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Abstract  
In this paper, we consider the ABC cryptosystem based on multivariate polynomial systems 
which is one of the post-quantum cryptosystems. We review the theoretical structure of the 
ABC cryptosystem and implement it on the GPU by using the NVIDIA CUDA technology. 
We carry out the GPU and CPU implementation details of the ABC cryptosystem on three 
computers with different graphics cards. We also give a comprehensive comparison between 
the implementations. We compute the required number of arithmetic operations for each 
process: key generation, encryption and decryption. According to the experimental results, 
the GPU implementations have better memory performance than the CPU implementations. 
Moreover, the encryption process is faster in the GPU implementation. Due to the structure 
of ABC cryptosystem, the decryption process is slower in the GPU implementation. 
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1. Introduction 

Public-key encryption systems developed in the late 1970s are becoming a crucial component of 
communication networks. Especially with the spread of the internet, public key systems have become 
common with the key exchange in SSL (Secure Sockets Layer). Systems developed for the secure 
transmission and storage of information have enabled further study and development on public key 
encryption. However, it is thought that the classical public key encryption systems will lose their 
reliability when quantum computers working with very small cubits are developed and spread out. For 
this reason, it is essential to develop public key encryption systems that are resistant to quantum 
attacks. Besides, the reliability of the developed systems against quantum attacks should be tested.  

At present, the internet and the other communication systems are mainly based on the Digital 
Signature Algorithm (DSA), the Elliptic Curve DSA or the Diffie-Hellman key exchange using 
related algorithms, RSA encryption and digital signatures [1]. These cryptosystems guarantee their 
reliability due to the difficulty of several theoretical problems such as integer factorization, discrete 
logarithm, elliptic curves, etc. However, Peter Shor showed in 1994 that each of these problems could 
be solved with quantum computers in polynomial time [2]. For this reason, almost all the encryption 
methods we use will become insecure. Multivariate public key cryptography systems are supposed to 
be resistant to quantum computer attacks since they rely on a multivariate polynomials over finite 
fields that is an NP-hard problem [3, 4]. 
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1.1. Literature Survey 

When quantum computers of the required size are available, RSA [1], Diffie-Hellman, DSA and 
ECC (Elliptic Curve Cryptography), which are currently the most widely used public key encryption 
algorithms, will become insecure. The reason for this security problem is the fact that Shor [2] 
algorithm, which solves the factorization and the discrete logarithm problems in polynomial time on 
quantum computers, can be run quickly. Therefore, alternative methods to classical encryption 
methods based on mathematical problems against quantum computer attacks are required. There are 
currently five main classes that are believed to be resistant to quantum attacks: multivariate 
polynomial systems, lattice, abstract, code and isogeny based cryptography. In this study, the ABC 
cryptosystem using multivariate polynomial systems will be considered and the details about the GPU 
implementation developed using the NVIDIA CUDA technology will be given. 

The cryptosystems based on multivariate polynomials are becoming very fast due to the 
infrastructure they use, but multivariate polynomial systems generally require more memory due to 
the key size. This is advantageous for low-cost devices such as smart cards and RFID [5] chips. 
Although there are many practical multivariate signature schemes [6,7,8], the number of secure and 
efficient multivariate encryption schemes is low. 

Multivariate polynomial systems based cryptosystems are very attractive in the post-quantum 
world. GeMSS, LUOV, Rainbow, MQDSS and their derivations have been proposed [8,9,10,11]. 
ABC is an encryption method defined for the post-quantum world. Recently, a new simple and 
efficient multivariate public key encryption scheme based on matrix multiplication called "simple 
matrix scheme" was proposed. Then, ABC derivatives whose cubic polynomials are at least randomly 
quadratic were given. They showed that they broke it using algebraic attacks that were as difficult as 
solving an equation. A generalization of the ABC scheme using a non-square matrix instead of a 
square matrix was defined. A new ABC version that uses tensor multiplication of matrices to 
eliminate decoding errors was proposed. Optimized implementation of ABC by leveraging the 
features of the modern x64 CPU to increase productivity was provided [12]. 

1.2. Motivation and Contribution  

The security of the information obtained as a result of certain labor and the applications we use in 
our social and professional lives is vitally important. There are several encryption algorithms for the 
computers and for quantum computers that are currently prototypes. The ABC encryption algorithm 
based on multivariate polynomials is one of these algorithms. In this study, an implementation of the 
ABC encryption system which works on CPU and GPU has been developed to provide necessary 
security after quantum computers are available. We also give a comprehensive comparison between 
the implementations. 

The organization of the paper as follows: In Section 2, we recall basic parts of the ABC 
cryptosystem. In Section 3, we give implementation details as well as a comprehensive comparison. 
We conclude the paper in Section 4. 
  

2. ABC Cryptosystem 

In this section, the details of ABC cryptosystem is given. ABC is one of the quantum attack 
resistant cryptosystems. In [12], an efficient implementation of ABC cryptosystem was provided. 

The security of ABC cryptosystem depends on the hardness of the solution of multivariate 
polynomial systems. In a multivariate quadratic (MQ) polynomial system, there are 𝑚𝑚 equations             
 (1) − (𝑚𝑚) and 𝑛𝑛 variables as follows: 

𝑝𝑝(1)(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛) = ��𝑝𝑝𝑖𝑖𝑖𝑖
(1)

𝑛𝑛

𝑖𝑖=1

𝑥𝑥𝑖𝑖𝑥𝑥𝑖𝑖 + �𝑝𝑝𝑖𝑖
(1)𝑥𝑥𝑖𝑖 + 𝑝𝑝0

(1)
𝑛𝑛

𝑖𝑖=1

𝑛𝑛

𝑖𝑖=1

                                         (1) 



𝑝𝑝(2)(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛) = ��𝑝𝑝𝑖𝑖𝑖𝑖
(2)

𝑛𝑛

𝑖𝑖=1

𝑥𝑥𝑖𝑖𝑥𝑥𝑖𝑖 + �𝑝𝑝𝑖𝑖
(2)𝑥𝑥𝑖𝑖 + 𝑝𝑝0

(2)
𝑛𝑛

𝑖𝑖=1

𝑛𝑛

𝑖𝑖=1

                                          (2) 

. 

. 

. 

𝑝𝑝(𝑚𝑚)(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛) = ��𝑝𝑝𝑖𝑖𝑖𝑖
(𝑚𝑚)

𝑛𝑛

𝑖𝑖=1

𝑥𝑥𝑖𝑖𝑥𝑥𝑖𝑖 + �𝑝𝑝𝑖𝑖
(𝑚𝑚)𝑥𝑥𝑖𝑖 + 𝑝𝑝0

(𝑚𝑚)
𝑛𝑛

𝑖𝑖=1

𝑛𝑛

𝑖𝑖=1

                                     (𝑚𝑚) 

 
In MQ problem, the aim is to find �́�𝑥 = (�́�𝑥1, … , �́�𝑥𝑛𝑛) such that 𝑝𝑝(1)(�́�𝑥) = 0, … ,𝑝𝑝(𝑚𝑚)(�́�𝑥) = 0. It’s 

proved that MQ problem is NP-hard when 𝑚𝑚 ≅ 𝑛𝑛  over 𝐺𝐺𝐺𝐺(2). 
The encryption/decryption process of ABC cryptosystem is given in Figure 1. An invertible 

multivariate quadratic polynomial system is needed such as 𝐺𝐺:𝐺𝐺𝑛𝑛 → 𝐺𝐺𝑚𝑚. Then, to hide the linear 
structure of public key, linear transformations are used such as 𝐿𝐿1:𝐺𝐺𝑛𝑛 → 𝐺𝐺𝑛𝑛 and  𝐿𝐿2:𝐺𝐺𝑚𝑚 → 𝐺𝐺𝑚𝑚 . 
Then, the public key is formed as �́�𝐺 = 𝐿𝐿2𝑜𝑜𝐺𝐺𝑜𝑜𝐿𝐿1. The private key set includes 𝐿𝐿1,𝐺𝐺 and  𝐿𝐿2. ABC 
cryptosystem has three phases: key generation, encryption and decryption.  

 

 
Figure 1:The encryption/decryption process of ABC cryptosystem 
 
Key Generation : Let F be a finite field with q elements. Let 𝑠𝑠 ∈ 𝑆𝑆, 𝑛𝑛 = 𝑠𝑠2 and 𝑚𝑚 = 2𝑛𝑛. Then 
generate A, B, C matrices in the following form: 
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𝐺𝐺[𝑥𝑥1, … , 𝑥𝑥𝑛𝑛] is obtained by using (𝑥𝑥1, … , 𝑥𝑥𝑛𝑛) monomials. Then, by the linear combinations of 

(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛),  (𝑏𝑏1, … , 𝑏𝑏𝑛𝑛) and (𝑐𝑐1, … , 𝑐𝑐𝑛𝑛) are computed. 𝐸𝐸1 = 𝐴𝐴𝐵𝐵 and 𝐸𝐸2 = 𝐴𝐴𝐶𝐶 are calculated.  
Two invertible linear maps 𝐿𝐿2:𝐺𝐺𝑚𝑚 → 𝐺𝐺𝑚𝑚 and 𝐿𝐿1:𝐺𝐺𝑛𝑛 → 𝐺𝐺𝑛𝑛 are randomly chosen. Then, the public 
key is the composition �́�𝐺 = 𝐿𝐿2𝑜𝑜𝐺𝐺𝑜𝑜𝐿𝐿1:𝐺𝐺𝑛𝑛 → 𝐺𝐺𝑚𝑚. The private key includes B, C matrices and 𝐿𝐿1,  𝐿𝐿2 
linear transformations.  
 
Encryption: Let 𝑑𝑑 ∈ 𝐺𝐺𝑛𝑛 be a message (plaintext). Then, the ciphertext is computed as follows:  𝑐𝑐 =
�́�𝐺(𝑑𝑑) and 𝑐𝑐 ∈ 𝐺𝐺𝑚𝑚.  
 
Decryption: After receiving the ciphertext, 𝑧𝑧 = 𝐿𝐿2−1(𝑐𝑐),𝑦𝑦 = 𝐺𝐺−1(𝑧𝑧) and  𝑑𝑑 = 𝐿𝐿1−1(𝑦𝑦) are performed. 
Then, the message 𝑑𝑑 ∈ 𝐺𝐺𝑛𝑛 is obtained. The detailed decryption process is as follows:  
 

1) 𝑧𝑧 = 𝐿𝐿2−1(𝑐𝑐) is computed. Then, 𝑧𝑧 ∈ 𝐺𝐺𝑛𝑛 is used to form  𝐸𝐸1́ and 𝐸𝐸2́ matrices. 
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2) 𝑦𝑦 = (𝑦𝑦1, … ,𝑦𝑦𝑛𝑛) is found such that 𝐺𝐺(𝑦𝑦) = 𝑧𝑧.  
3) 𝑑𝑑 = 𝐿𝐿1−1(𝑦𝑦1, … ,𝑦𝑦𝑛𝑛) is computed.  

 
The decryption failure probability in Step 2 is 1/q. This means that there might be more than one 

solution of 𝑦𝑦(1), … ,𝑦𝑦(𝑙𝑙). Therefore, each possible solution should be checked. In order to implement 
ABC cryptosystem, finite field arithmetic (polynomial addition, multiplication inversion), matrix 
multiplication, matrix inversion, matrix transpoze, and Gaussian elimination algorithms are needed.  

 

3. Implementations of the ABC Algorithm  

This section details the implementations of the ABC cryptosystem running on CPU and GPU 
separately. The ABC system operates in three main stages that are “key generation”, “encryption” and 
“decryption”. The parameters in the implementations on the CPU and GPU are given in Table 1. The 
implementations were carried out on three different platforms with the different operating systems; 
Windows 8 x64 and Windows 10 x64. The experiments were conducted on NVIDIA GeForce GT 
740M, NVIDIA GeForce GT 840M and NVIDIA  GeForce GTX 1050Ti graphics cards. One of the 
processes in which performance improvement is required is the addition in GF(28). 

 
Table 1 
Parameters in the implementations 

S 8  
N 64  
M 128  

CENTRAL_MAP_SIZE 2080  
PUBLIC_KEY_SIZE 266240  
SECRET_KEY_SIZE 294912  

3.1. CPU Implementation 

In the implementation on the CPU, after the predefined variables and the variables in the Main() 
function are defined, the implementation is executed by calling the functions written for key 
generation, encryption and decryption in the given order. The number of calls of the operations 
mentioned in Section 2 by three functions (key generation, encryption, decryption) is given in Table 2 
for the CPU and GPU implementation. 

 
Table 2 
The number of calls of the operations in the implementation  

 Key generation Encryption Decryption Total 
Addition 4452352 0 286720 4739072 
Subtraction 0 0 2064512 2064512 
Multiplication 107740992 532480 2617792 110891264 
Division 0 0 16256 16256 
Inverse 192 0 1 193 
Matrix Inverse 2 0 0 2 
Matrix Multiplication 257 0 0 257 
Matrix Transposition 1 0 0 1 
Computation of Coefficients 128 0 0 128 
Echelon 0 0 1 1 

 



3.2. GPU Implementation 

Addition, subtraction and multiplication in the finite field GF(28) can be implemented on the 
Graphics Processing Unit (GPU) to provide performance improvement for the ABC cryptosystem. 

The main task of a GPU is to display the images on the screen that are created on the computer. 
The first GPUs only performed this task. Over time, the Central Processing Unit (CPU) was 
inadequate for major computational problems, and the idea of parallel computing using the GPU is 
revealed. A GPGPU model has been created to provide that GPUs have a programmable interface and 
can be programmed in high- level languages. 

Compute Unified Device Architecture (CUDA) is a parallel computing architecture introduced by 
NVIDIA in 2006 to take advantage of computing power of the GPU. CUDA is an application 
programming interface (API) model that supports programming languages such as FORTRAN, 
C/C++ and Python. It runs on Linux, Windows and Mac Osx platforms. Its advantages over its 
competitors include shared memory usage, faster data reading from the GPU, and bit-level operation. 

The GPU differs from the CPU in that it has a SIMD (Single Instruction Multiple Data) 
architecture. Figure 2 shows the schematic comparison of CPU and GPU structures. While CPU 
calculations are performed in series, GPU performs calculations in parallel. 

 

 
Figure 2: Comparison of CPU and CPU structures  

 
One of the most commonly used operations in the ABC algorithm is the addition in GF(28). When 

the overall algorithm is considered, the summation function is called once in the “key generation” 
function and three times in the “decryption” function. 

 

 
 
Similar to the function definition in C++ programming language, but a function other than the 

main function is defined in CUDA. “a”, “b” and “c” are pointer variables of type “WORD”. “c” is the 
variable that will store the result of the summation of “a” and “b” and carries it over the GPU to the 
CPU. 

Calling the “addcuda” function in the key generation function is as follows. First, “*tempA”, 
“*tempB”, “*tempC” and “tempFB” are defined as WORD data type. Then the cudaMalloc which is a 
pre-defined CUDA function is used to define the size of the GPU. With the cudaMemcpy function, 
the values on the CPU are copied to the GPU. We call the function on the GPU with “addcuda <<< 1, 
1 >>> ()”. After completing this process, we use the cudaMemcpy function to copy the values on the 
GPU back to the CPU. 

 

    global void addcuda(WORD *a, WORD *b, WORD *c) { 
*c = *a ^ *b; 

} 



 

3.3. Comparison of the implementations 

The implementation prepared in .Net environment using Microsoft Visual Studio for the ABC 
cryptosystem has been tested on three different computers, each with different graphics processors. 
Table 3 summarizes the computer, graphics processor, and operating system information used. 
 
Table 3 
Test environment  

Computer CPU RAM Graphics Card Operating 
System 

1 Intel(R) Core(TM) i7-4500U  
CPU @ 1.80 GHz 

12 GB GeForce GT 740M 2 GB Windows 
8.1 

2 Intel(R) Core(TM) i7-4210U  
CPU @ 1.70 GHz 

8 GB GeForce GT 840M 2 GB Windows 
10 

3 Intel(R) Core(TM) i7-8750H  
CPU @ 2.20 GHz 

16 GB GeForce GTX 1050Ti 4 GB Windows 
10 

 
In Table 4, the total running time of both CPU and GPU implementations prepared for the ABC 
cryptosystem in three different environments are given in microseconds (µs). 
 
Table 4 
Execution times of the implementations 

 CPU GPU 
Computer1 4336000 µs 6089299 µs 
Computer2 5123000 µs 6589299 µs 
Computer3 2214000 µs 4856900 µs 

 
Table 5 shows the memory usage of the implementations prepared for the ABC cryptosystem on the 
CPU for three different environments. 
 

WORD *tempA, *tempB, *tempC, tempFB; 
cudaMalloc((void**)&tempA, sizeof(WORD)); 
cudaMalloc((void **)&tempB, sizeof(WORD)); 
cudaMalloc((void **)&tempC, sizeof(WORD)); 
for (s = 0; s < VARIABLE; s++) {  
      for (t = s; t < VARIABLE; t++) { 

if (t == s) 
FB[flag++] = V[s * VARIABLE + t]; 

else { 
                    cudaMemcpy(tempA, &V[s*VARIABLE+t], sizeof(WORD), cudaMemcpy HostToDevice); 
                    cudaMemcpy(tempB, &V[t*VARIABLE+s], sizeof(WORD), cudaMemcpy HostToDevice); 

       addcuda<<<1,1>>>(tempA,tempB,tempC);        
     cudaMemcpy(&tempFB,tempC,sizeof(WORD), cudaMemcpyDeviceToHost);    
   FB[flag++] = tempFB; 

} 
       } 
 } 
cudaFree(tempA);  
cudaFree(tempB);  
cudaFree(tempC); 



Table 5 
Memory usage of the implementations 

 CPU GPU 
Computer1 90 MB 76 MB 
Computer2 100 MB 87 MB 
Computer3 127 MB 118 MB 

 
In Table 6, the running times of the encryption and decryption functions on both CPU and GPU 
implementations prepared for the ABC cryptosystem in three different environments are given in 
microseconds (µs). 
 
Table 6 
Execution times of the encryption and decryption functions 

 CPU GPU 
 Encryption Decryption Encryption Decryption 

Computer1 16000 µs 132000 µs 8000 µs 3291599 µs 
Computer2 19000 µs 145000 µs 11000 µs 3701789 µs 
Computer3 10000 µs 78000 µs 3000 µs 2479900 µs 

 
 

The running times of the implementations and the functions required for the ABC cryptosystem 
shown in Table 2 in detail are evaluated by counting the number of times the key generation, 
encryption and decryption are called and used. As can be noticed in the call of functions the entire 
addition operations in GF(28) are performed on the GPU. Furthermore, although an increase in total 
time has been observed, an improvement has been achieved in the process of encryption. In addition 
to running time improvements, there is an improvement in memory usage. The running time in Table 
4 is measured for both implementations as follows: time starts before the key generation and ends 
with the completion of the decryption. 

The running time of the CPU implementation is 4336000 microseconds in Computer1. The 
running time of GPU implementation is 6089299 microseconds on the same computer. There is a 40% 
increase in time compared to the CPU implementation. However, the memory consumption of the 
CPU implementation is 90MB while the memory consumption of the GPU implementation is 76MB. 
That is, a 15% memory saving is achieved compared to the CPU implementation. In the encryption 
function, the time is reduced from 16000 microseconds to 8000 microseconds and a 50% time-saving 
is achieved. 

The running time of the CPU implementation is 5123000 microseconds in Computer2. The 
running time of GPU implementation is 6589299 microseconds on the same computer. There is a 28% 
increase in time compared to the CPU implementation. However, the memory consumption of the 
CPU implementation is 100MB while the memory consumption of the GPU implementation is 87MB. 
That is, a 13% memory saving is achieved compared to the CPU implementation. In the encryption 
function, the time is reduced from 19000 microseconds to 11000 microseconds and a 42% time-
saving is achieved. 

The running time of the CPU implementation is 2214000 microseconds in Computer3. The 
running time of GPU implementation is 4856900 microseconds on the same computer. There is a 19% 
increase in time compared to the CPU implementation. However, the memory consumption of the 
CPU implementation is 127MB while the memory consumption of the GPU implementation is 
118MB. That is, a 7% memory saving is achieved compared to the CPU implementation. In the 
encryption function, the time is reduced from 10000 microseconds to 3000 microseconds and a 70% 
time-saving is achieved. 

Regardless of the working environment, the GPU implementation is slower than the CPU 
implementation, but it is better in memory consumption. The reason for this difference is that the 
addition operations in GF(28) are performed on the GPU. 
 



4. Conclusion 

It is believed that the ABC, one of the multivariate public key cryptosystems, will be robust to 
computational attacks using quantum computers. As a result of this study, an application or 
implementation that works with a graphics processor regardless of the working environment of the 
computers is better in memory usage. The running times are evaluated by counting the number of 
calls of the key generation, encryption and decryption. The number of the arithmetic operations is 
computed. The memory consumption of the CPU implementation is larger than the GPU 
implementation in all platforms. In addition to the efficiency in terms of memory consumption, 
running the entire implementation on the GPU will allow better results to increase performance in 
terms of time. 
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