CEUR-WS.org/Vol-2826/T5-1.pdf

Overview of the PAN@FIRE 2020 Task on the
Authorship Identification of SOurce COde

Ali Fadel®, Husam Musleh®, Ibraheem Tuffaha®, Mahmoud Al-Ayyoub?,
Yaser Jararweh?, Elhadj Benkhelifa? and Paolo Rosso®

“Jordan University of Science and Technology, Jordan
bStaffordshire University, UK

“Universitat Politécnica de Valéncia, Spain

Abstract

Authorship identification is essential to the detection of undesirable deception of others’ content misuse
or exposing the owners of some anonymous malicious content. While it is widely studied for natural
languages, it is rarely considered for programming languages. Accordingly, a PAN@FIRE task, named
Authorship Identification of SOurce COde (AI-SOCO), is proposed with the focus on the identification of
source code authors. The dataset consists of crawled source codes submitted by the top 1,000 human users
with 100 correct C++ submissions or more from the CodeForces online judge platform. The participating
systems are asked to predict the author of a given source code from the predefined list of code authors.
In total, 60 teams registered on the task’s CodaLab page. Out of them, 14 teams submitted 94 runs. The
results are surprisingly high with many teams and baselines breaking the 90% accuracy barrier. These
systems used a wide range of models and techniques from pretrained word embeddings (especially, those
that are tweaked to handle source code) to stylometric features.

Keywords

authorship-identification, source-code, datasets

1. Introduction

After the success of the previous tasks on source code such as SOurce COde re-use (SOCO) [1],
Cross-Language SOurce COde re-use (CL-SOCO) [2], and Personality Recognition in SOurce
COde (PR-SOCO) [3] , a new task is proposed in this paper. Specifically, we describe the
Authorship Identification of SOurce COde (AI-SOCO)' task, one of the tracks of the 12th
meeting of the Forum for Information Retrieval Evaluation (FIRE 2020).” In the following
sections, we define the task, discuss the dataset we introduced to the research community,
present the available baselines and results, and highlight the achieved accomplishments.

FIRE’20: Forum for Information Retrieval Evaluation, December 16—20, 2020, Hyderabad, India
& aliosm1997@gmail.com (A. Fadel); husam.sa3@gmail.com (H. Musleh); bro.t.1996@gmail.com (I. Tuffaha);
malayyoub@gmail.com (M. Al-Ayyoub); yijararweh@just.edu.jo (Y. Jararweh); E.Benkhelifa@staffs.ac.uk (E.
Benkhelifa); prosso@dsic.upv.es (P. Rosso)
&} https://github.com/AliOsm/ (A. Fadel)
® 0000-0002-3447-8331 (A. Fadel); 0000-0001-9372-9076 (M. Al-Ayyoub)
© 2020 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
=] CEUR Workshop Proceedings (CEUR-WS.org)
'https://sites.google.com/view/ai-soco-2020
*http://fire.irsi.res.in/fire/2020

mailto:aliosm1997@gmail.com
mailto:husam.sa3@gmail.com
mailto:bro.t.1996@gmail.com
mailto:malayyoub@gmail.com
mailto:yijararweh@just.edu.jo
mailto:E.Benkhelifa@staffs.ac.uk
mailto:prosso@dsic.upv.es
https://github.com/AliOsm/
https://orcid.org/0000-0002-3447-8331
https://orcid.org/0000-0001-9372-9076
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org
https://sites.google.com/view/ai-soco-2020
http://fire.irsi.res.in/fire/2020

A. Word Capitalization

time limit per test: 2 seconds
memory limit per test: 256 megabytes
input: standard input
output: standard output

Capitalization is writing a word with its first letter as a capital letter. Your task is to capitalize the given word.

Note, that during capitalization all the letters except the first one remains unchanged.

Input

A single line contains a non-empty word. This word consists of lowercase and uppercase English letters. The length of the word
will not exceed 103

Output

Output the given word after capitalization.

Figure 1: CodeForces Problem Sample.

2. Task Definition

AI-SOCO focuses on identifying the author who wrote a given piece of code out of a predefined
set of authors. This facilitates solving issues related to cheating in academic, work and open
source environments. The detection of cheating in academic communities is significant to
properly assess the contribution of students or researchers. Moreover, in work environments,
credit sometimes goes to people who did not deserve it. Such issues of plagiarism could arise
in open source projects that are available on public platforms. Similarly, systems developed
for the AI-SOCO task can be used in public or private online coding contests, whether done in
coding interviews or in official coding training contests, to detect the cheating of applicants or
contestants. Such systems can also play a significant role in detecting the source of anonymous
malicious software.

3. Dataset and Evaluation

The dataset is composed of source codes collected from the open submissions in the CodeForces®

platform. CodeForces is an online judge for hosting competitive programming contests, where
each contest consists of multiple problems. The problems’ difficulty (aka index) ranges from A
to Z, where A is the easiest and Z is the hardest. The majority of contests have 5 to 7 problems
(A-G). So, the occurrence of problems with indexes bigger than G is very rare. Figure 1 shows
an example of a CodeForces problem, while Figure 2 shows a sample of the possible solutions
by three different CodeForces users.

A user can solve a problem by writing a solution for it using any of the available programming
languages on the website, and then submitting the solution through the website. The solution
is tested automatically against a set of test cases and its result can be correct (accepted) or
incorrect (wrong answer, time limit exceeded, etc.).

For our dataset, we selected the top rated 1,000 users (according to the website’s rating system)
and collected 100 source codes per user. This gives a total number of 100,000 source codes.
All collected source codes are correct and written using the C++ programming language. For
each user, all collected source codes are from unique problems and were submitted within the

*https://codeforces.com

https://codeforces.com

#include <string>
#include <iostream>
#include <ctype.h>
using namespace std;

#include <iostream>
#include <cctype>

using namespace std;

int main(){

#include<iostream>
#include<algorithm>
#include<string>
#include<time.h>
using namespace std;
bool cmp(int a, int b)
{
return a<b;}
int main(){
int a[1001]={0},i,3,k=0,1,m,n,£=0;

int main() { string s; string s,sl;
string s; cin >> s; char c;
cin >> s; cout << (char)toupper(s[0]); getline(cin,sl);
s[0] = toupper(s[0]); for(int i=1; i<s.size(); i++){ if(sl[0]<="z" && sl[0]>="a")
cout << s << endl; cout << s[i]; s1[0]="A"'+(sl[0]-"'a");
return 0; cout<<sl;

} return 0;

//system("pause");
return 0;

Figure 2: CodeForces Problem Solutions Sample.

Table 1

Al-SOCO Dataset Statistics
Users Count 1,000 Unique Problems 6,553
Solutions Count 100,000 Maximum Solutions/Problem 61
Tokens Count 22,795,141 | Minimum Solutions/Problem 1
Whitespaces Count 46,944,461 | Avg. Solutions/Problem 15.26
Unique Tokens 1,171,991 | Avg. Solutions/Codeforces Index | 2,439.02
Avg. Solutions/User 100 Median Solutions/Problem 12
Avg. Tokens/Solution 227.95 Unique User Countries 78
Avg. Whitespaces/Solution 469.45 Avg. Solutions/User Country 1,282.05
Maximum Tokens in a Solution 10,189 Minimum Tokens in a Solution 3

smallest possible time period to avoid the possibility of users changing their coding styles over
time. The dataset was split randomly with 50% used for training, 25% used for development and
the remaining 25% used for testing. The training, development and unlabeled testing datasets
are available through our GitHub repository.* The full version of the dataset (with testing
dataset labels) is available through Zenodo.” Table 1 shows some statistics about the dataset,
while Figure 3 shows the solutions distribution over CodeForces indexes and Figure 4 shows
the solutions distribution over C++ compiler versions.

For a multi-class classification problem like ours, many evaluation metrics are suggested
in the literature. However, since our dataset is completely balanced, we are evaluating the
performance of the systems with accuracy since it is a simple and easily interpreted metric.

4. Baseline Approaches

In this section, we present the baseline approaches we developed for this task along with their
results. All implementations mentioned in this section are available on our GitHub repository
(See Footnote 4). Table 2 shows all baselines results. The pretrained and fine-tuned models are

*https://github.com/AliOsm/AI-SOCO
*https://zenodo.org/record/4059840

https://github.com/AliOsm/AI-SOCO
https://zenodo.org/record/4059840

30000

20000

#Solutions

10000

892 - -
462 375 330 315 290 269 263 221 216 168 158 153 139 120 119 98 91 75 55 21 20 18 15 13 13 11 10 10 8 5 2 2

A B C D E F GDID2B!I B2ZCI HEN FI1 C2EF2 A I J K M A2 L GI E3 C3 R G2 D3 N Q B3 F3 A3 O G3 P Di10D9

Codeforces Indexes

Figure 3: Number of Solutions per CodeForces Index.
40000

30000

26091

20000 23849

#Solutions

10000

10141

GHU C++ GHU C++0x GMNU C++11 GNU C++14 GHU C++17 GHU C++17 GNU C++17 MS C++ WS C++ 2017
(64) Diagnostics

Compilers

Figure 4: Number of Solutions per C++ Compiler.

available through HuggingFace models hub.®

4.1. Random Baseline

This baseline predicts a random author for each piece of code from the list of 1,000 authors. Its
expected accuracy is 0.1%. We used this baseline to put a threshold for systems, whether they

Shttps://huggingface.co/models?search=ai-soco

https://huggingface.co/models?search=ai-soco

Table 2
Al-SOCO Baselines Results on Development and Testing Datasets

Baseline Name Development | Testing
Random ~0.1% ~0.1%

Characters Logistic 29.25% 29.92%
TF-IDF KNN 62.13% 62.78%
C++ RoBERTa Tiny 87.66% 87.46%
C++ RoBERTa Tiny-96 91.12% 91.02%
C++ RoBERTa Small 93.19% 92.88%

are better or worse than the randomness.

4.2. Characters Logistic Baseline

To build a code representation, this baseline converts each source code into a vector that
represents the count of the 100 printable characters. Then, it builds a logistic regression [4]
model on the vectorized representations. It achieved an accuracy of 29.25% and 29.92% on the
development and testing datasets, respectively.

4.3. TF-IDF KNN Baseline

In this baseline, we tried to improve the code representation by vectorizing the source codes
using term frequency-inverse document frequency (TF-IDF) [5] with 10K features. These
features are fed into a K-Nearest Neighbors (KNN) [6] classifier with K = 25. Its accuracy is
62.13% and 62.78% on the development and testing datasets, respectively. This is a significant
improvement over the previous baseline. One downside of this approach is efficiency. This lazy
learner baseline is very slow in producing its predictions. It took about four hours to predict all
examples in the development or testing datasets.

4.4. C++ RoBERTa Tiny

We pretrained a RoBERTa [7] model with a single Transformer [8] layer and 12 attention heads
using the concatenation of the training dataset source codes. The model trained on Google
Colab [9] platform’ with 8 TPU cores for 200 epochs, 32 x 8 batch size, 512 max sequence length
and Masked Language Model (MLM) objective. Other parameters were set to their default
values as mentioned in the run_mlm.py script provided by the HuggingFace Transformers [10]
package.® To tokenize the source codes, we trained a byte level BPE tokenizer [11] from the
HuggingFace Tokenizers package’ with vocabulary size equals to 30K. Before tokenization, each
four continuous spaces were converted into a single tab character (\t). After that, the model was
fine-tuned on a classification task to predict the source code author out of the predefined list of
the 1,000 authors. The fine-tuning was done on Google Colab platform using V100 GPU for 10

"https://colab.research.google.com
8https://github.com/huggingface/transformers
*https://github.com/huggingface/tokenizers

https://github.com/huggingface/transformers/blob/v3.5.1/examples/language-modeling/run_mlm.py
https://colab.research.google.com
https://github.com/huggingface/transformers
https://github.com/huggingface/tokenizers

epochs, 32 batch size and 512 max sequence length. Source codes longer than 512 were truncated
while fine-tuning. Finally, the model achieved 87.66% and 87.46% accuracy on development and
testing datasets, respectively.

4.5. C++ RoBERTa Tiny-96

To do more experimentation, we tried to increase the number of attention heads in the model
discussed in Section 4.4 from 12 to 96 attention heads. The model was trained and fine-tuned
using the same pretraining and fine-tuning procedures as the previously mentioned one. The
only change was in the batch size, where we set it to 16 x 8 instead of 32 x 8 for training and 16
instead of 32 for fine-tuning. The model achieved 91.12% and 91.02% accuracy on development
and testing datasets, respectively.

4.6. C++ RoBERTa Small

To compare the effect of increasing the number of attention heads vs. increasing the number
of Transformer layers, we trained another model with 6 Transformer layers and 12 attention
heads. This model follows C++ RoBERTa Tiny pretraining and fine-tuning procedures as well.
It achieved 93.19% and 92.88% accuracy on development and testing datasets, respectively.

5. Competition Results

The competition was hosted on the CodaLab!® platform. Surprisingly, 60 teams registered for
the competition, 14 of which made 94 runs on the Evaluation and Post-Evaluation phases. The
participating teams’ accuracy results were higher than expected, ranging from 74.52% up to
95.11% on the testing dataset.

5.1. Overview of Participating Teams

In this section, we discuss the details of the teams’ submissions that were disclosed by the time
this paper is written. Table 3 shows the results of all submissions.
We start by discussing the submissions made by the deadline.

1. Team UoB [12]: The best approach in the competition was proposed by the Team UoB.
The authors proposed several approaches and the best one was built using byte-level n-
grams. Each source code is encoded into a vector representing the 20,000 most commonly
occurring byte-level n-grams in the training dataset, where n = 6. Each n-gram in the
vector was represented by a binary count, with 1 indicating the n-gram was present and
0 indicating the n-gram was absent in the given source code. The training dataset n-
gram vector representations were then used to train a densely connected neural network
classifier, which could then be used to predict authorship of the development and testing
datasets. Their approach achieved 95.41% and 95.11% accuracy on the development and
testing datasets, respectively.

Ohttps://competitions.codalab.org/competitions/25148

https://competitions.codalab.org/competitions/25148

. Team Yang1094 [13]: According to the official results, the second best approach is Team
Yang1094. Similar to some of the models of Team UoB [12], Team Yang1094 used an
approach that relies on word-level and character-level n-gram features that are used to
train logistic regression classifier. The character-level n-gram features (wheren = 2,...,7)
filtered using term frequency-inverse document frequency (TF-IDF) gave the best results
for this team with an accuracy of 94.28%.

. Team Alexa [14]: Team Alexa proposed an ensemble of Naive Bayes (NB) models and
pretrained models. Specifically, their best model is a weighted combination of Multinomial
NB (MultinomialNB), Bernoulli NB (BernoulliNB), and two versions of CodeBERTa. For the
NB models, their features are the top 30,000 character-level n-grams (wheren =1, ..., 5)
with TF-IDF, whereas the CodeBERTa versions differ only in the learning rate. The
resulting accuracy is 93.36%.

. Team LAST [15]: This team’s submissions are all based on the KNN procedure with
K = 1. Asfor the preprocessing and feature extraction steps, they first used an indentation-
aware tokenization followed by extracting token-level n-grams (where n = 1,...,4) and
skip-grams (1 for each 3-gram and 3 for each 4-gram). Then, they used a binary coding
of the presence of the features and relevance frequency as a supervised term weighting
scheme along with L2 normalization. The best accuracy reported for this team is 92.19%.
. Team FSU_HLJIT [16]: Inspired by earlier work on plagiarism detection and microblog
filtering, this team approached the task at hand as a ranking problem. The best performing
system from this team ranked the source codes according to the number of occurrences
of the character level n-grams (where n = 15). Despite its simplicity, this system got an
accuracy of 91.57%.

. Team UMUTeam [17]: This team’s top system consisted of a combination of char-level
n-grams and other author’s traits features. The former were combinations between 1 and
8 length applying TF-IDF with Sublinear TF scaling. On the other hand, the author’s traits
included (1) the average length of code blocks and comments, (2) regular expressions to
detect languages other than English, such as Arabic, Indian, or Russian; as well as (3)
characters employed in the creation of ASCII-art. In addition, since some source codes
included contact data such as nicknames, URLs, or Twitter accounts, the UMUTeam also
compiled a Bag of Words (BOW) composed of the tokens that followed the words name
and author in the block comments. Once all the features were compiled, they were filtered
by applying a feature selection consisting of discarding low-variance features and the
models were trained using a Random Forest (RF) classifier. The result is an accuracy of
91.16%.

. Team Abdalrhman: This team used word-level and character-level n-grams with some
preprocessing and cleaning steps for the dataset. For the preprocessing step; they normal-
ized numbers into a special token then cleaned all lines with length greater then 50 or less
than 4 characters. As for extracting the features, they used word-level and character-level
(n-grams from text inside word boundaries) using TF-IDF features, (where n = 2, ..., 6) for
both word-level and character-level. Then the features are stacked from both vectorizers
and fed into Linear Support Vector Classification (LinearSVC) which achieved an accuracy
of 90.88%.

8. Team bits_nlp_2020 [18]: This team’s top system used Word2Vec embeddings along
with a Convolutional Neural Network (CNN). The word2vec embeddings were trained
from scratch. After concatenating vectors of both Continuous BOW (CBOW) and skip-
gram for each word, the authors used the resulting embeddings for their CNN. The
submitted system consisted of an ensemble of five such models, with different hyperpa-
rameters. They assigned a result for each test case based on whichever model had the
highest confidence. The resulting accuracy was 90.64%.

9. Team gaojiaming: This team did not disclose the details of its submitted systems, which
achieved an accuracy of 86.16%.

10. Team Chanchal [19]: This team used an abstract syntax tree (AST) for the tokenization
of the code. Then, they applied TF-IDF to word-level and character-level n-grams to
generate the code representation. Finally, different classifiers were used. Their best model
used word bigrams on a stacked model. The stacked model is an ensemble of extra tree
classifier, RF classifier, and XG-Boost classifier. The achieved accuracy is 82.95%.

11. Team Kode_Stylers [20]: This team used what they call “naturalness” of code as the
key to their solution. They used different methods to obtain features such as tokenization,
n-gram TF-IDF, warning messages, and coding styles. They used these features to train
different classifiers, such as RF and Transformer. Then, they applied an ensemble approach
to get better results. The best result obtained by this team is 82.08%.

12. Team meghana: This team did not disclose the details of its submitted systems, which
achieved an accuracy of 81.2%.

After the competition’s deadline, two teams made interesting submissions. Their details are
as follows.

+ Team Twist Bytes: This team did not disclose the details of its submitted systems, which
achieved an accuracy of 94.4%. This result is the second best result reported for this task.

o Team SSNCSE_NLP [21]: This team used character count vectorization and TF-IDF to
extract features that are then fed into an RF classifier. The resulting accuracy is 85.73%.

5.2. Discussion and Error Analysis

There are some common characteristics among all participating teams. For example, they have
all explored the use of different versions of n-grams. In most cases, n-gram features proved to be
very powerful achieving the best (or near-best) results. Moreover, byte-level and character-level
n-grams seem more promising than word-level n-grams. As for classification, different models
showed strong performance individually and within ensembles. Actually, many teams have
reported that ensembling only improves the results by a small margin. Finally, deep learning
models and pretrained models showed good performance, but they do not emerge as clear
winners like the case for many authorship analysis tasks [22, 23]. This applies to general models,
such as RoBERTa, as well as models customized for handling source code, such as CodeBerta.

Looking at the predictions made by the participating systems, one can see certain patterns
and trends. Appendix A shows five “easy” samples that each participating system managed to

Table 3

Summary of the results of the participating teams. The asterisk sign (*) is used to indicate baseline
approaches while the pound sign (#) is used to indicate teams which made their submissions after the
deadline.

Rank Team Accuracy
1 UoB 95.11%
2 | Yangl094 94.28%
3 Alexa 93.36%
* C++ RoBERTa Small Baseline 92.88%
4 LAST 92.19%
5 FSU_HLUJIT 91.57%
6 UMUTeam 91.16%
* C++ RoBERTa Tiny-96 Baseline | 91.02%
7 Abdalrhman 90.88%
8 bits_nlp_2020 90.64%
* C++ RoBERTa Tiny Baseline 87.46%
9 gaojiaming 86.16%
10 Chanchal 82.95%
11 Kode_Stylers 82.08%
12 meghana 81.20%
* TF-IDF KNN Baseline 62.78%
* Characters Logistic Baseline 29.92%
* Random Baseline 0.08%
Twist Bytes 94.40%
SSNCSE_NLP 85.73%

predict correctly, whereas Appendix B shows five “hard” samples that none of the participating
system managed to predict correctly. Easy samples tend to exhibit easily detectable unique
patterns, such as the use of typedef and #define, whereas hard examples tend to be short or use
patterns that are common among many authors. We performed a simple intersection between
the participating systems’ predictions and discovered that 17,501 test samples out the 25,000
test samples (i.e., 70% of the test set) were correctly predicted by all systems. On the other hand,
only 589 test samples (i.e., 2.36% of the test set) were never predicted correctly by any system.
This indicates that the problem might not be as difficult as we initially expected.

To support this conjecture, we studied the participating systems’ predictions at the user level.
We found out that our test set, has 133 “very easy” users out of 1,000 users. These users have
such an easily identifiable coding styles that all participating systems managed to predict all
of their testing cases correctly. One might think that having 13.3% very easy users in the test
set is not that bad. However, if we consider slightly less easier users, i.e., ones with prediction
rates of 90% or more across all participating systems, we end up with 603 users. Going to lower
prediction rates (e.g., 80% rate of 70% rate) covers a vast majority of the users (83.1% and 93.2%,
respectively).

On the other hand, very few users are difficult to identify. For example, the most difficult user,
User 579, had a prediction rate of only 35.14% across all participating systems. Other difficult
users with prediction rates lower than 50% include User 198 (prediction rate 36%), User 998

% of Correct Predections

Users

Figure 5: Percentage of Correctly Predicted Problems per User.

(prediction rate 38.29%), User 945 (prediction rate 40.57%), User 563 (prediction rate 41.14%),
User 780 (prediction rate 44%), and User 205 (prediction rate 48.57%). Nonetheless, the number
of hard users is rather low, which justifies the relatively high accuracy levels achieved by all
participating systems. Figure 5 shows the percentage of correctly predicted samples per user.

Finally, instead of looking at this issue from the sample-level or the user-level, we look at it
from the problem-level. It turns out that, for most problems, all participating systems managed
to correctly identify the code authors. For very few problems, none of the participating systems
managed to correctly identify any of the code authors for these problems. Figure 5 shows the
percentage of systems that predicted samples of problems correctly.

Acknowledgments

The work of the last author was partially funded by the Spanish MICINN under the research
project MISMISFAKEnHATE on MISinformation and MIScommunication in social media: FAKE
news and HATE speech (PGC2018-096212-B-C31); as well as by the European Cooperation in
Science and Technology under the COST Action 17124 DigForAsp.

References

[1] E. Flores, P. Rosso, L. Moreno, E. Villatoro-Tello, PAN@FIRE: Overview of SOCO track on
the detection of SOurce COde re-use, in: Notebook Papers of FIRE 2014, 2014.

[2] E. Flores, P. Rosso, E. Villatoro-Tello, L. Moreno, R. Alcover, V. Chirivella, PAN@FIRE:
Overview of CL-SOCO track on the detection of Cross-Language SOurce COde re-use., in:
Post Proceedings of the Workshops at the 7th Forum for Information Retrieval Evaluation,

100

90

80

70+

60

50 +

% of Systems

40 +

30 +

20 +

Problems

Figure 6: Percentage of Systems that Predicted Problems Correctly.

[10]

[11]

Gandhinagar, India, December 4-6, 2015, volume 1587 of CEUR Workshop Proceedings,
CEUR-WS.org, 2015, pp. 1-5.

F. Rangel, F. Gonzalez, F. Restrepo, M. Montes, P. Rosso, PAN@FIRE: Overview of the
PR-SOCO track on Personality Recognition in SOurce COde, in: Working notes of FIRE
2016 - Forum for Information Retrieval Evaluation, Kolkata, India, December 7-10, 2016,
volume 1737 of CEUR Workshop Proceedings, CEUR-WS.org, 2016, pp. 1-15.

C.-Y.]. Peng, K. L. Lee, G. M. Ingersoll, An introduction to logistic regression analysis and
reporting, The journal of educational research 96 (2002) 3-14.

G. Salton, C. Buckley, Term-weighting approaches in automatic text retrieval, Information
processing & management 24 (1988) 513-523.

G. Guo, H. Wang, D. Bell, Y. Bi, K. Greer, Knn model-based approach in classification,
in: OTM Confederated International Conferences” On the Move to Meaningful Internet
Systems”, Springer, 2003, pp. 986—-996.

Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis, L. Zettlemoyer,
V. Stoyanov, Roberta: A robustly optimized bert pretraining approach, arXiv preprint
arXiv:1907.11692 (2019).

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, I. Polo-
sukhin, Attention is all you need, in: Advances in neural information processing systems,
2017, pp. 5998-6008.

T. Carneiro, R. V. M. Da Nobrega, T. Nepomuceno, G.-B. Bian, V. H. C. De Albuquerque,
P. P. Reboucas Filho, Performance analysis of google colaboratory as a tool for accelerating
deep learning applications, IEEE Access 6 (2018) 61677-61685.

T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue, A. Moi, P. Cistac, T. Rault, R. Louf,
M. Funtowicz, et al., Huggingface’s transformers: State-of-the-art natural language
processing, ArXiv (2019) arXiv—-1910.

A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, 1. Sutskever, Language models are

[13]

[14]

[15]

[16]

[17]

[20]

[21]

unsupervised multitask learners, OpenAl blog 1 (2019) 9.

A. Crosby, H. T. Madabushi, UoB at AI-SOCO 2020: Approaches to Source Code Classifi-
cation and the Surprising Power of n-grams, in: Proceedings of The 12th meeting of the
Forum for Information Retrieval Evaluation (FIRE 2020), CEUR Workshop Proceedings,
CEUR-WS.org, 2020.

Y. Yang, L. Kong, Z. Han, Y. Han, H. Qi, N-gram-based Authorship Identification of
Source Code, in: Proceedings of The 12th meeting of the Forum for Information Retrieval
Evaluation (FIRE 2020), CEUR Workshop Proceedings, CEUR-WS.org, 2020.

M. Bni Younes, N. Al-Khdour, Team Alexa at Authorship Identification of SOurce COde
(AI-SOCO), in: Proceedings of The 12th meeting of the Forum for Information Retrieval
Evaluation (FIRE 2020), CEUR Workshop Proceedings, CEUR-WS.org, 2020.

Y. Bestgen, Boosting a KNN Classifier by Improving Feature Extraction for Authorship
Identification of Source Code, in: Proceedings of The 12th meeting of the Forum for
Information Retrieval Evaluation (FIRE 2020), CEUR Workshop Proceedings, CEUR-WS.org,
2020.

Z.Han, T.Li, X. Wang, Y. Xu, M. Wu, Z. Li, Z. Wu, Y. Han, Ranking-based and Classification-
based Approaches for Code Author Identification, in: Proceedings of The 12th meeting of
the Forum for Information Retrieval Evaluation (FIRE 2020), CEUR Workshop Proceedings,
CEUR-WS.org, 2020.

J. A. Garcia-Diaz, R. Valencia-Garcia, UMUTeam at AI-SOCO’2020: Source Code Author-
ship Identification based on Character N-Grams and Author’s Traits, in: Proceedings of
The 12th meeting of the Forum for Information Retrieval Evaluation (FIRE 2020), CEUR
Workshop Proceedings, CEUR-WS.org, 2020.

A. V. Mandalam, Abhishek, Embedding-based Authorship Identification of Source Code,
in: Proceedings of The 12th meeting of the Forum for Information Retrieval Evaluation
(FIRE 2020), CEUR Workshop Proceedings, CEUR-WS.org, 2020.

C. Suman, A. Raj, S. Saha, P. Bhattacharyya, Source Code Authorship Attribution Using
Stacked Classifier, in: Proceedings of The 12th meeting of the Forum for Information
Retrieval Evaluation (FIRE 2020), CEUR Workshop Proceedings, CEUR-WS.org, 2020.

P. Sriiesaranusorn, S. Wattanakriengkrai, T. Son, T. Tanaka, C. Wiraatmaja, T. Ishio, R. G.
Kula, Kode_Stylers: Author Identification through Naturalness of Code: An Ensemble
Approach, in: Proceedings of The 12th meeting of the Forum for Information Retrieval
Evaluation (FIRE 2020), CEUR Workshop Proceedings, CEUR-WS.org, 2020.

N. N. A. Balaji, B. Bharathi, SSNCSE_NLP@Authorship Identification of SOurce COde
(AI-SOCO) 2020, in: Proceedings of The 12th meeting of the Forum for Information
Retrieval Evaluation (FIRE 2020), CEUR Workshop Proceedings, CEUR-WS.org, 2020.

W. Daelemans, M. Kestemont, E. Manjavacas, M. Potthast, F. Rangel, P. Rosso, G. Specht,
E. Stamatatos, B. Stein, M. Tschuggnall, et al., Overview of pan 2019: Bots and gender
profiling, celebrity profiling, cross-domain authorship attribution and style change detec-
tion, in: International Conference of the Cross-Language Evaluation Forum for European
Languages, Springer, 2019, pp. 402-416.

M. N. AlRashdan, M. Abdullah, M. Al-Ayyoub, Y. Jararweh, Authorship analysis of english
and spanish tweets, Proceedings of the Association for Information Science and Technology
57 (2020) e261.

A. Easy Samples

Listing 1: Easy Sample 1 | Problem ID: 99992 | User ID: 814

1 #include <bits/stdc++.h>
2 typedef long long II;
3 typedef long double 1d;
4 #define pb push_back
5 using namespace std;
6
7
8 int n, s;
9 int last[1010];
10 int main () {
11 ios ::sync_with_stdio (0);
12 cin. tie (0);
13
14 cin >> n >> s;
15 for(int i = 0; 1 < n; i++){
16 int f, t;
17 cin >> f >> t;
18 last[f] = max(last[f], t);
19 }
20 int t = 0;
21 for(int i = s; i >= 1; i--){
22 if(t < last[i]) t = last[i];
23 t++;
24 }
25
26 cout << t << endl;
27
28 return 0;
29 }
Listing 2: Easy Sample 2 | Problem ID: 99452 | User ID: 742
1 #include <bits/stdc++.h>
2
3 using namespace std;
4
5
6 wusing Il = long long;
7 using ull = uint64_t;
8 using i32 = int32_t;
9 using u32 = uint32_t;
10 using i64 = int64_t;
11 using u64 = uint64_t;
12 using pii = pair<int, int >;
13 using pll = pair<ll, 11 >;
14 using ld = double;
15
16 #define X first

#define Y second

—_
~

18
19 #ifndef ONLINE_JUDGE
20 #define FWRITE

21 #endif

22

23 namespace io
24 |

25

26 #ifndef FWRITE
27 #include <unistd.h>

28 #endif

29 const int BUFSIZE = 1 << 20;
30

31 int isize , osize;

32 char ibuf[BUFSIZE + 10], obuf[BUFSIZE + 10];

33 char+ is, « it, = os = obuf, = ot = obuf + BUFSIZE;
34

35 char getchar ()

36 {

37 if (is == it)

38 {

39 is = ibuf;

40 #ifdef FWRITE

41 it = ibuf + fread(ibuf, 1, BUFSIZE, stdin);
42 #else

43 it = ibuf + read (STDIN_FILENO, ibuf, BUFSIZE);
44 #endif

45 if (is == it) return EOF;

46 }

47 return «is ++;

48 }

49

50 char getalpha ()

51 {

52 char ¢ = getchar();

53 while (!isalpha(c)) ¢ = getchar();
54 return c;

55 }

56

57 void putchar(char c¢)

58 {

59 *0S++ = C;

60 if (os == ot)

61 {

62 #ifdef FWRITE

63 fwrite (obuf, 1, BUFSIZE, stdout);
64 #else

65 write (STDOUT_FILENO, obuf, BUFSIZE);
66 #endif

67 os = obuf;

68 }

69 }

70

71 int inp () {

72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125

}

11

}

int x = 0, f = 0; char ch;
for (ch = getchar(); !isdigit(ch); ch = getchar())
{
if (ch == EOF) return -1;
if (ch == "-") f = 1;
}

for (; isdigit(ch); x = x » 10 + ch - '0°, ch = getchar());

return f ? -x : x;

inp_11() {
I1 x = 0; int f = 0; char ch;
for (ch = getchar(); !isdigit(ch); ch = getchar())

if (ch == "-") f = 1;
for (; isdigit(ch); x = x » 10 + ch - 0°, ch = getchar());
return f ? -x : x;

template <class T>
bool read (T& x)

{

}

x = 0;
char ch = getchar();
if (ch == EOF) return 0;
for (; !isdigit(ch);)
{
ch = getchar();
if (ch == EOF) return 0;
1
for (; isdigit(ch); x = x » 10 + ch - ’0°, ch = getchar());
return 1;

template <class T>
void write (T x)

{

static char s[22];
static char« it = s + 20;
static char+« end = s + 20;

if (x < 0)
{

5

putchar (’-");
X = -X;

}

do

{
*»——it = x % 10 + 0’
x /= 10;

} while (x);

126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179

for (; it < end; ++it)
putchar («it);

}

template <>
void write(const chars s)
{
for (; =s; ++s) putchar(xs);

}

template <>
void write (char c¢)
{
putchar(c);
}

template <class T, class V>
void write (T x, V y)
{

write (x);

write (y);

}

template<class T>
void writeln (T x)
{
write (x);
putchar(’\n’);
}

struct ender

{

~ender ()

{
if (os != obuf)
#ifdef FWRITE
fwrite (obuf, 1, os - obuf,

#else
write (STDOUT_FILENO, obuf,
#endif
i
} __ender;
}

template <class T>
void print(const T& a)

{

stdout) ;

os - obuf);

180 for (auto x : a) printf("%d ”, x); puts(”7);

181}

182

183 int64_t power(int64_t a, int64_t b, int64_t p)
184 {

185 if (!b) return 1;

186 int64_t t = power(a, b >> 1, p);
187 t =t t%p;

188 if (b& 1) t=1t=+«a%p;

189 return t;

190 }

191

192

193 mt19937 rd(chrono:: steady_clock ::now().time_since_epoch ().count());
194

195 wusing namespace 1io;

196

197 template<class T>

198 inline void freshmin(T& a, const T& b)

199 {

200 if (a >b) a = b;
201}

202

203 template<class T»>
204 inline void freshmax(T& a, const T& b)

205 {

206 if (a <b) a = b;

207}

208

209 const 11 B = 31;

210

211 const int INF = 1000000010;

212

213 const int MAXN = 400010;

214

215 int dx[] = { -1, 1, 0, 0, -1, -1, 1, 1 };

216 int dy[] = { 0, 0, -1, 1, -1, 1, -1, 1 };

217

218 1d det(ld x1, Id y1, 1d x2, 1d y2, 1d x3, 1d y3)
219 {

220 return x1 * y2 - x2 » yl + x2 » y3 - x3 + y2 + x3 » yl - x1 = y3;
221}

222

223 int n;

224 vector <int> v[MAXN];

225 11 a[MAXN];

226

227 void solve ()

228 {

229 n = inp();

230 for (int i = 1; i <= n; ++i) a[i] = 1ILL << i;
231 Il sum = a[n];

232 for (int i = 1; i <n / 2; ++i) sum += a[i];
233 for (int i = n / 2; i < n; ++i) sum -= a[i];

234 sum = abs(sum);

235 writeln (sum) ;
236}

237

238 int main()

239 {

240

241 for (int T = inp(); T --;)
242 solve () ;

243

244 return 0;
245}

Listing 3: Easy Sample 3 | Problem ID: 98902 | User ID: 721

1 #include <bits/stdc++.h>

2 #include <ext/pb_ds/assoc_container.hpp>

3 #include <ext/pb_ds/tree_policy .hpp>

4

5 #pragma GCC optimize(-03)

6 #pragma GCC optimize (0 fast)

7 #pragma GCC optimize (" unroll -loops™”)

8

9 #define fi first

10 #define se second

11 #define sqr(x) (x) = (x)

12 #define p_b push_back

13 #define m_p make_pair

14 #define pll pair<ll, 11>

15 #define all(v) v.begin(), v.end()

16 #define pw(x) (11l << x)

17

18 wusing namespace std;

19 using namespace __gnu_pbds;

20 typedef long long 11;

21 typedef long double Id;

22 const 11 MAXN = 1123456;

23 const 1l N = 1le6;

24 const 11 MOD = 1e9 + 7;

25

26 template <typename T> using ordered_set = tree<T, null_type, less<T>,
rb_tree_tag , tree_order_statistics_node_update >;

27

28 template <typename T> void vout(T s){cout << s << endl; exit(0);}
29

30

31

32 int main () {

33 ios_base :: sync_with_stdio (0);
34 cin. tie (0);

35

36 vector <pll> v;

37

38 11 n, m;

39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68

O 00 N1 O\ U R W N =

I S e T e ol
S VO OTU W RO

21

cin >> n >> m;

I1 le = 1, ri = m;
11 st = 0;
while (1 <= r){
if (Pst){
v.p_b({l, le}):
le ++;
}else{
v.p_b({r, ri});
ri ——;
if(ri == 0){
l++;
le = 1;
r--;
ri = m;
}
}
st = 1 - st;
if(l == r & le > ri)break;
t
for (auto i v)cout << i.fi << 7 7 << i.se << "\n”;

return 0;

Listing 4: Easy Sample 4 | Problem ID: 98374 | User ID: 930

#include <bits/stdc++.h>
#define pb push_back
#define fast ios_base ::
#define int long long
#define pii pair<int,int>

sync_with_stdio (0);cin.tie (0);cout. tie (0);

#define
#define
#define

all (x) x.begin() ,x.end()
Ib lower_bound
ld long double

using namespace

std ;

const int N = 3e5+1;
vector <pii> adj[N];
int dp[N];
int a[N];
int ans = 0;
void dfs (int src,int par){
dp[src] = a[src];
multiset <int , greater <int>> st
for (auto it:adj[src]){
if(it.first!=par){
dfs (it .first ,src);
dp[src] =

max(dp[src],a[src] - it.second + dp[it

first]);

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

0 NV WND

10
11
12
13
14
15
16
17
18
19
20
21

st.insert(dp[it.first] - it.second);

}
}
int nn = st.size ();
if (nn>=2){
int fmx = «st.begin();
st.erase(st.begin());
int smx = «st.begin();
ans = max(ans,fmx + smx + a[src]);
}
ans = max(ans,dp[src]);
}
signed main () {
ios_base :: sync_with_stdio (0);
cin. tie (0);
cout.tie (0);
int n;
cin >>n;
for(int i =
cin>>al[i];
for(int i =
int u,v,w;

l;i<=n;i++)
l;i<=n-1;i++){
cin >>u>>v>>w;

adj[u].pb({v,w});
adj[v].pb({u,w});

}
dfs(1,-1);
cout<<ans;

Listing 5: Easy Sample 5 | Problem ID: 97797 | User ID: 665

#include <bits/stdc ++.h>

#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
using namespace std;

using namespace __gnu_pbds;

template <typename T>

using ordered_set = tree<T, null_type, less<T>, rb_tree_tag,
tree_order_statistics_node_update >;

#define 11 long long int

#define vi vector< int >

#define vl vector< 11 >

#define pii pair< int, int >

#define pll pair< Il , 11 >

#define pdd pair< double, double >

#define vii vector< pii >

#define vll vector< pll >

#define vd vector< double >

#define vb vector< bool >

#define el "\n”

#define wull unsigned long long int

#define 1d long double

22
23
24
25
26
27
28
29
30
31
32
33

34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

55
56
57
58

59
60
61
62
63
64
65
66
67
68

70
71

#define fi first

#define se second

#define pb push_back

#define eb emplace_back

#define mp make_pair

#define sqr(x) ((x) = (x))

#define FOR(i, a, b) for(ll i=a; i<=b; i++)

#define RFOR(i, b, a) for (Il i=b; i>=a; i--)

#define all(vec) (vec).begin() ,(vec).end()

template <typename T> void maxi(T &x, T y) {if (y > x) x = y;
template <typename T> void mini(T &x, T y) {if (y < x) x = y;

}
}

#define error(args...) { string _s = #args; replace(_s.begin(), _s.end(),

, > 7); stringstream _ss(_s); istream_iterator <string> _it(_ss);

args): }
void err(istream_iterator <string> it) {}
template <typename T, typename ... Args>
void err(istream_iterator <string> it, T a, Args... args) {
cerr << =it << 7 =: 7 << a << "\n”;
err(++it, args...);

}

template <class T1, class T2, class T3>
struct triple {

T1 a; T2 b; T3 c;

triple () : a(T1()), b(T2()), c(T3()) {};

triple (T1 _a, T2 _b, T3 _c) :a(_a), b(_b), c(_c) {}
}s

template <class T1, class T2, class T3>

bool operator <(const triple <T1,T2,T3>&t1,const triple <T1,T2,T3>&t2) {

if(tl.a!=t2.a)return tl.a<t2.a;
else if(tl1.b!=t2.b)return t1.b<t2.b;
else return tl.c<t2.c;
}
template <typename T1, typename T2>
inline std::ostream& operator << (std::ostream& os, const std

p) {

return os << 7(7 << p.first <<

» »

<< p.second << 7)7;
}
template <typename T>
inline std::ostream &operator << (std::ostream & os,const std
{
bool first = true;
os << 7[7;
for (unsigned int i = 0; i < v.size(); i++) {
if (! first) os << 7, 7
os << v[i];
first = false;

}

return os << 7]7;

}

template <typename T>

inline std::ostream &operator << (std::ostream & os,const std::

bool first = true;
os << "{”;

5

err (_it,

1 pair <T1, T2>&

i:vector <T>& v)

set <T>& v)

{

72

73
74
75
76
77
78
79
80

81
82

84
85
86
87
88
89
90
91

92
93
94
95

96

97

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120

for (typename std::set<T>::const_
++11) |
if (! first) os << 7, 7
0s << 11
first = false;

}

return os << 7}7;

}

template <typename T1, typename T2>

inline std::ostream &operator << (std

) |

bool first = true;

os << 7{7;

for (typename std::map<T1, T2>::const_iterator
end(); ++ii) {
if (! first) os << 7, 7
0s << x1ii
first = false;

}

return os << 7}7;
}
template <typename T>
inline std::ostream &operator <<

T>& v) {

return os << std::

(std

}

template <typename T1, typename T2>
inline std::ostream &operator << (std
T1, T2>& v) {

iterator ii = v.begin(); ii != v.end();

::ostream & os,const std::map<T1l, T2>& v

ii = ii = v.

v.begin () ;

::ostream & os,const std::unordered_set<

set<T>(v.begin (), v.end());

::ostream & os,const std::unordered_map=<

return os << std::map<T1, T2>(v.begin(), v.end());

}

const 11 MOD = 1e9+7;
const 11 INF = 1e18;
const double EPS = 1le-6;

int main ()

{
ios_base :: sync_with_stdio(false);
cin. tie (NULL) ;

int n;
cin >> n;
vector <int> a(n);

for (int i = 0; 1 < n; ++i) {
11 x;
cin >> Xx;
a[i] = (int) __builtin_popcountll(x);
}
11 ans = 0, sum = O0;
vector <int> cnt(2, 0);
cnt [0]++;
for (int e a) sum += e, cnt[sum & 1]++;

121
122
123
124
125
126
127
128
129
130
131
132
133
134

O 00 N N YT R W N -

O 00 N N U W N =

D) = = s e R e e e e
S O 0NN QNU W= O

for
for

}

cnt) ans += (11) e «

(int e

(int 1 = 0; i < n;

sum = 0;

int mx = -1;

for (int j = i; j <
sum += a[j];
maxi(mx, a[j]);
if (sum % 2 ==

}

cout << ans << el;

return O0;

++1) |
i+ 65 && j < n; ++j)
0 && mx > sum - mx) ans--;

(e - 1) / 2LL;

{

B. Hard Samples

Listing 6: Hard Sample 1 | Problem ID: 43 | User ID: 428

#include <bits/stdc++.h>

using namespace

int

main () {

int

a, b,

(U

std ;

cin >> a >> b >> c;
cout << min(a + 2, min(b + 1,
return O0;

c))

Listing 7: Hard Sample 2 | Problem ID: 15564 | User ID: 289

#include <iostream >

#include <vector >
#define pb push_back

using namespace

int n, st

= 0;

std ;

vector <vector <int >> v;

int main ()

{

cin

>> n;

v.resize(n+1);
v[st].pb(0);

st++;

for

{

(int

int x;

i

0;

n;

i++)

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

40
41
42
43

O 00 N1 N U R W N =

[N I I R R T I R e e N N e R e
N OGN R O 000NN RN RO

cin >> Xx;
int 1 = 0;
int r = st;
while (1 < r)
{
int ¢ = (l+r) / 2;
if (v[c].back() >= x) 1 = c+1; else r = c;

if (1 ==st || v[l].back() > x)

v[st].pb(x);
st++;
continue;

}

v[1].pb(x);

for (int i = 0; i < st; i++)

for (int j = 0; j < v[i].size(); j++) if (v[i][j] !'= 0)
il <<
cout << 7

}

return 0;

cout << v[i][

Listing 8: Hard Sample 3 | Problem ID: 31849 | User ID: 148

#include <iostream >
#include <vector >
#include <algorithm >
#include <cmath>
#include <map>
#include <set>
#include <sstream >

using namespace std;
map<pair <int , int >,int> lol;

int ged(int a,int b)

{
if (!b)return a;
return gecd(b,a%b);

}
pair<int ,int> kek[200500];

int main ()
{
int n;
cin >> n;
for (int i=0;i<n;i++)
{

string s;

28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

O 00 N N U R W N =

el e e e
0NN RO

N U R W DN =

cin >> s;
for (auto &c:s)
{
if (c<’07||lc>"9")
{
=’
}

stringstream z(s);
int a,b,c;

Z >> a >> b >> c;
a+=b;

b=gcd(a,c);

a/=b;

c/=b;

++lol [{a,c}];
kek[i]={a,c};

}
for (int i=0;i<n;i++)
{
cout << lol[kek[i]] << ~ 7
}

return 0;

Listing 9: Hard Sample 4 | Problem ID: 49881 | User ID:

71

#include <bits/stdc++.h>
#define pb push_back
using namespace std;
const int N=1le5+5;

int main ()

{

ios_base :: sync_with_stdio (0);cin. tie (0);cout.tie(0);

cout <<2000<<endl;
for(int i=1000;i>=1;i--)

>

cout<<i<<’ "<<l<<” T<<i<<’ ”<<2<<end1;

for(int i=1;i<=1000;1i++)

> >

cout<<i<<’ "<<l<<”

return 0;

Te<i<<” ”<<2<<end1;

Listing 10: Hard Sample 5 | Problem ID: 65320 | User ID:

21

#include <bits/stdc++.h>
using namespace std;

int input() {
char c¢; cin >> c;
return ¢ == ‘17

7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

}

voProblem id print_ans(vector<int> r, vector<int> c) {

}

int ans = 0;
for (int i: r) ans += i;
for (int i: c¢) ans += 1i;

cout << ans << ‘\n’;

for (int i = 0; 1 < r.size(); i++) {
if (r[i]) cout << "row 7 << i << '\n’;
if (c[i]) cout << "col 7 << i << ’\n’;
}

int main() {

ios ::sync_with_stdio(false); cin.tie(0);

int n; cin >> n;
int a[n][n], c[n];
for (int i = 0; i <
for (int j = 0; j
ali][j] = input(
}
}
for (int 1 = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
ali][j] "= input();

for (int i = 0; i < n; i++) {

vector <int> tog_row(n), tog_col(n);
for (int 1 = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
c

it (c[i] + c[j] == 0) {

if (!tog_col[j]) {
1

User ID:

61

62 for (int i = 0; i < n; i++) {

63 for (int j = 0; j < n; j++) {

64 if (tog_row[i] || tog_col[j]) {

65 if (tog_row[i] && c[j]) al[i][j] "= 1;
66 if (tog_col[j] && c[i]) al[i][j] "= 1;
67

68 if (alilli]) {

69 cout << -1; exit(0);

70 }

71 }

72 }

73 }

74

75 string sample_space;

76 for (int i = 0; i < n; i++) {

77 if (ltog_row[i] && c[i]) {

78 for (int j = 0; j < n; j++) {

79 if ('tog_col[j] && c[j]) {

80 sample_space.push_back(a[i][j] + "07);
81 } else {

82 sample_space . push_back('X");

83 }

84 }

85 break ;

86 }

87 }

88 if (sample_space.empty()) {

89 print_ans (tog_row, tog_col);

90 }

91

92 for (int i = 0; i < n; i++) {

93 if (tog_row[i] && c[i]) {

94 string spacel, space2;

95 for (int j = 0; j < n; j++) {

96 if (tog_col[j] == 0 && c[j]) {

97 spacel.push_back(a[i][j] + '07);
98 space2.push_back(1 - al[i][j] + '0°);
99 } else {

100 spacel.push_back(’X");

101 space2.push_back (’X");

102 }

103 }

104

105 if (spacel == sample_space) continue;
106 if (space2 == sample_space) {

107 tog_row[i] = 1;

108 for (int j = 0; j < n; j++) {

109 it (c[jD alillj]l "= 1;

110 }

111 } else {

112 cout << -1;

113 exit (0);

114 }

115
116
117
118
119
120
121
122
123
124
125
126

}

}
for (int i = 0; i < n; i++)
if (sample_space[i] == "1’
tog_col[i] = 1;
}
}

print_ans(tog_row, tog_col);

return 0;

{
)

{

	1 Introduction
	2 Task Definition
	3 Dataset and Evaluation
	4 Baseline Approaches
	4.1 Random Baseline
	4.2 Characters Logistic Baseline
	4.3 TF-IDF KNN Baseline
	4.4 C++ RoBERTa Tiny
	4.5 C++ RoBERTa Tiny-96
	4.6 C++ RoBERTa Small

	5 Competition Results
	5.1 Overview of Participating Teams
	5.2 Discussion and Error Analysis

	A Easy Samples
	B Hard Samples

