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Abstract
Natural language interfaces for databases (NLIDBs) are an intuitive way to access and explore structured data. That makes
challenges like Spider (Yale’s semantic parsing and text-to-SQL challenge) valuable, as they produce a series of approaches
for NL-to-SQL-translation. However, the resulting contributions leave something to be desired. In this paper, we analyze
the usefulness of those submissions to the leaderboard for future research. We also present a prototypical implementation
called UniverSQL that makes these approaches easier to use in information access systems. We hope that this lowered barrier
encourages (future) participants of these challenges to add support for actual usage of their submissions. Finally, we discuss
what could be done to improve future benchmarks and shared tasks for (not only) NLIDBs.

1. Introduction
In a world where ever more data is generated, processed,
and relied upon, it becomes continually more significant
that data is not only accessible to a small group of people.
Information can be contained in text, relational databases,
knowledge graphs, and many other formats—but users do
not want to deal with heterogeneous sources. What they
are interested in is accessing information in an easy man-
ner. The borders between structured and unstructured
information keep blurring: when using Google for fac-
tual questions, infoboxes might show the answer without
the need to open a search result. That result might even
be wrapped in a generated sentence when voice search
was used and nobody cares whether the sentence was
extracted from a web page or generated from a database.

On the other hand, there are good reasons why these
different ways of storing information exist. Informa-
tion access methods should leverage the possibilities of
each while providing convenient and ideally unified inter-
faces. With this goal in mind, natural language interfaces
emerged as a data retrieval method, leveraging one of
our most flexible and intuitive means of communication.

Relational databases are an essential type of informa-
tion storage. To query them, users require knowledge
of the domain, query language (e.g., SQL), and database
schema. Contrarily, the vision for natural language in-
terfaces to databases (NLIDBs) encompasses the ability
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of any user to interactively explore large datasets with-
out help or extensive manual preparation work [1]. As
one of the biggest challenges, the application of NLIDBs
requires the means to translate natural language (NL)
into SQL queries (NL2SQL) (for a recent comprehensive
overview of methods and open problems refer to Kim et
al. [2]). However, before such NLIDBs can be used as one
of many interfaces for information access (i.e., users can
enter their information request using arbitrary words
and get a correct answer without knowledge about the
database), further research is needed.

Contributions We show that current benchmarks, es-
pecially the Spider challenge [3] and the related chal-
lenges SparC [4] and CoSQL [5] are not sufficient to
measure all relevant aspects and support the emergence
of ready-to-use NLIDBs. Yet, to foster research not only
on NLIDBs but on systems that integrate and use them,
we publish an API called UniverSQL1 to integrate sub-
missions to the challenges into research prototypes and
existing systems. Its core functionality is a wrapper im-
plementation to allow the execution of arbitrary queries
on pre- or custom-trained models. We additionally pro-
vide two sample implementations of this wrapper for
existing NL2SQL translators (EditSQL [6] and IRNet [7]).
The code is published under an open source license.

Finally, we provide an overview of the advantages and
flaws of Spider and other benchmarks and provide ideas
on how the evaluation of NLIDBs could advance.

We hope that this research encourages the use of
NLIDBs and further development of approaches and
benchmarks. Hopefully, this will help make more in-
formation accessible to everyone, regardless of their of
background.

Outline The rest of the paper is organized as follows:
After briefly describing the Spider challenge and its sib-

1https://datamanagementlab.github.io/univerSQL/
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lings in Section 2, we analyze how reproducible and us-
able the submissions to the shared tasks are in Section 3.
In Section 4, we present our prototypical implementation
UniverSQL that makes more of these systems usable for
research. We examine strengths, weaknesses, and pos-
sible further developments of benchmarks in Section 5,
before providing a brief final summary in Section 6.

2. What are SPIDER, SparC and
CoSQL?

The Spider challenge [3] has become one of the standard
evaluations for NLIDBs since its publication in 2018. So
far, it was cited 217 times and 71 submissions were made
to the shared task. The dataset aims to surpass most exist-
ing datasets in size by at least one order of magnitude. At
the same time it covers a diverse set of simple and com-
plex SQL queries. This provides the necessary basis for
data-driven systems to translate joins, nestings etc., and
challenges them to do so to achieve good performance
on the development and test data splits.

Alongside the dataset, Spider provides a shared task:
Since such a dataset is expensive to create, it is not fea-
sible to create one every time the NLIDB is applied to
a new database. The authors suggest that this problem
is solved by NLIDB systems capable of generalizing to
new databases and performing well across domains. This
idea is not entirely new: Systems by e.g., Rangel et al.
[8] or Wang et al. [9] already attempted to be domain-
independent in one way or another. However, Spider is
the first dataset of its size, complexity and quality. The
split ensures that each database occurs in exactly one set
(training, development, and test). This provides a con-
crete task description and evaluation process, allowing
accurate and comparable measurements of success.

Yu et al. [3] also propose a way of categorizing SQL
queries with regard to difficulty in the context of the
translation task. The concept regards the number of SQL
components, selections, and conditions to label a query
as easy, medium, hard, or extra hard. A SQL query is
estimated to be harder if it contains more SQL keywords,
e.g., a query is considered to be hard if it contains nest-
ings, the EXCEPT keyword, or three (or more) columns
in the SELECT statements, three (or more) WHERE con-
ditions, and a GROUP BY over two columns. Even more
structures or keywords in one query are considered extra
hard. The Spider shared task encourages the submis-
sion of models to show up in the leaderboard. There
are two variants: the original task does not check value
accuracy, but there is also a leaderboard for systems that
handle/predict values (not just queries with placehold-
ers).

SparC [4] is the multi-turn variant of Spider. It deals
with cross-domain semantic parsing in context and is

comparable to Spider in size, complexity and databases.
However, queries are arranged in user interactions, pro-
viding dialogue-like context. Therefore, it is not sufficient
to just translate the current NL utterance into SQL but
information from previous queries has to be taken into ac-
count. Analogous to Spider, SparC features a leaderboard
for variants with and without value handling.

CoSQL [5] takes the challenge to the level of a real
conversational agent. It consists of both dialogues and
annotated SQL queries simulating real-world DB explo-
ration scenarios. Therefore, the system has to maintain
a state. CoSQL defines several challenges, the simplest
one mainly adds further context to interpret compared
to SparC, the other ones cover generation of suitable
responses and intention detection/classification.

3. How reproducible and usable
are the challenge submissions?

All three challenges (SPIDER, SparC and CoSQL) fea-
ture a public leaderboard where different approaches
and their scores on the public, development as well as
the unpublished test set are listed. In this section, we
will investigate the state of the submissions particularly
with regard to how reproducible the submissions are and
whether they can be used outside of the exact task. An
overview of our analysis can be found in Tables 1 and 2
(as in June 2021). We will quickly interpret those results.

SPIDER The leaderboard for the primary Spider task
(without value handling) featured 62 entries in June 2021.
Some of them are only small variations of the same sys-
tem, nevertheless, this boils down to 51 different ap-
proaches. Yet, only little more than half (36 or 58%) of
those approaches are published in some way, the remain-
ing approaches are anonymous or contain only names of
authors or institutions (so far). For 25 submissions, a link
to code is provided, yet, some repositories are empty or
the link is invalid. In total, 20 approaches (32%) have at
least some code that could be used as starting point for
reproduction. Unfortunately, this is not evenly spaced,
only for two of the top ten current submissions (and for
four of the top twenty) code is provided.

Two approaches deserve special mention: Shi et al.
[10] provide a Jupyter Notebook for translation of user-
specified queries on custom data2 and the code of Lin
et al. [11] allows interaction with pretrained checkpoints
through a command line interface.

SPIDER (with Value Predection) This variation of
the task (additionally covering value handling necessary

2https://github.com/awslabs/gap-text2sql/blob/main/
rat-sql-gap/notebook.ipynb
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Table 1
Analysis of the leaderboard entries for Spider (with (+v) and without (-v) value prediction), SparC & CoSQL. We checked how
many different approaches are presented, how many of them reference a publication and how often there is code to at least
try to reproduce the approach.

Spider (-v) Spider (+v) SparC CoSQL
Entries 62 7 17 10
Diff. appr. 51 5 15 8
- Publications 36 (58 %) 6 (86 %) 8 (47 %) 9 (90 %)
- Code 20 (32 %) 4 (57 %) 4 (24 %) 5 (50 %)

Table 2
Analysis of the available repositories for the different challenges. We report whether the repositories are empty or contain
code, whether checkpoints/pre-trained models are provided for download and whether the usage of this approach on own
data/tables is in some way prepared.

Spider (-v) Spider (+v) SparC CoSQL
Repositories 15 2 4 5
- Empty? 2 (13 %) 0 (0 %) 0 (0 %) 1 (20 %)
- Code? 13 (87 %) 2 (100 %) 3 (75 %) 4 (80 %)
- Checkpoints 9 (60 %) 2 (100 %) 3 (75 %) 2 (40 %)
- Own data? 2 (13 %) 0 (0 %) 0 (0 %) 0 (0 %)

for translating real NL queries) unfortunately received
substantially fewer submissions (seven entries for five
approaches and all but one with publication). Four ap-
proaches, provide code (only two of six publications).

SparC Although this challenge was published just nine
months after the Spider challenge, it received consider-
ably fewer submissions so far. The leaderboard for the
variant without value handling has 17 entries for 15 dif-
ferent approaches. For less than half of them (47%) pub-
lications are referenced, for 24% there is code and three
submissions provide pre-trained models for download.
For the variant with value prediction, there are only two
entries, out of which only one references a publication
and no code is provided at all. We therefore did not
include this variant in Tables 1 and 2.

CoSQL At the time of writing, the challenge was
public for around 20 months. There were only baseline
implementations or entries without publications for two
of the three variants, only one entry included value
handling. The main task received ten submissions by
eight different approaches with a publication ratio of
90%. For half of the approaches there is code, but in
only two cases checkpoints can be downloaded and
there is no preparation for the use of the models outside
the evaluation scripts at all.

Overall, we have to conclude that reproducibility
of the approaches submitted to the leaderboards of all
challenges is at best mediocre, which is in line with
problems of the community and especially research

in computer science where reproducibility is still a
challenge. ACM conferences try to tackle this through
reproducibility challenges and badges in the ACM
Digital Library.3 Yet, publishing code and artifacts that
allow others to redo the experiments is still optional.

While it is surely not feasible to change the whole
publishing and reviewing process at once, we think that
shared tasks are a good place to start. Of course it is
fine that submissions are anonymous until the approach
was reviewed and published. But we advocate that once
names are revealed, it should also be necessary to ref-
erence publication and code. Authors of a challenge set
the requirements for submissions to be included in a
leaderboard—and they should take advantage of that.

Moreover, it should be honored when authors of an
approach or research prototype invest that extra time to
make it directly usable for others and their research.

A very good example (from a slightly different domain)
is SentenceBERT [12]. Although it is an implementation
accompanying a research paper, it is extremely easy to
use: install via pip, import, specify which model to use.
The installation scripts will install dependencies and the
system will download required files/checkpoints, making
it possible to build research on top of it in minutes.

That case is already the cream of the crop, in many
cases significantly less effort would help: pinning ver-
sions of dependencies (especially machine learning li-
braries often introduce breaking changes in just months),
run the code on a second machine under a different user-
name, add an installation script to download required

3https://www.acm.org/publications/policies/
artifact-review-and-badging-current
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Figure 1: Endpoints of the UniverSQL API

external data or add environment variables for config-
uration. Each of these steps can make it substantially
easier to run foreign code (or your own after a while). It
is not about providing perfectly fast and robust industry-
grade software for production use—that is something
(academic) researchers usually cannot accomplish and
also should not spend their time on—but to allow quick
prototypical usage to decide whether it is feasible to use
an approach in research and maybe investing time in
improving it. We therefore argue that shared tasks like
Spider should require this in the future for submissions
to their leaderboards, and find it a great pity that most
of the current submissions are difficult to reproduce and
even more difficult to utilize for further research.

4. Does it translate?
As shown in the last section, in June 2021 there were 86
submission in total for Spider and SparC. If one wants to
build a system on top of them, currently one has to pick
one of the best performing approaches from the leader-
board, obtain the code, install dependencies, download
pre-trained models (if any) and then find a way to run

the code not on the benchmark data but on individual
natural language queries. There has to be a better way.
The Spider and SparC challenges do not enforce a cer-
tain architecture (i.e., their aim is to foster research on
all kinds of approaches to solve the task and not tie it
down to e.g., a hyper-parameter optimization for a fixed
architecture). This has the downside of making it even
harder to use the resulting approaches in other applica-
tions. As a community service we therefore provide a
simple API implementation called UniverSQL that can be
used in prototypes for information access i.e., ones that
use NLIDBs (and maybe other components) but do not
focus on implementing them. The idea is that this API
can be used as a unified interface to NLIDBs regardless of
their architecture. This allows researchers to concentrate
on their task—and allows them to make use of approaches
that would otherwise be difficult to use.

UniverSQL is a small python application that serve as a
translation server. The API allows unified access to most
important functionalities (select a database, select a trans-
lator, do the actual translation) and some convenience
and debugging functions like logging. It can be used for
individual translations but also for (context preserving)
multi-turn interactions as in the SparC challenge. An
overview of available endpoints can be seen in Figure 1.

The core of UniverSQL is a wrapper implementation
to allow running arbitrary queries on pre-trained models.
We provide two sample implementations of this wrapper
for systems from the Spider leaderboard: EditSQL [6]
and IRNet [7]. It also includes a script to setup these
two systems and download required dependencies and
model dumps. We publish our code together with an
extensive documentation how to create wrappers for
other NL2SQL approaches and scripts for simple setup.
We hope that this itself evolves into a challenge were
researchers provide such a wrapper implementation and
installation script for their approach and will therefore
maintain a ready to use list as part of the published code.4

5. What are we (still) missing?
Modern data driven approaches would not be possible
without big amounts of data, but curating and annotating
it is out of scope for many researchers. Hence, it is not
surprising that Spider and SparC, but also other datasets,
have strongly advanced research in the field. However,
we believe that further advancements are still possible:

We already outlined some flaws of Spider such as a
missing focus on reproducibility. Yet, we also want to
highlight advantages like the manually annotated and
high-quality data, which deservedly currently makes it
the most important benchmark for of NL-2-SQL transla-
tors.

4https://datamanagementlab.github.io/univerSQL/
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In addition to Spider, there are other datasets and ap-
proaches for benchmarking of NLIDBs, but, like Spider,
they have some flaws. We will take a glance at some of
them, to outline typical problems:

The WikiSQL Benchmark by Zhong et al. [13] is a large
dataset (though smaller than Spider) that also features
a leaderboard. Unfortunately, it consists only of a small
number of unique query patterns [14] (in fact, half of
the questions in the dataset are generated from one sin-
gle pattern). In particular, it contains neither joins nor
nestings. Furthermore, the NL questions are often low
quality (i.e., many are grammatically incorrect), some
do not have a proper semantic meaning and make little
sense when read by humans and some NL questions do
not have the same meaning as the associated SQL query.

Utama et al. [15] published ParaphraseBench, an ap-
proach that tries to measure translation difficulty by di-
viding queries into classes. The benchmark was manually
curated but is quite small and covers only one table.

A recent paper by Gkini et al. [16] tries to benchmark
existing translation systems. They focus on system as-
pects like execution times or resource consumption and
not on translation accuracy. However, their analysis
leaves some open questions: First, their dataset which is
unfortunately not publicly available (yet) appears to be
quite small, it consists only of 216 keyword-based and 241
natural language queries. Second, although they cite Spi-
der, they did not include the high-performing approaches
from the leaderboard in their evaluation. Overall, this
approach does not appear sufficient for an evaluation
that takes the user’s perspective into account.

Even if we combined all these approaches, the result
would still not be the best way to evaluate NLIDBs. There-
fore, we will conclude with a brief outlook on what is
still needed and what would be possible in this area.

As mentioned before, it would probably boost the us-
age of the approaches if they allowed for direct/easy use.
Enforcing this is not an inherent part of a benchmark but
could be done as part of the setup of a shared task.

Much more difficult but probably also even more im-
portant is taking the user’s perspective into account. One
way to do so could be end-to-end benchmarks that do not
only evaluate the translation accuracy but the real perfor-
mance in a data exploration task from input to the output
(SparC and especially CoSQL do this to some extend).
But there are many other highly interesting questions:
We can measure the accuracy of a system like an NLIDB,
but what accuracy should we strive for? Are all errors
equally bad? Can a slightly wrong translation still be
sufficient? What is the influence of a suboptimal transla-
tion? Will the user be satisfied by a system with 100%
translation accuracy? Or do they expect something that
cannot be accomplished even by perfectly working sys-
tems? Answering such questions is hard, it can probably
not always be automated and it is difficult to frame the

answer as a bunch of numbers. Yet, a framework to asses
a system in respect to these kind of questions would help
to better decide on which improvements it is worth to fo-
cus. We therefore hope that this user perspective will be
considered more regularly in computer science research—
not as a separate field of research but an integral part to
drive research in an direction that is suitable to support
humans best in whatever they want to accomplish.

6. Conclusion
In this paper, we analyzed the reproducibility and prepa-
ration for use in further research of the submissions to
the Spider, SparC and CoSQL challenges. Unfortunately,
we found that only for about 40% of the submissions
code is available and for even fewer submissions artifacts
like pre-trained model dumps are provided. Additionally,
the code is in most cases only capable to do the batch
translation of specific data required for the evaluation
scripts of the challenges but not prepared for use on other
real world data. We therefore presented a prototypical
API implementation called UniverSQL that provides a
simple interface for NL to SQL translation and boils down
the task of adapting an approach for individual transla-
tion to implementing a simple wrapper class. The imple-
mentation is provided as open source software. Finally,
we analyzed further shortcomings of Spider and other
benchmarks and advocated for a stronger user perspec-
tive when designing similar benchmarks in the future.
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