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Abstract  
The detection of hate speech in online social media platforms is of great importance in text 

classification. There is a need to research languages other than English. In this paper, we 

describe our team Astralis’ combined effort in the shared task HASOC. We analyzed various 

models such as Naive Bayes, SVM, ANN, CNN, and embeddings such as TF-IDF, 

Multilingual BERT, and OPENAI-GPT2. Our relative performance was better in Subtask B 

for all languages, with our best-performed system ranked in second position in German Subtask 

B.  
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1. Introduction 
 

In today's world, many of us rely on social media platforms such as Facebook, Instagram and Twitter 

to find and connect with each other. While each has its benefits, it is essential to remember that it can 

never be a replacement for real-world human interaction. One such negative impact of using social 

media platforms is continuously getting affected by offensive comments and disrespectful behaviour 

from a complete stranger. In 2014, a Pew Research Center study found that about one-in-five (22%) 

internet users that had been victims of online harassment reported that it had happened in the comment 

section of a website. An average time spent by a person on social media is around 142 minutes a day. 

One thing which plays a significant role in spreading hate content is that a person can be anonymous 

and this anonymity causes the so-called online disinhibition effect, a psychological phenomenon that 

occurs when accepted social norms cease to exist in online contexts. When people are allowed to post 

without disclosing their identity (as in many forums and websites), their comments debase noticeably. 

It also turns out that exposure to online negativity makes our own thinking negative – reading uncivil 

comments can immediately increase readers' own hostile cognitions. We define offensive language as 

the offence of using language in a way which could offend a reasonable person. Comments and tweets 

are having an adverse effect on one's life. The various forms of abusive and offensive content online 

are a constant threat to users who use the platform. Hence it has become utterly essential to detect these 

unknown sources who are spreading hate among these social platforms so that necessary action can be 

taken. 

 

HASOC[1] provided a multilingual track joining Indo-European languages such as Hindi, English, and 

German. The tweets classification is done in two sub-tasks, namely A and B, which are then further 
classified. This paper emphasizes the problem of offensive language detection. Sub-task A is a coarse-

grained binary classification. Participating systems are required to classify tweets into two classes: Hate 

and Offensive (HOF) and Non- Hate and offensive (NOT).  

 

● (NOT) Non-Hate-Offensive - This subcategory does not comprise of hate, offensive, and profane 

posts  
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● (HOF) Hate and Offensive - This division consists of Hate and offensive content.  

 

Sub-task B is a fine-grained classification offered for English, German, Hindi. Hate-speech and 

offensive posts from the sub-task A are further classified into three categories.  

● (HATE) Hate speech:- This contains a class of hate speech content.  

● (OFFN) Offensive:- Posts under this class contain offensive content.  

● (PRFN) Profane:- This subcategory contains profane content. 

 

  

2. Related Work 
Hate speech detection is a vast field of research and attracts many. Here we briefly describe some of 

the works done in this area.  

 

The GermEval presented a task that identifies offensive language. The performance was measured by 

F1 score, precision, and recall.[2] This was a competition comprising 20 teams working on the shared 

task. The best results were achieved using five disjoint sets to train three different classifiers and then 

combining them, resulting in a meta-level classifier.[3]  

 

SemEval 2019 focuses on studying the type and target of the offensive language. They presented a 

shared task called OffensEval[4]. A schema is defined for taking into account the class and target. The 

dataset used is Offensive language identification(OLID). Three sub-tasks were given according to their 

annotation schema, which the participating team had to use. Sub-task A was offensive language 

identification, Sub-task B was Automatic categorization of offence types Subtask C was Offense target 

identification.  

 

Work was done on text classification using CNN by Yoon kim[5]. The CNN models discussed herein 

improve upon state of the art on 4 out of 7 tasks, including sentiment analysis and question 

classification. These vectors were trained by Mikolov et al. (2013) on 100 billion words of Google 

News and are publicly available.[6]   

 

Nobata et al.[7] came up with a model that uses regression techniques to detect hate and offensive 

content from a speech. Djuric et al.[8] presented a model that used LR classifiers to identify hate 

content. Besides using conventional techniques, this research also used comment embeddings as one of 

their features. 

 

3. Dataset 
Below we briefly describe the dataset used for HASOC 2020. Given below is the class-wise 

distribution of the dataset provided to us during this task.  

 

Table 1 
Distribution of Train  Set classes 
 

 Subtask 1 Subtask 2  

Language HOF NOT NONE PRFN OFFN HATE Total 

English 1856 1852 1852 1377 321 158 3708 

Hindi 847 2116 2116 148 465 234 2963 

German 673 1700 1700 387 140 145 2373 

 



   

 

    

 

Table 2 
Distribution of Test Set classes 

 Subtask 1 Subtask 2  

Language HOF NOT NONE PRFN OFFN HATE Total 

English 391 423 414 293 82 25 814 

Hindi 197 466 493 27 87 56 663 

German 134 392 378 88 36 24 526 

 
4. Approach 

Here we describe the various methodologies we used in different steps of the experiment. 

4.1.  Preprocessing 
For preprocessing, we followed a few simple traditional steps. At first, all of the Twitter handles 

were removed. After that, the links in the tweets were removed. All the retweets in the data had 

“RT” at the start. So we removed that. Then we removed all the residual blanks and kept the emojis. 

As the transformers[9] model we used had emoji support. 

4.2. Embeddings 
Here we define the methodology that we used to analyze two different subtasks that were given 

to us. We have used various models to get the best possible results.  

4.2.1. TF-IDF 
 It is short for the term frequency-inverse document frequency. One gram and bigrams were 

used to create this vectorizer with minimum occurrences of 5 for English. The length of the vectors 

derived was 1281 

4.2.2. BERT[10] 
BERT stands for Bidirectional Encoder Representation from Transformers. The hugging 

face[11] transformers library has made many transformers models available for use. From BERT, 

we used two models. bert-base-uncased for English and bert-base-multilingual-uncased for English, 

Hindi, and German. Matrices of length 768 * MAX_LEN was received for this. MAX_LEN is a 

parameter that shows the Max Length of tokenized tweets. Post padding with ‘0’ was used. 

4.2.3. OPENAI GPT-2[12] 
Similarly, shaped matrices as BERT were received from this transformer model for Hindi, 

English, and German. 

4.3. Models 
We have used various Machine Learning algorithms and Deep Neural Networks, and here we 

describe them in detail. We used tensorflow[18] keras[19] to make all the Neural Networks. 

4.3.1. SVM[13] 
SVM performs exceptionally well in specific NLP scenarios. To implement it, we used the 

scikit-learn[14] library. We used SVC with RBF kernel. To implement this with matrices that we 

got from transformers, we used the Continuous Bag Of Words method, in which the mean of 

embeddings of each word is taken. So the input to SVM was 768 length vectors. 

4.3.2. KNN 
This was also implemented using scikit-learn library with neighbours set to 3. Here again, the 

CBOW method was used.  

4.3.3. Naive Bayes[15] 
  Naive Bayes also works well for NLP. Here, the CBOW method was used to get the 

embeddings.  



   

 

    

 

4.3.4. ANN 
The input to this ANN was the CBOW embeddings and tf-idf for English. It was a five-layer 

NN with 128, 128, 256, 512 neurons and the last layer had 1 or 4 neurons depending upon the 

subtask. 

4.3.5. CNN[16] 
Here we have used a similar approach as the work produced by Yoon Kim. The architecture of 

CNN has layers in the following order.   

 

1. Input: For initializing the input tensors 

2. BatchNormalization[20]: To normalize each batch that is being processed. 

3. Dropout[17]: Dropout helps to reduce the possibility of overfitting 

4. After this, it is divided into various branches. Each branch computes x-gram. 

a. Conv1D: The kernel_size is set to x to compute x-gram.  

b. GlobalMaxPool1D: To get a vector of length of the number of filters 

c. BatchNormalization 

5. The above three layers produce one x-gram. After this, all of the x-grams are 

merged into one Tensor.  

 

6. The merged tensor is then passed into a Dense layer of 128 neurons. 

 

7. And then, finally, a dense classifier layer with 1 or 4 neurons based on the 

subtask. 

 

The architecture described above can be seen in Figure 1. 

 

 
 

Figure 1: Architecture of Bigram + Trigram CNN model 
 

First, we experimented with CNN with Bigram, Trigram, and Four-gram. Then after with Bigram 

and Trigram. In most cases, the Bigram + Trigram model was working better than the Bigram + Trigram 

+ Four-gram model. So, for further analysis, we considered only the Bigram+Trigram model.  

 

For the above models, training Adam optimizer [21] was used. We also used mild kernel 

regularization[22] in English subtask 2. We have also used class weights[23] in subtask B for all 

languages because there was an imbalance of classes in the dataset. 

 



   

 

    

 

Table 3 
Hyperparameters 

Hyperparameter Value 

Learning Rate 1e-3 

L1 regularization 1e-5 

L2 Regularization 1e-4 

Dropout 0.5 

Filters 64 

Activation Relu 

Activation in classifier 
neuron 

SB1- Sigmoid 
SB2- Softmax 

Loss SB1- binary_crossentropy 
SB2 - categorical_crossentropy 

Epochs in Subtask 1 English- 10 
German- 17 

Hindi- 25 

Epochs in Subtask 2 English- 25 
German- 25 

Hindi- 25 

TF-IDF Features 1281 

Batch_size 256 

SVM kernel RBF 

SVM regularization 0.025 

Neighbours 3 

 

5. Analysis 
Experimental results in the available test set show that CNN(bigram + trigram) outperforms all 

other models. CNN can exceed most of all baseline models, precisely because of the nature of tweets. 

For example, tweets can be indirect texts. (e.g., sarcasm), full of noise and may not follow proper 
grammatical structure.  

 

 

CNN can identify many small and large patterns in a tweet; if some are impacted by the noise[6], it 

can still use other patterns to determine the class, which can be seen in Table 4 and 5, which displays 

Embedding vs Model F1 Macro scores which is the metric used for scoring in HASOC 2020. The TF-

IDF for vectors for English subtask A works well enough, but the subtask B performance is lower, 

which is caused by the imbalance in the dataset's distribution. The bert-based-uncased Bigram + 
Trigram model gives the best performance in English. Models for which CBOW was used do not 

perform on par with the CNN model for both the subtasks. The bert-base-multilingual-cased and the 

gpt2 transformers embedding gives a reasonably similar performance in some situations, and for 



   

 

    

 

some, BERT performs a little better. bert-based-uncased performs better than bert-base-multilingual-

cased in both the subtasks of English. 

 

Table 4 
Subtask A F1 Macro Scores of various models on Public Test Data 

Embedding TF-IDF bert-base-
uncased 

bert-base-multilingual 
-cased 

OPENAI GPT-2 

Language English English English Hindi German English Hindi German 

SVM 0.618 0.738 0.719 0.412 0.427 0.827 0.412 0.513 

Naive bayes 0.712 0.578 0.558 0.536 0.561 0.679 0.530 0.574 

KNN 0.554 0.655 0.602 0.555 0.570 0.698 0.534 0.564 

DNN 0.790 0.823 0.729 0.435 0.647 0.815 0.534 0.639 

CNN(bi) - 0.868 0.859 0.427 0.629 0.865 0.543 0.679 

CNN(bi + tri) - 0.826 0.858 0.482 0.665 0.874 0.508 0.724 

 

 

Table 5 
Subtask B F1 Macro Scores of various models on Public Test Data 
 

Embedding TF-IDF bert-base-
uncased 

bert-base-multilingual 
-cased 

GPT-2 

Language English English English Hindi German English Hindi German 

SVM 0.246 0.347 0.351 0.213 0.209 0.412 0.210 0.275 

Naive bayes 0.284 0.289 0.150 0.218 0.162 0.371 0.188 0.236 

KNN 0.285 0.337 0.309 0.288 0.318 0.345 0.261 0.241 

DNN 0.470 0.403 0.296 0.187 0.320 0.501 0.119 0.305 

CNN(bi) - 0.513 0.498 0.370 0.381 0.438 0.310 0.409 

CNN(bi+tri) - 0.543 0.528 0.384 0.410 0.495 0.354 0.428 

 

 

So from the above work, we concluded to submit the CNN with Bigram + Trigram model with 

bert-based-uncased transformer for English subtasks and bert-base-multilingual-cased transformer for 

Hindi and German subtasks. The label wise F1 scores for the submitted models are shown in Table 6. 

OFFN and HATE categories from subtask 2 have relatively lower F1 scores due to relatively lower 

occurrences in the dataset. The final results on the private dataset on which the final ranks were given 

are displayed in Table 7. 
 

 



   

 

    

 

Table 6 
Label wise analysis of models submitted on the public test set 
 

 Subtask 1 Subtask 2 

Language HOF NOT NONE PRFN OFFN HATE 

English 0.855 0.852 0.789 0.783 0.188 0.000 

Hindi 0.305 0.834 0.826 0.203 0.187 0.209 

German 0.282 0.875 0.880 0.546 0.046 0.071 

 

Table 7 
Final results 
 

Language/Subtask Score Rank Score of rank 1 

English/A 0.5017 10 0.5152 

English/B 0.2484 5 0.2652 

German/A 0.4789 16 0.5235 

German/B 0.2627 2 0.2831 

Hindi/A 0.4293 23 0.5337 

Hindi/B 0.2644 3 0.3345 

 

6. Conclusion 
This paper describes offensive text identification into three Indo-European languages. We have shown 

our methodology for classifying tweets and posts from social media using multiple models in given 

three languages categorizing hate and offensive speech. After analyzing different models, we 

observed that the bert-based-uncased Bigram + Trigram model gives the best performance in English 

and bert-base-multilingual-cased transformer for Hindi and German subtasks. The results indicate that 

organizing profane and hate content is a strenuous task. In future work, we hope that better models 

and methods can be used to improve the effect of identifying hate speech. 
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