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Abstract  
Social media growth in recent years has facilitated an enhancement in human communication. 

Platforms such as Facebook and Twitter are now ever-present in our lives, influencing how we 

speak, think and act. The growth of fake news greatly impacts this phenomenon as it lowers 

one’s trust in the content presented. One such example is related to the 2016 U.S. presidential 

election campaign where fake news was a deciding factor in tipping the balance of power. It is 

hence of critical importance to develop tools that detect and combat such destructive content. 

CLEF 2021 CheckThat! Task 3 tries to address the problem of fake news, posing a challenge 

to develop systems that could detect if the main claim made in an article is true, partially true, 

false, or other. Our team participated in this task with 5 models, ranking 6th place with an F1-

macro of 0.44 and a model based on Gradient Boosting; in this paper we will present our 

methods, runs and results but also discuss future work.  
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1. Introduction 

Recent advances in computing, that date at the beginning of the millennium, have drastically 

changed human interaction, people no longer tend to meet in real life to maintain contact with friends; 

furthermore, the COVID-19 pandemic has accelerated this movement by forcing everybody to dialogue 

via digital means for months at a time. The main facilitators of this movement are social media 

platforms, that have seen massive usage spikes in the past decade, radically changing how we speak, 

read news, watch videos and so on, this freedom however comes at a cost. Allowing everybody almost 

unlimited reachability and free hand to post however they please is a big advantage, but it is also very 

dangerous; the classical example is related to the 2016 U.S. presidential election campaign where a 

mixture of social profiling and fake news have led to surprising electoral results (this result contrasts 

with the 2020 U.S. elections where social media platforms have banned many ads2). Considering the 

previous argument, it is obvious that we need automated methods that analyze the posts and flag them 

for fake or misleading content. 

CLEF CheckThat! 2021 Task 3a [1] [2] [17] [18] has exactly the goal expressed in the previous 

section; the task definition been that: “given the text of a news article, determine whether the main 

claim made in the article is true, partially true, false, or other (e.g., claims in dispute) and also detect 
the topical domain of the article”. In the competition we submitted 5 different models and overall ranked 

6th.  

This paper describes the participation of team UAICS, from the Faculty of Computer Science, 

“Alexandru Ioan Cuza” University of Iasi, in Task 3a at CLEF 2021. The remaining of this paper was 

organized as follows: Section 2 details the models we developed and the submitted runs and then 
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Section 3 details the results we obtained and finally Section 4 concludes this paper and presents future 

work. 

2. Methods and runs 

In this section we will detail the submitted models; 5 models have been developed in the search of 

finding the best one, we relied on state-of-the-art methods such as LSTM, Bi-LSTM, BERT, RoBERTa 

but also experimented with a few novel methods based on more traditional techniques such as Gradient 

Boosting, Naïve Bayes, KNN and Random Forest. In future sections we will take a look at state-of-the-

art techniques, analyze the dataset as well as discuss our models and preprocessing. 

 

2.1. State of the art 

Research interest in fake news classification has grown exponentially in just a few years. 

Identification efforts have been very diverse but they all can be summarized in 3 big categories as [3] 

outlines: creator and user analysis, social context analysis and news content analysis. 

Creator and user analysis focuses on extensive analysis of user accounts in order to identify 

malicious behaviors. Malicious user accounts behave differently from authentic users; thus, 

identification is possible. Different user categorization can be achieved using different techniques: user 

profiling analysis [4][5], temporal and posting behavior analysis [6], credibility-related analysis [7], 
and sentiment-related analysis [8]. Considering user information was not available in the CheckThat! 

dataset, these techniques would not have been possible to apply. 

Social context analysis tries to study how the news disseminates in the social environment, meaning 

how quick and wide the data is share/distributed and how users interact with each other, having 2 big 

research areas: user network analysis (users with high interaction with the news creator can be used to 

predict the truthfulness of the news) [9] and distribution pattern analysis (analysis of the information 

spread in the network) [10]. Just like creator and user analysis, social analysis is not feasible on this 

task, not to mention that this technique is not used often. Many approaches choose to analyze the news 

itself. 

News content analysis in contrast to creator and user analysis does not focus on who posts rather on 

what they post. In [11] they used a multitude of neural networks in combination with GloVE embedding 

to predict the label of a news article; the best result was with a Bi-LSTM, accuracy of 0.91, but notable 

results were obtained with CNN (0.90) and vanilla RNN (0.78). [12] takes a different approach based 

on machine learning, implying Naïve Bayes, Gradient Boosting and Random Forest in order to identify 

a series of 10000 tweets collected in August 2012, concluding that Random Forest is the best algorithm 

with an accuracy of 96%. Finally [13] uses the most novel techniques at this time, BERT [14]; they 

start off by tokenizing the input string, then padding after which feeding it to a pre-trained large cased 

BERT model to perform the classification which yields an accuracy of 0.69 on a test dataset. 

Knowing thus what the best models are but also what their limitations were we proceeded with 

training them in order to see a result.  

2.2. Training and test dataset analysis 

The training and test dataset have been provided by the organizers and examples can be seen in 

Table 1 and 2. The training dataset consisted of 945 labeled articles and the test dataset had 365 

unlabeled articles. This small number of articles proved to be a disadvantage to neural network models 

as we did not use any other additional datasets. 

  



 

Table 1 
Training dataset example 

public_id text title our rating 

c7ea6a6e New evidence ties 
COVID-19 creation to 
research funded by 

Fauci? 

Flooding of Coast, 
Caused by Global 

Warming, Has Already 
Begun. 

False 

Table 2 
Training dataset example 

public_id text title 

58bea1db Second patient cured 
of HIV, say doctors. 

Lisa Page Squeals: DNC 
Server Was Not 

Hacked By Russia. 
 

In Figure 1 a dataset analysis is done; taking the Task 3a batches we plot them in order to gain 

some insight in the collection. In the left size of the figure a word cloud view of most frequent words 

in the dataset has been build, with the biggest topics being related to politics and COVID-19. The 

right part of the figure also confirms the latter assumption as there we can see the most frequent 

words, such as “trump”, “covid19” and so on (the plots have been done with tokenized data). 

A problem that was identified early on and will greatly impact the results is relat-ed to label 

imbalance. Figure 2 shows in different representations how many articles are available with a certain 

label, unfortunately since False is the most common one, automatically the algorithms will be biased 

in that direction (0-False, 1-Other, 2-Partially False, 3-True). 

 

 
Figure 1: Left – word cloud view of most frequent words in the dataset; Right – Bar Plot of most 
frequent words in the dataset. 

 
Figure 2: Label distribution in the dataset (0 - False, 1 - Other, 2 - Partially False, 3 - True). 



2.3. Models 
2.3.1. 3Layer Model 

The first model, and the one which proven to be the most performant, has been named “3Layer 

Model” because of its use of 3 different preprocessing methods and 3 different Machine Learning 

algorithms used. 

In the data preparation phase, there have been a series of alterations over the dataset. The public_id 

field has been removed, the two training batches have been combined as well as the title field and text, 
punctuation signs have been removed as well as stop-words, dashed and underscores and lastly the text 

has been lowercased and lemmatized. 

The feature extraction phase consisted of three approaches: 

• Clean text is a bigram (a contiguous sequence of n items, where n is 2), the training column will be called 

clean_text; 

• POS Tagging on text column using spaCY3 to obtain the POS form), the training column will be called 

POS_text; 

• Semantic Analysis is done using Stanford’s Empath Tool4 [15] to categorize the words in the articles by 

their lexicon and approximate which articles that are fake predominantly use a certain lexicon (this column 

was named semantics_text). An example can be seen in appendix A. 

Besides the three aforementioned techniques we created a fourth one by weighting them as follows: clean_text: 

0.5, POST_tagging: 0.15 and semantic_text: 0.35 (these values have been determined experimentally). 

On the columns mentioned earlier, clean_text, POS_text and semantics_text, in order to feed the data to the 

M.L. algorithms we applied TF-IDF. 

As for the models used, they consisted of Naïve Bayes, KNN, Random Forest and Gradient 

Boosting. In the results section we will discuss the hyperparameter tuning in relationship to the result; 

in the end the most performant variant consisted of Gradient Boosting combined with the weighted 

representation of clean text, POS tagging and semantic analysis. 

2.3.2. BERT 

Another model developed is based on BERT which yielded great results in many state of the art 

systems [13]. 

Data preparations for this method consisted of shuffling the training articles, concatenation of the 

batches, merging the title and text columns and eliminating public_id (it was redundant to training). 

Other operations have consisted of punctuation signs removal, lemmatization, mandatory text padding 

and a special BERT tokenizing process. 

As for the model, we used bert-large-uncased (24-layer, 1024 hidden dimensions, 16 attention 

heads, 336M parameters) from HuggingFace5 and begun the fine-tuning process. A problem 

immediately apparent was the size of the dataset as BERT requires many training entities. We used 

AdamW Optimizer (fine-tuned the learning rate as well as possible, 6e-6 yielding the best results), 3 
epochs and a batch size of 3. 

Figure 2 presents the Training and Validation loss over the epochs; training set contained 70% of 

the data, 20% for testing and 10% for validation. Apendix B shows a snippet of the BERT classifier. 
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Figure 3: Training and Validation loss of BERT. 

2.3.3. RoBERTa 

Since RoBERTa [16] proves to be better than BERT in some scenarios, we were eager to use it and 

compare the results. The pre-trained RoBERTa has been taken from HuggingFace as well, we used the 

model ‘roberta-base’6. 

The data processing is similar to BERT. The dataset has been split as follows: 70% of data is for 

training, 20% testing and 10% validation. Hyperparameters used are: text sequence is 256, batches are 

of 32 elements. Code samples are available in appendix C. 

2.3.4. LSTM 

The fourth implemented model is LSTM. Training and testing have been done on an 80-20 split. 

The data processing involves combining the title and text columns and then applying 

SnowballStemmer7 from NTLK8 to stem the text. The text has also been tokenized using Keras’s 

Tokenizer. 

Feature extraction uses Word2Vec as it preserves semantic meaning of words in documents, using 

the embedding matrix resulted we fed it to the model. 

The model is built with Tensorflow and it’s a combination of the following layers: 

• Embedding layer; 

• Dropout layer with a dropout rate of 0.3; 

• LSTM layer with 100 units with a recurrent dropout (fraction of the units to drop for the linear transformation 

of the recurrent state) of 0.2 and a dropout of 0.2 (fraction of the units to drop for the linear transformation 

of the inputs); 

• Dense layer with 4 units (because we predict 4 labels) and using SoftMax activation function. 

The loss function used was sparse categorical cross entropy with Adam optimizer. The total params of the 

model were 2,648,304. The optimum number of epochs found were 8 and the batch size 16. We used callback 

functions such as ReduceLROnPlateau9 to reduce the learning rate if the accuracy does not improve and early 

stopping to halt training if the model does not improve. 

2.3.5. Bi-LSTM 

The fifth and final implemented model is an improvement effort on the previous LSTM network. 

The dataset split was: 90% training and 10% validation. 
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The title and text columns were merged in a single column, just like all the models. The newly 

formed total column was then processed by removing every stop word and lemmatizing it using NLTK. 

Finally, the sentences were converted to lowercase and had their whitespaces removed. 

The text was tokenized using the Keras Tokenizer. The word index generated length was 27401. For 

extracting the features, we used GloVe embedding (Global Vectors for Word Representation) with 100 

dimensions. Training is performed on aggregated global word-word co-occurrence statistics from a 

corpus, and the resulting representations show case interesting linear substructures of the word vector 

space. 

For building the model we used Tensorflow. The model was build using the Bidirectional LSTM 

architecture. We experimented with a lot of combinations of layers but the one that gave the best results 

during the validation stage was the following (in order): 

• Embedding layer with the input dimension equaling the word index length (27401), output dimension 

equaling the number of embedding dimensions (100) and the input length equaling the maximum sentence 

length from the training test. 

• Bidirectional LSTM layer with 64 units and return sequences set to true. 

• Bidirectional LSTM layer with 32 units. 

• Dropout layer with dropout rate equaling 0.25 to better handle the overfitting due to the small dataset. 

• Dense layer with 4 units (because it predicts 4 labels) and softmax. 

The loss function we used was sparse categorical cross entropy with Adam optimizer. The total params of the 

model was 2,866,156. We experimented with many variations of values for the number of epochs and batch sizes, 

but the best performing was setting the number of epochs to 5 and the batch size to 32. 

3. Results 
3.1. 3Layer Model 

In this section we will discuss the results of the 3Layer model as well as parameter tuning on the models. 

Throughout Table 3 to 6 there have been experiments with each of the 3 feature extraction methods (clean text, 

POS tagging and semantic tags) as well as a weighted approach of the three; what worked best in the end is the 

weighed approach combined with Gradient Boosting, this combination earned us 6th place with a F1-macro of 

0.44. 

 

Table 3 
TF-IDF Vectorization on Cleaned Text 

Classifier Parameters Accuracy Macro Average 

Multinomial Naive-

Bayes 
alpha = 0.0 0.57 0.48 

K-Nearest Neighbors p=2, n_neighbors = 29, 

leaf_size = 45 
0.61 0.41 

Random Forest n_estimators = 1000, 

max_features = 'sqrt', 

max_depth = 50, 

min_samples_split = 2, 

min_samples_leaf = 2 

0.47 0.25 

Gradient Boosting n_estimators = 200 0.57 0.43 

 

  



Table 4 
TF-IDF Vectorization on POS Tags 

Classifier Parameters Accuracy Macro Average 

Multinomial Naive-

Bayes 
alpha = 0.0 0.48 0.23 

K-Nearest Neighbors p=2, n_neighbors = 29, 

leaf_size = 45 
0.52 0.37 

Random Forest n_estimators = 400, 

max_features = 'sqrt', 

max_depth = 30, 

min_samples_split = 

10, min_samples_leaf 

= 2 

0.54 0.35 

Gradient Boosting n_estimators = 200 0.58 0.44 

 

Table 5 
TF-IDF Vectorization on Semantic Tags 

Classifier Parameters Accuracy Macro Average 

Multinomial Naive-

Bayes 
alpha = 0.1 0.49 0.29 

K-Nearest Neighbors p=2, n_neighbors = 27, 

leaf_size = 12 
0.35 0.24 

Random Forest n_estimators = 200, 

max_features = 'sqrt', 

max_depth = 30, 

min_samples_split = 

10, min_samples_leaf 

= 1 

0.52 0.32 

Gradient Boosting n_estimators = 200 0.52 0.42 

 
Table 6 
TF-IDF Vectorization on All Three Representations, using a sparse matrix form 

Classifier Parameters Accuracy Macro Average 

Multinomial Naive-

Bayes 
alpha = 0.0 0.62 0.45 

K-Nearest Neighbors p=2, n_neighbors = 19, 

leaf_size = 6 
0.51 0.34 

Random Forest n_estimators = 1000, 

max_features = auto, 

max_depth = 30, 

min_samples_split = 

10, min_samples_leaf 

= 2 

0.57 0.39 

Gradient Boosting n_estimators = 200 0.59 0.48 

 

  



3.2. BERT 

 Table 6 highlight the performance of BERT; it is clear from this table that the best setup is with 

3 epochs, yielding an F1 of 0.5 on the training dataset split. 

 

Table 7 
Validation accuracy of BERT on the training dataset split. 

Epoch Training 

loss 
Validation 

loss 
Validation 

accuracy 
Validation 

F1 
Training 

Time 
Validation 

Time 

1 1.31 1.26 0.50 0.50 0:00:44 0:00:02 

2 1.29 1.25 0.48 0.48 0:00:47 0:00:03 

3 1.25 1.24 0.50 0.50 0:00:50 0:00:03 

3.3. RoBERTa 

 RoBERTa accuracy is very different, depending on the label; the F1-macro is 0.37. In Table 9 

we can see a confusion matrix of the model, unfortunately the imbalance of label has left the system 

unable to predict ‘other’ label, it is only good at ‘false’ and ‘partially false’. 

 

Table 8 
Classification report for RoBERTa on training data 

RoBERTa Precision Recall F1 Support 

False 0.65 0.85 0.74 97 

True 0.35 0.20 0.26 30 

Partially 

false 
0.50 0.49 0.49 47 

Other  0.00 0.00 0.00 15 

Accuracy   0.59 189 

Macro avg 0.38 0.38 0.37 189 

Weighted 

avg 

0.51 0.59 0.54 189 

 
Table 9 
Confusion matrix for RoBERTa on training data. 

Other 0 3 2 10 

Partially 

False 
0 23 4 20 

True 0 10 6 14 

False 0 10 5 82 

 Partially 

False 

False True Other 

 

3.4. LSTM 

The accuracy and loss measured for this model are 0.563157 and 1.405469. 



Table 10 
Confusion matrix for LSTM on training data. 

Partially 

false 
23 25 5 0 

False 10 78 4 0 

True 9 12 6 0 

Other 3 14 1 0 

 Partially 

False 

False True Other 

 

3.5. Bi-LSTM 

The results were not the best, mainly to the fact that, the dataset was small, the F1-macro for this model 

has been measured at 0.33. 

Table 11 
Classification report for Bi-LSTM on training data. 

Bi-LSTM Precision Recall F1 Support 

False 0.58 0.73 0.64 92 

True 0.43 0.11 0.18 27 

Partially 

false 
0.46 0.58 0.52 53 

Other  0.00 0.00 0.00 18 

Macro avg 0.37 0.36 0.33 190 

Weighted 

avg 

0.47 0.53 0.48 190 

 
Table 12 
Confusion matrix for Bi-LSTM on training data. 

False 67 1 24 0 

True 14 3 10 0 

Partially 

false 
21 1 31 0 

Other 14 2 2 0 

 False True Partially 
False 

Other 

 

3.6. Results conclusions 

To conclude the results section, we had 5 models, the best approach seems to be the 3Layer 

weighted method that officially has an F1-macro of 0.44. We were unable to calculate the other 

scores with the gold label and the organizers did not provide a ranking. Mostly the results seem to 

revolve around a score of 0.5 which is in part related to the small dimension of the dataset and the fact 

that many of our models relied on neural network which require large training sets. 



4. Conclusions 

To conclude, in this paper we presented our run at the CLEF 2021 Task 3a; our best method had a 

F1-macro of 0.44 ranking us 6th. We proposed multiple mod-els based on different methods, for future 

work we plan on increasing the dataset as well as create a system based on inference so that the article 

content will be verified using different ontologies. 
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Apendix A 

lexicon.analyze("he hit the other person", normalize=True) 

# => {'help': 0.0, 'office': 0.0, 'violence': 0.2, 'dance': 0.0, 'money': 0.0, 'wedding': 0.0, 'valuable': 0.0, 

'domestic_work': 0.0, 'sleep': 0.0, 'medical_emergency': 0.0, 'cold': 0.0, 'hate': 0.0, 'cheerfulness': 0.0, 

'aggression': 0.0, 'occupation': 0.0, 'envy': 0.0, 'anticipation': 0.0, 'family': 0.0, 'crime': 0.0, 'attractive': 0.0, 

'masculine': 0.0, 'prison': 0.0, 'health': 0.0, 'pride': 0.0, 'dispute': 0.0, 'nervousness': 0.0, 'government': 0.0, 

'weakness': 0.0, 'horror': 0.0, 'swearing_terms': 0.0, 'leisure': 0.0, 'suffering': 0.0, 'royalty': 0.0, 'wealthy': 0.0, 

'white_collar_job': 0.0, 'tourism': 0.0, 'furniture': 0.0, 'school': 0.0, 'magic': 0.0, 'beach': 0.0, 'journalism': 0.0, 

'morning': 0.0, 'banking': 0.0, 'social_media': 0.0, 'exercise': 0.0, 'night': 0.0, 'kill': 0.0, 'art': 0.0, 'play': 0.0, 

'computer': 0.0, 'college': 0.0, 'traveling': 0.0, 'stealing': 0.0, 'real_estate': 0.0, 'home': 0.0, 'divine': 0.0, 'sexual': 

0.0, 'fear': 0.0, 'monster': 0.0, 'irritability': 0.0, 'superhero': 0.0, 'business': 0.0, 'driving': 0.0, 'pet': 0.0, 'childish': 

0.0, 'cooking': 0.0, 'exasperation': 0.0, 'religion': 0.0, 'hipster': 0.0, 'internet': 0.0, 'surprise': 0.0, 'reading': 0.0, 

'worship': 0.0, 'leader': 0.0, 'independence': 0.0, 'movement': 0.2, 'body': 0.0, 'noise': 0.0, 'eating': 0.0, 'medieval': 

0.0, 'zest': 0.0, 'confusion': 0.0, 'water': 0.0, 'sports': 0.0, 'death': 0.0, 'healing': 0.0, 'legend': 0.0, 'heroic': 0.0, 

'celebration': 0.0, 'restaurant': 0.0, 'ridicule': 0.0, 'programming': 0.0, 'dominant_heirarchical': 0.0, 'military': 0.0, 

'neglect': 0.0, 'swimming': 0.0, 'exotic': 0.0, 'love': 0.0, 'hiking': 0.0, 'communication': 0.0, 'hearing': 0.0, 'order': 

0.0, 'sympathy': 0.0, 'hygiene': 0.0, 'weather': 0.0, 'anonymity': 0.0, 'trust': 0.0, 'ancient': 0.0, 'deception': 0.0, 

'fabric': 0.0, 'air_travel': 0.0, 'fight': 0.0, 'dominant_personality': 0.0, 'music': 0.0, 'vehicle': 0.0, 'politeness': 0.0, 

'toy': 0.0, 'farming': 0.0, 'meeting': 0.0, 'war': 0.0, 'speaking': 0.0, 'listen': 0.0, 'urban': 0.0, 'shopping': 0.0, 

'disgust': 0.0, 'fire': 0.0, 'tool': 0.0, 'phone': 0.0, 'gain': 0.0, 'sound': 0.0, 'injury': 0.0, 'sailing': 0.0, 'rage': 0.0, 

'science': 0.0, 'work': 0.0, 'appearance': 0.0, 'optimism': 0.0, 'warmth': 0.0, 'youth': 0.0, 'sadness': 0.0, 'fun': 0.0, 

'emotional': 0.0, 'joy': 0.0, 'affection': 0.0, 'fashion': 0.0, 'lust': 0.0, 'shame': 0.0, 'torment': 0.0, 'economics': 0.0, 

'anger': 0.0, 'politics': 0.0, 'ship': 0.0, 'clothing': 0.0, 'car': 0.0, 'strength': 0.0, 'technology': 0.0, 'breaking': 0.0, 

'shape_and_size': 0.0, 'power': 0.0, 'vacation': 0.0, 'animal': 0.0, 'ugliness': 0.0, 'party': 0.0, 'terrorism': 0.0, 

'smell': 0.0, 'blue_collar_job': 0.0, 'poor': 0.0, 'plant': 0.0, 'pain': 0.2, 'beauty': 0.0, 'timidity': 0.0, 'philosophy': 

0.0, 'negotiate': 0.0, 'negative_emotion': 0.0, 'cleaning': 0.0, 'messaging': 0.0, 'competing': 0.0, 'law': 0.0, 'friends': 

0.0, 'payment': 0.0, 'achievement': 0.0, 'alcohol': 0.0, 'disappointment': 0.0, 'liquid': 0.0, 'feminine': 0.0, 'weapon': 



0.0, 'children': 0.0, 'ocean': 0.0, 'giving': 0.0, 'contentment': 0.0, 'writing': 0.0, 'rural': 0.0, 'positive_emotion': 0.0, 

'musical': 0.0} 

 

  



Apendix B 

 

class BertClassifier(nn.Module): 

    def __init__(self, dropout=0.1): 

        super(BertClassifier, self).__init__() 

        self.bert = BertModel.from_pretrained('bert-base-uncased') 

        self.dropout = nn.Dropout(dropout) 

        self.linear = nn.Linear(768, 1) 

        self.sigmoid = nn.Sigmoid() 

    def forward(self, tokens, masks=None): 

        _, pooled_output = self.bert(tokens, attention_mask=masks, output_all_encoded_layers=False) 

        dropout_output = self.dropout(pooled_output) 

        linear_output = self.linear(dropout_output) 

        proba = self.sigmoid(linear_output) 

        return proba 

  



Apendix C 

class ROBERTA(torch.nn.Module, Model): 

    def __init__(self, text, dropout_rate=0.4): 

        super(ROBERTA, self).__init__() 

        # Model.__init__(text) 

        self.text = text 

        self.tokenizer = RobertaTokenizer.from_pretrained("roberta-base") 

        self.roberta = RobertaModel.from_pretrained('roberta-base',return_dict=False, num_labels = 4) 

        self.d1 = torch.nn.Dropout(dropout_rate) 

        self.l1 = torch.nn.Linear(768, 64) 

        self.bn1 = torch.nn.LayerNorm(64) 

        self.d2 = torch.nn.Dropout(dropout_rate) 

        self.l2 = torch.nn.Linear(64, 4) 
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