Data and Analytics Are Key to Digital Transforma-
tion - Smarter With Gartner, https://www.gartner.com/smarterwithgartner/

6-trends-on-the-gartner-hype-cycle-for-the-digital-workplace-2020/

13. Sporny, M., Longley, D., Kellogg, G., Lanthaler, M., Lindström, N.: Json-ld 1.0.
W3C Recommendation 16, 41 (2014)

14. Xiao, G., Rezk, M., Rodriguez-Muro, M., Calvanese, D.: Rules and ontology based
data access. In: International Conference on Web Reasoning and Rule Systems.
pp. 157–172. Springer (2014)

https://doi.org/10.17487/RFC8259
http://www.rfc-editor.org/info/rfc8259
http://www.rfc-editor.org/info/rfc8259
http://www.w3.org/TR/REC-rdf-syntax
https://www.gartner.com/smarterwithgartner/why-data-and-analytics-are-key-to-digital-transformation/
https://www.gartner.com/smarterwithgartner/why-data-and-analytics-are-key-to-digital-transformation/
https://doi.org/10.1145/2872427.2883029
https://www.gartner.com/smarterwithgartner/6-trends-on-the-gartner-hype-cycle-for-the-digital-workplace-2020/
https://www.gartner.com/smarterwithgartner/6-trends-on-the-gartner-hype-cycle-for-the-digital-workplace-2020/

	JSON towards a simple Ontology and Rule Language

