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Abstract

This paper describes the participation of the DUTH-ATHENA team of Democritus University of Thrace
and Athena Research Center in the eRisk 2021 task, which focuses on measuring the level of depression
based on Reddit users’ posts. We address this task using both feature-based and fine-tuning strategies for
applying BERT-based representations. In the feature-based approaches, we examine the possibilities of a
SBERT model based on RoBERTHa, pre-trained on Natural Language Inference (NLI) data and fine-tuned
on STSb dataset to leverage transfer learning to depression-level estimation, and we achieve promising
results. One of our runs ranks first in Average Hit Rate (AHR), while the others rank among the best four
in the other evaluation metrics. Also, for the fine-tuning approach, we propose two predictive models
that are built upon RoBERTa, which provide directions for future optimizations.
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1. Introduction

In the last decade, the social interactions taking place in the digital world have increased [1].
This development expands the potential of monitoring systems that detect users who suffer
from mental health conditions. Several studies have focused on this purpose using data from
social media platforms, such as Facebook [2], Twitter [3], Reddit [4], and others. CLEF eRisk!
contributes in this direction.

CLEF’s eRisk lab [5] launched in 2017 introducing the test collection and evaluation metrics
proposed in [6]. Since 2017, the eRisk shared tasks pave the way for early detection of signs
of depression, self-harm, and anorexia [7]. Recently, a new challenge proposed concerning
pathological gambling.

Since 2019, eRisk organizes a task oriented to automatically filling a depression questionnaire
based on user interactions in social media. The Beck’s Depression Inventory (BDI) questionnaire
[8] consists of 21 questions which assess the presence of feelings and mental states, such as:

« Sadness, pessimism, agitation, irritability, guilty, and punishment feelings.
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« Self-dislike, self-criticalness, worthlessness, tiredness, and indecisiveness.
« Changing in sleep patterns and appetite.

+ Loss of pleasure and energy, loss of interest in sex and in general.

« Crying, failure, concentration difficulty, suicidal thoughts and wishes.

The performance of the approaches proposed in previous years to handle this task can be
found in [9, 10]. Our approaches that are discussed in this paper are based on modifications of
the BERT model [11]. We addressed the eRisk task as a downstream task and deployed both
of the existing strategies for applying pre-trained language representations to it (i.e. feature-
based and fine-tuning). Regarding the first one, we extract Reddit post representations from a
SBERT pre-trained model [12] on the basis of which we build the predictive models. Regarding
fine-tuning, we update the parameters of a RoOBERTa pre-trained model [13] using the datasets
provided by eRisk in previous years.

This paper is structured as follows. In Section 2, an overview of related works is provided.
In Section 3, we describe the given eRisk datasets. In Section 4, we present our approaches to
measuring the severity of depression signs. In Section 5, we present and discuss our scores
in comparison with the best ones. Finally, in Section 6, we summarize our contributions and
present some thoughts for future work.

2. Related Work

Some previous contributions [14, 15, 16, 17] to the eRisk shared tasks employed standard
machine learning models, such as SS3 [18], topic modeling algorithms (LDA [19] and Anchor
[20]), and neural models (Contextualizer [21], Deep Averaging Network [22], RNN [23], CNN
[24, 25, 26], and BiLSTM [27, 28, 29]).

Several studies (e.g., [30]) suggest that pre-training a language model on a large corpus can
provide widely applicable representations of words, which can be used in related tasks. These
language models encode textual data into high dimensional vector representations, which are
known as embeddings. In this way, the problem of lack or inadequacy of task-dedicated training
data could be alleviated.

Some authors [31, 32] took advantage of these methods to automatically extract signals from
social media activity concerning depression and anorexia. Some of them included pre-trained
representations, extracted from GloVe [33], BERT [11] or Universal Sentence Encoder [34], as
additional features to their task-specific architectures, whilst others [35, 36] fine-tuned OpenAl
GPT [37] and XLM [38] pre-trained models.

3. Dataset

The task 3 of eRisk 2021 is a continuation of 2019’s task 3 and 2020’s task 2. The datasets of
the two previous years are annotated and provided by the organizers upon request. In other
words, the subjects’ answers to the 21 questions of the BDI questionnaire are known. Thus, we
utilized this data to evaluate our methods and select the best-performing ones for the eRisk
2021 challenge. Moreover, the approaches needed training or fine-tuning are solely based on



eRisk 2019 and 2020 datasets. Table 1 shows the number of subjects and their posts per year.
Their depression categories to which they belong vary from year to year, as shown in Figure 1.

Table 1
Makeup of the eRisk datasets.

# of subjects  # of posts

eRisk 2019 (Task 3) 20 10,941
eRisk 2020 (Task 2) 70 35,562
eRisk 2021 (Task 3) 80 30,787
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Figure 1: Statistics on eRisk subjects’ depression categories.

4. Methods

Our approaches to leverage transfer learning are based on Bidirectional Encoder Representations
from Transformers (BERT) [11]. The BERT model has been pre-trained on BookCorpus [39] and
English Wikipedia on two objectives: Masked Language Model (MLM) [40] and Next Sentence
Prediction [41, 42]. Furthermore, it is available in two different architectures:

« BERTgasE (number of layers=12, hidden size=768, number of self-attention heads=12)
« BERTLarGe (number of layers=24, hidden size=1024, number of self-attention heads=16)



Table 2

Experiments with SBERT models using the eRisk 2019-20 datasets. The names of the models are en-
coded as follows: (base model)-(architecture)-(data used for pre-training)-(optional: data used for fine-
tuning)-(pooling strategy). The evaluation measures are defined in Section 5.

SBERT model AHR ACR ADODL DCHR
bert-base-nli-cls-token 2413%  60.07%  74.92%  24.44%
bert-base-nli-max-tokens 28.47% 61.90% 80.00%  24.44%
bert-base-nli-mean-tokens 2540% 59.70% 74.87% 17.78%
bert-base-nli-stsb-mean-tokens 27.67% 60.78%  76.72%  21.11%
bert-large-nli-cls-token 2693% 61.66% 77.21%  21.11%
bert-large-nli-max-tokens 28.10% 59.19%  78.84%  22.22%
bert-large-nli-mean-tokens 26.98% 60.83%  77.44%  25.56%
distilbert-base-nli-stsb-mean-tokens 28.25% 61.57%  78.15%  25.56%
distilbert-base-nli-stsb-quora-ranking ~ 26.88%  59.42%  7991%  26.67%
roberta-base-nli-stsb-mean-tokens 28.10% 64.78% 79.52%  27.78%

roberta-large-nli-stsb-mean-tokens  26.98% 63.81% 81.27% 36.67%

best scores 28.47%  64.78% 81.27% 36.67%

Every input sequence to BERT consists of tokens derived from the WordPiece [43] algorithm.
The key advantage of this language representation model is that it overcomes the unidirection-
ality constraint of the previous ones (e.g., OpenAl GPT [37] and GloVe [33]). Moreover, it has
been proved effective for fine-tuning and feature-based approaches [11]. We examine both of
these strategies for our proposed approaches for the task 3 of eRisk 2021.

The Robustly Optimized BERT Pretraining Approach (RoBERTa) [13] has been trained longer
on extended sequences, with bigger batches, and over more data. More specifically, its pre-
training corpus also includes CC-News (portion of the CommonCrawl News dataset [44]),
OpenWebText [45], and Stories [46]). Furthermore, there are some modifications to the training
procedure (dynamic masking instead of static, no NSP loss, large mini-batches, and larger
byte-level Byte-Pair Encoding (BPE) [47]).

Sentence-BERT (SBERT) [12] is an adaptation of pre-trained BERT and RoBERTa networks
aiming to capture better sentence embeddings. For this purpose, it adds a pooling operation
to the output of these models. To draw conclusions about the most appropriate SBERT model,
we evaluate the performance of various SBERT models with respect to the predictive model
described in Section 4.1 using the eRisk 2019 and 2020 datasets. The results are presented
in Table 2. Our findings led us to use in our approaches a SBERT pre-trained model based
on RoBERTa; argg, Which was pre-trained on the combination of the Stanford NLI [48] and
Multi-Genre NLI [49] and then fine-tuned on the STS benchmark dataset [50], with a mean-pool
layer on the output to map subjects’ posts to a vector space.

Overall, we mainly propose three approaches:

1. Feature-based transfer learning without using any training data
2. Feature-based transfer learning in combination with machine learning classification
3. Transfer learning with fine-tuning

The details of these approaches are presented in the following subsections.



4.1. Feature-based transfer learning without using any training data

In this approach, we use the aforementioned SBERT pre-trained model (max input sequence=128
tokens, i.e. padding the shorter and truncating the end of the longer sequences) to get the vector
representation of Reddit posts which belong to the eRisk 2021 subjects. Similarly, we encode
the responses to the BDI questionnaire into embeddings.

Next, we map subjects to the same vector space by calculating the mean of each feature of the
post embeddings. Finally, we compare the vector of each subject with the vectors of the possible
responses to each question in order to select the one with the maximum cosine similarity. The
flowchart of this approach is shown in Figure 2.
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Figure 2: A flowchart of feature-based transfer learning approach without using any training data.

4.2. Feature-based transfer learning in combination with machine learning
classification

This approach is quite similar to the previous one. We initially follow the same procedure to
get the eRisk 2019 and 2020 subjects embeddings. However, this time, we use them as a training
set to perform machine learning classification. The target variables for each subject are the
21 values (varying from 0-3 or 0-6 depending on the question) corresponding with his/her
responses to the BDI questionnaire. Then, we apply the eRisk 2021 subjects embeddings as
input to the derived trained model to make our predictions by filling in the BDI questionnaire
per subject. The flowchart of this approach is shown in Figure 3.

The best-performing machine learning algorithms for this approach were selected utilizing
the eRisk 2019 and 2020 datasets and using 10-fold cross-validation. Our experiments with
various known classifiers are shown in Table 3. Slightly superior results are achieved with the
AdaBoost [51], Linear SVM [52], and Naive Bayes [53] classifiers. Thus, we decided to employ
the former two for our submitted runs.
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Figure 3: A flowchart of feature-based transfer learning approach in combination with machine learn-
ing classification.

Table 3
Experiments with various known classifiers using eRisk 2019-20 datasets and 10-fold cross-validation.
Evaluation metrics are defined in Section 5.

Classifier AHR ACR ADODL DCHR
Nearest Neighbors  35.29%  68.14%  78.64%  28.33%
Linear SVM 40.95% 72.00% 80.64%  28.00%
RBF SVM 38.75%  69.81% 76.87% 20.76%
Gaussian Process 3416% 67.76% 80.82% 26.67%
Decision Tree 31.79%  66.10% 81.91% 25.67%
Random Forest 39.19% 71.24%  81.55%  30.67%
Neural Net 36.59% 70.10%  82.48%  34.67%
AdaBoost 35.17%  68.76% 83.21% 35.00%
Naive Bayes 37.20% 69.67%  82.34%  36.67%
best scores 40.95%  72.00% 83.21% 36.67%

4.3. Transfer learning with fine-tuning

In this approach, we employ the eRisk 2019 and 2020 datasets as training set to fine-tune
(epochs=3, batch size=32, and learning rate=2e-5) the RoOBERTagasg pre-trained model (max
input sequence=128 tokens, i.e. padding the shorter and truncating the end of the longer
sequences) to a classification task. To this end, we assigned subjects’ BDI responses to each
of their posts as target variables. A different fine-tuned model derived for each question, that
outputs for each post of eRisk 2021 the probability of being related to each response.

Finally, in order to make the transition from post-level to subject-level, we apply two different
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Figure 4: A flowchart of fine-tuning approach.

methods. In the first method, we calculate the mean probabilities per subject and select the
response with the maximum mean probability, while in the second one, we simply select the
response with the maximum probability per subject. The flowchart of this approach is shown
in Figure 4.

5. Evaluation

In order to determine the subjects’ depression level based on the BDI questionnaire, the responses
to each question (out of 21 questions in total) are associated with integer values (i.e., 0-3). The
sum of these 21 values is used to determine the depression level of a subject. The depression
categories are associated with the depression levels in the following way:

+ Minimal depression (depression levels 0-9)

« Mild depression (depression levels 10-18)

« Moderate depression (depression levels 19-29)
« Severe depression (depression levels 30-63)

The evaluation measures used by the organizers of this eRisk task to assess the performance
of the submitted runs are as follows:

« Average Hit Rate (AHR): Reflects the accuracy of the responses to the BDI questionnaire
submitted by the participants.

« Average Closeness Rate (ACR): Captures the deviation of the submitted responses from
the real ones.

« Average Difference between Overall Depression Levels (ADODL): Captures the deviation
of the sum of response values from the actual sum.

« Depression Category Hit Rate (DCHR): Reflects the accuracy of the depression category
resulting from the sum of the submitted responses.



Table 4
Evaluation of DUTH-ATHENA’s submissions. The best result across all participants for each measure
is shown in the last line for comparison.

Run Approach  AHR ACR  ADODL DCHR
DUTH_ATHENA MaxFT 3rd 31.43% 64.86%  74.46%  15.00%
DUTH_ATHENA MeanFT 3rd 32.02% 65.63%  73.81%  12.50%
DUTH_ATHENA MeanPosts 18t 25.06% 6397%  80.28%  30.00%
DUTH_ATHENA MeanPostsAB 2nd 33.04% 67.86% 80.32%  27.50%
DUTH_ATHENA MeanPostsSVM 2nd 35.36% 67.18%  7397%  15.00%
best scores 35.36% 73.17% 83.59% 41.25%

We also used the aforementioned measures to evaluate our experiments in the eRisk 2019 and
2020 datasets. Thus, we came up with the proposed runs for the first two approaches (Section 4.1
and 4.2). The third approach was quite time-consuming due to high computational cost and we
could not afford to evaluate our methods.

5.1. Results

The evaluation of DUTH-ATHENA’s submissions on the eRisk 2021 Task 3 are shown in Table 4.
The second approach with the SVM classifier (MeanPostsSVM) achieved the highest score in
terms of AHR, which is the most stringent measure. The same approach with the AdaBoost
classifier (MeanPostsAB) ranked third among the 35 runs in ACR and ADODL.

Another promising finding was that the first approach (MeanPosts) performed well on
predicting the depression levels and categories. In fact, this run ranked fourth in ADODL and
DCHR among all submissions and first in DCHR among ours. This is remarkable since no
annotated, task-dedicated data was used and the computational cost and execution time were
the lowest among our runs. Finally, regarding the third approach with fine-tuning (MaxFT and
MeanFT), the results are not comparable with the other two approaches because we utilized a
smaller model architecture, due to computational limitations from our side, even thought we
were expecting poorer results [13].

6. Conclusion

This paper presented our transfer learning approaches submitted to eRisk 2021 Task 3 utilizing a
BERT-based pre-trained language model for a classification task that aims to automatically fill a
depression questionnaire. The approaches utilize both feature-based and fine-tuning strategies.
While our proposed models did not achieve high scores on all evaluation measures, we observed
that this is a widespread problem among most of the submissions of the participants that maybe
reflects the difficulty of the task. The modest performance of our third approach may be a result
of the smaller model architecture or the matching of the subject’s ground truth with all of their
posts.

Nevertheless, we found that feature extraction from BERT-based pre-trained models achieved



the best accuracy compared to the other participants’ approaches. This suggests that further
research in this direction could lead to promising outcomes. Future research should consider this
potential more carefully, for example, experimenting with more and state-of-the-art pre-trained
language models, such as Big Bird [54], and/or even more machine learning classifiers.
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