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Abstract
The purpose of authorship attribution is to determine who is the author of a certain work by comparing
features of the said work with other documents for which the authorship is known. In the software
forensics domain, revealing who is the author behind a piece of software can prevent intellectual property
infringements as well as prevent and detect cheating in academic courses. In this paper, we describe
the participation of the UMUTeam from the University of Murcia in the PAN’s shared task: Authorship
Identification of SOurce COde (AI-SOCO’2020). Our proposal is grounded on a mixture of statistical
features and heuristics that we called author’s traits. From the three runs submitted, we achieve a
best accuracy of 91.16% over the testing dataset reaching the sixth place in the official ranking. It is
worth noting that our proposal, which relies in traditional machine-learning classifiers, outperforms
competitive baselines based on state of the art deep-learning transformers such as RoBERTa.
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1. Introduction

In a broad sense, authorship identification deals with the problem of identifyingwho is the author
behind certain unidentified work by comparing and finding similarities between that work with
other works whose authorship is known. Authorship identification has many applications. For
example, it can be used to provide evidences that the person listed as the author of certain work
was not actually the person who wrote it, unveiling cases of ghostwriting, fraud or plagiarism.
Moreover, authorship identification can help to unmask who is the author of anonymous
threatening messages. Applied to the manufacturing software domain, authorship identification
(1) reduces the chances of committing intentional or unintentional plagiarism, and (2) can used
for tracking malicious software [1].

In academia, e-learning platforms are easing for both students and teachers to do their work
at home, which also promotes self-discipline and self-evaluation skills during software learning
[2]. Moreover, as technology evolves quickly, these skills are also needed to employees in
technological companies in order to adapt themselves to the industry and an increasingly
competitive market. In this context, online judges and contest platform systems allow the
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participants to compile, execute, and evaluate their approaches unsupervised [3]. Nevertheless,
the feeling of not being under close surveillance in a classroom or in the office can encourage
people to cheat [4] and, therefore, online judges and contest platform systems should incorporate
mechanisms to detect evidences of cheating in order to ease the work of the reviewers.

With the aim of improving current authorship identification techniques, the Forum for
Information Retrieval Evaluation (FIRE’2020) proposed Authorship Identification of SOurce COde
(AI-SOCO), a PAN shared task focused on “uncovering the author who wrote some piece of code”
[5]. This task consists of, given a pre-defined set of source codes and authors, infer who the
author is for each source code. In this paper we describe our contribution with the submissions
of three runs based on a machine-learning models trained with statistical features based on
character n-grams and some heuristics that we called author’s traits.

The rest of the paper is organised in the following way. First, in Section 2 different approaches
for solving authorship identification are discussed in detail. Then, the reader can find a descrip-
tion of the materials and methods employed in Section 3. Next, the results achieved by our
runs compared with the baselines proposed by the organisers and the runs of the rest of the
participants are shown and discussed in Section 4. Finally, the conclusions and further work
are presented in Section 5.

2. Background information

The first approaches regarding authorship identification relied in (1) attribute counting-metric
systems, that included metrics to measure the number code lines, unique operands, or variables
declared; and (2) structuremetrics, in which abstract representations of the program structure are
compared [6]. Nowadays, the majority of works found in the bibliography employed machine-
learning approaches. For example, in [7] the authors developed an authorship identification
system that extracts both statistical features such as word n-grams as well as some hand-craft
features regarding the code structure. The authors found that some of the hand-crafted features
reflected “explicit and implicit personal programming preference patterns of and between keywords,
identifiers, operators, statements, methods and classes”. In [8], Bander et al. employed Recurrent
Neuronal Networks (RNNs) based on traditional and bidirectional Long-Short Term Memory
networks (BiLSTM) from the Abstract Syntax Tree (AST) without the need of hand-crafted
features. Another work concerning RNNs is described at [9], in which the authors employed a
Gated Recurrent Units (GRU) evaluated on two datasets achieving, respectively, an accuracy of
69.1% and 89.2%. Another approach can be found at [10], in which the authors compare Latent
Semantic Analysis (LSA) with re-use detection models to measure cross-language similarity
in source code. In [11], the contribution of the authors is two fold. On the one hand, they
present two language-agnostic models that outperformed language-specific systems on datasets
of three popular programming languages. On the other, they identify some weakness in source-
code datasets for authors profiling, highlighting the fact that the environment in which the
programmers write code (which they refer as work context) influences their style by forcing
some decisions such as naming conventions. In addition, they argue that (1) existing datasets
do not consider fair code collaboration, and (2) the fact that the author style could vary among
time. Fair code collaboration issue is addressed at [12], in which the authors proposed working



on authorship of source code segments. Their approach involved a stacking ensemble method
composed of deep neural networks and machine learning classifiers achieving promising results.
An interesting approach to address authorship identification can be found at [13], in which the
authors reversed the problem and proposed a black-box attack against authorship attribution
of source code by performing semantics-preserving code transformations in order to create
variations of the source code that tricks machine-learning solutions in order to induce false
attributions. The idea behind this approach is to create source code that can be used in adversarial
learning.

Author profiling task regarding the software domain has also caught the attention in scientific
workshops and conferences. In 2014, the shared task Detection of SOurce COde Re-use [14] was
proposed as a PAN shared task, which consisted in the identification of source code re-use
from an unbalanced dataset that consisted in code written in C and Java. A total of five teams
participated in this task with a total of 17 runs. Another shared task is described at [15], in
which the participants were required to predict the author’s personality from five big traits
from source codes written in Java. At the end of the task, a total of 48 runs from 11 participants
were sent.

3. Materials and methods

In this work, we describe the three runs submitted by the UMUTeam to the AISOCO’2020 shared
task. Accordingly, in this section we describe briefly the dataset provided by the organisers of
the task (see Section 3.1), and we describe our proposal pipeline (see Section 3.2).

3.1. Dataset description

The organisers of the AI-SOCO’2020 shared task compiled the dataset from Codeforces1. This
is a popular website that hosts programming contests in which the participants can propose
solutions to solve the proposed challenges. Each time the participants send their programs, the
online judge labels each response as accepted or attach some labels to indicate an incorrect
response as well as that some constraints regarding time and memory were not fulfilled.

The dataset provided to the participants consisted in 100,000 accepted source codes written in
C++ from a total of 1000 users. The dataset is balanced so there are no authors underrepresented,
which eases the classification task. The whole corpus was released into three datasets: (1)
training (with 50,000 source codes), (2) development (with 25,000 source codes), and (3) testing
(with 25,000 source codes).

3.2. Pipeline

In a nutshell, our pipeline can be described as follows: First, each source code is automatically
inspected in order to create two alternative versions: one that contains only the comments and
another with the source code without the comments. Second, we extract the features which
involves character n-grams and the author’s traits. Next, we apply feature selection techniques

1https://codeforces.com/

https://codeforces.com/


Figure 1: Pipeline of the UMUTeam proposal at AISOCO’2020

in order to discard highly correlated features and, finally, we train a machine-learning classifier
with the training dataset that we used to predict the labels of the development and testing
datasets. This pipeline is depicted in Figure 1.

3.2.1. Feature extraction

Regarding the feature extraction, our contribution is grounded in the combination of character n-
grams and author’s traits features. On the one hand, we use character n-grams as the foundation
of our proposal as they can capture stylistic patterns and nuances at lexical, syntactical, and
structural level [16]. Specifically, we extracted combinations between 1 and 8 length applying
TF-IDF with Sub-linear TF scaling. We preserve the letter case both of the source code and the
comments and we set an upper-bound of 400 characters n-grams per length. That is, we select
the best character n-grams of length 1, the best character n-grams of length 2, and so on until
character n-grams of length 8. This resulted in 3200 character n-grams. On the other hand,
after a manual analysis of some instances of the source code provided, we manually handcraft
features to capture author’s traits. These features are organised in the following categories:
(1) stylometrics, which measure, for example, the average length of code blocks, comments, or
words in uppercase; (2) code traits, that reflect how the authors focused the problem. In this
sense, we measure the number of nested loops or the use of keywords in the code; (3) non-ASCII
characters, to measure languages other than English, such as Arabic, Indian, or Russian; and (4)
ASCII-ART, characters employed in the creation of decorative forms that users employed as
signature. In addition, since some source codes included contact data such as nicknames, URLs,
or Twitter accounts, we compiled a Bag of Words composed of the tokens that followed the
words name and author in the block comments as well as certain topics such as mentions to
blessings. A list of this features can be found in Table 1.



Table 1
Author trait features and categories

category feature description
stylometry line_length_average Average length of line in source code, com-

ments and both
code_length Total length of source code, comments and

both.
uppercase_letters Percentage of uppercase letters in the

source code, comments and both
comment_block_average_length Average length of a code block
tokens_of_specific_length nº of tokens of 2-11 length
assignations Number of assignations with spaces “ = ”,

or together “=”
vars_with_underscores Number of variables with underscores “_”

code nested_loops Total of nested loops of depth 2, 3 and 4
block_length_average Block length average between brackets,

parenthesis and square brackets
string_length_average Length average of the strings variables
keywords_in_code Number of keywords in source code

non-ascii non_ascii_percentage Percentage of non-ascii characters
language_spanish Percentage of Spanish characters
language_asian Percentage of Asian characters
language_russian Percentage of Russian characters
language_arabic Percentage of Arabic characters

ascii-art decorative_symbols Tokens surrounded by decorative charac-
ters

asciiart_blocks ASCII-art with blocks
asciiart_delimiters ASCII-art with delimiters
asciiart_braille ASCII-art with braille

topics religious Mentions to gods or blessings

It is worth noting that some of these features were previously employed by our research
group in UMUTextStats tool to conduct different text classification task such as (1) Sentiment
Analysis [17, 18], (2) satire identification [19], or (3) misogyny detection [20] with good results.

3.2.2. Feature selection and machine-learning classifier

Once all the features were compiled, they were filtered by applying a feature selection consisting
of removing those features that have the same value in all samples in order to discard similar
character n-grams. Then, we evaluate different supervised machine-learning classifiers, such as
Random Forest, Multi Layer Perceptron, K-Neighbours, Support Vector Machines with linear
kernels, and multinomial Naive Bayes. Out of these, the best accuracy was achieved with
Random-Forest classifier. This algorithm was built using SciKit in Python and the hyper-
parameters were: (1) 800 number of trees in the forest, (2) a maximum depth of each tree of
100, (3) with bootstraping disabled (so the whole dataset is used to build each random tree), (4)
considering 𝑠𝑞𝑟 𝑡(𝑛_𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑠) features for the best split, (5) with min_samples_leaf equal to 2,



Table 2
Results of the UMUTeam runs with the three runs with the Development and Testing datasets

Run Accuracy Development Accuracy Testing
character n-grams + author-traits 0.9140 0.9116
character n-grams 0.9130 0.9112
author-traits 0.5628 0.5647

and (6) the default min_samples_split of 2 (as default).

4. Results

At the beginning of the task, the organisers provided three baselines. The first baseline consisted
in predicting a random author with an expected accuracy of 0.1%. The second baseline consisted
in count English printable characters and to apply a logistic regression model, which achieved
an accuracy of 29.252%. The last baseline consisted in a K-nearest neighbours with the TF-IDF
of 10,000 features. This baseline achieved an accuracy of 62.128%. After showing the final
results of the competition, the organisers included two more baselines based on RoBERTa [21],
in which they vary the complexity of the neural networks layers.

The evaluation of the proposal was performed using the Accuracy metric (see Equation 1) as
it can defined as the relationship between items correctly identified: True Positives (TP) and
True Negatives (TN) with the total of instances classified including False Positives (FP) and
False Negatives (FP).

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = (𝑇𝑃 + 𝑇𝑁)/(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁) (1)

First, we show the results of our submissions comparing the accuracy of the development
and testing datasets in Table 2. As it can be observed, the best accuracy with the development
dataset was 91.40% and an accuracy of 91.16% for the testing dataset. In both cases, the best
run is based on the combination of the statistical features and the author’s traits. However,
we can observe that a similar accuracy can be achieved on both approaches by using only the
character n-grams model (run-2). When looking the results of the author traits separately (run
3), we achieved an accuracy of 56.28% which beats the second baseline proposed by AI-SOCO,
consisted in a Logistic Regression model on the printable characters (29.92%) as it is not far
from the TF-IDF K-nearest neighbours baseline (62.78%).

In Figure 4, we show the Information Gain (IG) of some features regarding the author’s traits.
We decided to include features for all the categories in order to see if they contribute equality
or not regarding authorship identification. In view of the results, we can conclude that those
metrics regarding with stylometry are the most discriminating features. For example, it seems
that the average length of the source code, comments, and the percentage of uppercase letters
have more influence in authorship identification than in determining what source codes resolve
the same problem. A similar guess can be done when looking the author’s traits from the code
category. We can observe that the number of nested loops is relevant regarding the author
profiling. This fact can be related to the way in which programmers focus on how to resolve



Figure 2: Information gain of the author’s traits

a problem efficiently in order to win the contest. Finally, we can observe that IG decreases
regarding the usage of non-ASCII characters in order to forecast the country of origin of the
programmer, or the usage of ASCII-art as signature in their comments.

The comparison of our proposal with the rest of the baselines and the rest of the participants
are shown in Table 3. It is worth noting that this table contains only the official runs. Some
extra runs were sent after the official end-date, highlighting the results achieved by the Twist
Bytes team achieving an accuracy of 94.4%.

As it can be observed from our results compared with the official participants and the baselines
(see Table 3), our proposal reaches the sixth place and outperforms baselines based on deep-
learning transformers such as RoBERTa. We achieve an accuracy of 91.16% which indicates that
our proposal is quite reliable regarding the identification of the authors. Moreover, our proposal
outperforms by far the first baselines provided and the first baseline of the two generated with
RoBERTa. However, the second baseline based on RoBERTa, with six layers, outperforms our
proposal with an 92.88% of accuracy.

5. Conclusions and Further work

In this paper we describe the participation of the UMUTeam at the AISOCO’2020 shared task
for author identification of source code. This was our first participation on one task of this kind
and we are very happy with the results. It draws our attention that traditional machine-learning
classifiers could outperform some models based on the state-of-the-art transformers, which



Table 3
Official results of the AISOCO’2020 shared task. The first column represents the ranking position. An
asterisk indicate that this result is a baseline

# Team Accuracy
1 AlexCrosby 0.9511
2 yang1094 0.9428
3 mutaz 0.9336
* AI-SOCO RoBERTa Code Baseline (6L, 12H) 0.9288
4 zz 0.9219
5 FSU_HLJIT 0.9157
6 UMUTeam 0.9116
* AI-SOCO RoBERTa Code Baseline (1L, 96H) 0.9102
7 Abdalrhman 0.9088
8 bits_nlp_2020 0.9064
9 gaojiaming 0.8616
10 chanchal 0.8295
11 panyawut-sr 0.8208
12 aupatsara-wa 0.8202
13 meghana 0.8120
14 TaeyongSeong 0.8091
15 christopher-w 0.7452
* AI-SOCO TFIDF KNN Baseline 0.6278
* AI-SOCO Characters Logistic Baseline 0.2992
* AI-SOCO Random Baseline 0.0008
* Twist Bytes 0.9440
* ken_tt 0.8067

suggests that the feature extraction and selection plays a crucial role in authorship attribution,
as our proposal achieves competitive results reaching the sixth position among the official
results with an accuracy of 91.16%.

The average accuracy of the participants (without the baselines) is 87.05% with a standard
deviation of 0.0623, which indicates that all the participants achieved very competitive results
in a difficult task regarding author identification. We consider, however, that the results of this
task would be lower if the source code was provided to us without comments. Moreover, as
the dataset was compiled from online sources, we suppose that the dataset does not contain
any kind of cheating that could make it hard this task. We think that it is not common that
participants in online contents do not know each other and that prevents direct plagiarism
between the authors as could happen in academic courses.

During our review of literature we found that not all research take comments into consid-
eration. Comments make code easier for understand and they are a valuable data source for
author profiling as a comment may include copyright info, explanations about implementation
decisions, or even arbitrary patterns that act as section delimiters [22]. However, they are
not always available as, for example, in low-level languages which are common in malware
software. As source comments can include text written in natural language, it is feasible to
extract linguistic features from comments in order to create a fingerprint of the author’s writing
style. For example, with the detection of slang, jokes, or the usage of figurative language [23],



it is possible to deduce which is the cultural and social background of the author. As further
work, we will improve the author traits for authorship identification as we consider that these
features provide more interpretability of the results that character n-grams. In addition, we will
continue investigating on author identification. In this sense, we will explore programming
collaborative environments such as GitHub or Stack Overflow.
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