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Abstract
Social media has penetrated into multi-lingual societies, however most of them use English to be a
preferred language for communication. So it looks natural for them to mix their cultural language with
English during conversations resulting in abundance of multilingual data – call this code-mixed data,
available in today’s world. Downstream NLP tasks using such data is challenging due to the semantic
nature of it being spread across multiple languages. One such NLP task is Sentiment analysis; for this
we use an auto-regressive XLNet model to perform sentiment analysis on code-mixed Tamil-English and
Malayalam-English datasets.
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1. Introduction

Social media content results in large data feeds from wide geographies. Since multiple geogra-
phies are involved, the data is multilingual in nature resulting in code mixing 1 often. Sentiment
analysis on code-mixed text allows to gain insights on the trends prevalent in different geogra-
phies however is a challenge due to the non-trivial nature involved in inferring the semantics
of such data. In this paper, we address these challenges using XLNet[1]2 framework. We
have fine tuned the pre-trained XLNet model with the available data without any additional
pre-processing mechanisms. The rest of the paper is organized as follows. Section 2 illustrates
the related work done in the field. Section 3 explains the dataset and the task. Section 4
demonstrates the approach we used and briefly explains the architecture of XLNet. Results are
discussed in Section 5.
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1Code mixing refers to the linguistic units from different languages being used together by multilingual users
2XLNet is an auto-regressive model[2] which is built with the transformer architecture[3] with a two stream

attention mechanism[4]. The two stream attention mechanism ensures that the language model obtained through
training can predict missing words on the basis of bidirectional context. Bidirectional context in XLNet is achieved
by permutation language modelling.
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2. Related Work

Multilingual users have the tendency to mix linguistic units in the social media resulting
in code-mixed data being easily available. The phenomenon of code-mixing is explained in
[5, 6, 7, 8, 9, 10] and provides an analysis on the possible reasons behind code-mixing. This is
done by identifying the languages involved in the code-mixed data which looks inevitable. In
the past, several approaches were taken and experiments were conducted aimed at the detection
of languages in code-mixed data [11][12][13]. A review of many research works on code-mixing
is discussed in [14].

2.1. Code-mixed data

Since code-mixed is mostly sourced from social media platforms, the data in it’s raw form is
highly unstructured and hence corpus creation to organize this unstructured data into datasets
for further analysis pose a challenge. For some of the Indian languages, [15] has compiled
a Tamil-English code-mixed dataset, the first annotated Tanglish3 dataset. Similarly, [16]
published a dataset for Malayalam-English code-mixed data, where the authors also provided
references to the availability of other code-mixed datasets such as Chinese-English and Spanish-
English. But significant work hasn’t been done in the area of corpus creation for code-mixing
for Indian languages. The Indian languages are considered to be under-resourced and so there
is less interest in performing NLP tasks on these languages.

2.2. Sentiment-analysis

Sentiment analysis is a well known NLP task that infers the positive, negative and neutral
sentiments from a statement in question. However there are very few works on the sentiment
analysis over code-mixed data; [17][18] provides an overview of the work done on sentiment
analysis of Dravidian code-mixed text. Another work, [19] compares the performance of
different transformer architectures on the task of sentiment analysis of code-mixed data. [20]
employed an approach based on lexicon to assign sentiment to Hindi-English code-mixed text.
[21] illustrates a method to detect hate speech in code-mixed Hinglish dataset. For the purpose
of conducting this research they used FIRE 2013 and FIRE 2014 datasets. [22] used a LSTM
[23] based approach to improve the state-of-art performance [20] on the hinglish datasets by
18 percent. [24] used shared parameters in a siamese network [25] to project the code-mixed
sentences and sentences in standard languages into a common sentiment space. The similarity
of projected sentences is an indicative of how similar their sentiments are, similar sentences
have similar sentiment. Ensemble based techniques have also been used for sentiment analysis
of code-mixed data, [26] proposed an ensemble model of a character-trigrams based LSTM and
a word-ngrams naive bayes to detect the sentiment in Hindi-english code-mixed data. [27]
have used a multilayer perceptron to perform sentiment analysis on code-mixed data extracted
from social media platforms. [28] used an ensemble of a convolutional neural network and a
self-attention based LSTM for sentiment analysis of Spanglish and Hinglish text.

3Tanglish refers to code switching between Tamil and English, a term predominantly used in the Tamil
community



Table 1
Dataset size and splits

Dataset Training Validation Testing
Tamil-English 1,335 1,260 3,149

Malayalam-English 4,716 674 1,348

3. Dataset for sentiment analysis

In spoken and written conversations, it is observed that the usage of lexicon, connectives and
phrases from English are used in combination with other languages; this can very well be seen
in the social media text and in spoken conversations across geographies, especially in India.

Sentiment Analysis in social media has drawn attention in recent years. However, sentiment
analysis on Tamil-English (Tanglish) and Malayalam-English code-mixed data are not readily
available for research. The authors of [15] and [16] have collected 184,573 sentences for Tamil
and 116,711 sentences for Malayalam from YouTube comments which are based on the trailers of
the movies released in 2019 for building Tamil-English and Malayalam-English datasets where
non-code-mixed sentences were removed from the collection. Further, emoticons were removed
and sentence length filters were applied to render the mentioned datasets. In the end two data
sets of size 15,744 and 6,738 sentences were reported for Tanglish and Malayalam-English texts.

To get this dataset ready for sentiment analysis [15] and [16] refers to manual annotation
activity carried out with three annotators annotating each sentence in the data set. The
Krippendorff’s alpha (α) is used to measure inter-annotator agreement which is 0.6585 and
0.890 for Tamil and Malayalam code-mixed data sets respectively.

The dataset was provided for this task in three parts training, validation and testing. The
number of sentences used for the dataset splits are provided in table 1. Both these datasets are
released in DravidianCodeMix FIRE 2020 competition organized by dravidiancodemixed. These
comments were grouped into five categories positive, negative, neutral, mixed emotions, or not
in the intended languages.

4. Methodology

Language models have been integral to the recent advances made in the field of NLP due to its
ability to predict the next token in a sequence. Traditionally this achieved by computing the
joint distribution of the tokens in a sequence as a function of conditional probability distribution
of each token given other tokens in the sequence.

However, XLNet[1] takes a different approach; when these models are trained on large
datasets, it achieves state-of-art performances on downstream NLP tasks. This uses permutation
language modelling, which trains an autoregressive model on all possible permutation of
words in a sentence – see equation 1. During prediction of a word in a sequence, it takes into
account bidirectional context and predicts the masked tokens on the basis of the words/tokens
to the right as well as the left of the masked token in the sequence. XLNet is based on the
transformer architecture[3], which uses the concept of attention[4] to learn the long range
token dependencies. Another important aspect of XLnet is two-stream attention; this refers



Table 2
Precision, Recall and F-score measures on the Test set

Data Classes Precision Recall F1 Score Weighted Average-F1 Accuracy

Malayalam-English

Mixed feelings 0.03 0.22 0.05

0.52 0.49
Negative 0.12 0.40 0.19
Positive 0.72 0.50 0.59

not-malayalam 0.36 0.58 0.44
unknown state 0.42 0.46 0.44

Tamil-English

Mixed feelings 0.23 0.13 0.17

0.32 0.35
Negative 0.50 0.16 0.24
Positive 0.39 0.73 0.51
not-Tamil 0.10 0.40 0.16

unknown state 0.03 0.31 0.05

to attention streams working in parallel, one which encodes the content of the tokens and the
other which incorporates the positional information. This property would be useful and so is
exploited to perform the sentiment analysis on code-mixed data.

The following equation formally describes the language modelling objective using XLNet. In
eqn.1, for a give text sequence x, and set of all permutations of the sequence 𝑍𝑇 and z 𝜖 𝑍𝑇.

𝑚
𝜃
𝑎𝑥 𝐸𝑧∼𝑍𝑇[

𝑇
∑
𝑡=1

log 𝑝𝜃 𝑥𝑧𝑡 |𝑥𝑧<𝑡) ] (1)

For the purpose of experiments, we fine-tuned the XLNet model using the given datasets –
refer to table 1 and sentiment analysis was conducted on this labelled dataset. The training
and testing were carried out as per the numbers mentioned in Table 1. Two experiments were
conducted on the mentioned datasets and for those experiments the XLNet embeddings were
fine-tuned for 4 epochs each with a maximum learning rate of 0.005 to perform sentiment
analysis of the given datasets. Results of the experiments carried out are illustrated in the next
section.

5. Results and Discussion

The experiment results for the experiments outlined in the previous section are provided in table
2. We were able to achieve 0.49 & 0.35 accuracies and 0.52 & 0.32 F-scores on both the datasets
respectively. The results are biased towards Positive class because of the class-imbalance seen in
the training set. Further, it can be seen that the model performs better on the Malayalam-English
dataset despite the Tanglish dataset having more samples; this can be attributed to more noise
in the Tamil-English data and hence relatively poor performance. Our results do not perform
better than the baseline-results described in [15] and [16]. We hypothesize that these results
can further be improved by training the model for more epochs with a pre-processing step
performed in combination with oversampling and undersampling of the minority and majority
classes respectively.
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