

Astralis@Hasoc 2020:Analysis On Identification Of Hate Speech
In Indo-European Languages With Fine-Tuned Transformers.

Hiren Madhua, Shrey Sataparab,

and Harsh Rathodc

LDRP-ITR, Gandhinagar, India

Abstract
The detection of hate speech in online social media platforms is of great importance in text

classification. There is a need to research languages other than English. In this paper, we

describe our team Astralis’ combined effort in the shared task HASOC. We analyzed various

models such as Naive Bayes, SVM, ANN, CNN, and embeddings such as TF-IDF,

Multilingual BERT, and OPENAI-GPT2. Our relative performance was better in Subtask B

for all languages, with our best-performed system ranked in second position in German Subtask

B.

Keywords 1
Hate Speech Detection | Text Classification | CNN | Deep Learning| Transformers

1. Introduction

In today's world, many of us rely on social media platforms such as Facebook, Instagram and Twitter

to find and connect with each other. While each has its benefits, it is essential to remember that it can

never be a replacement for real-world human interaction. One such negative impact of using social

media platforms is continuously getting affected by offensive comments and disrespectful behaviour

from a complete stranger. In 2014, a Pew Research Center study found that about one-in-five (22%)

internet users that had been victims of online harassment reported that it had happened in the comment

section of a website. An average time spent by a person on social media is around 142 minutes a day.

One thing which plays a significant role in spreading hate content is that a person can be anonymous

and this anonymity causes the so-called online disinhibition effect, a psychological phenomenon that

occurs when accepted social norms cease to exist in online contexts. When people are allowed to post

without disclosing their identity (as in many forums and websites), their comments debase noticeably.

It also turns out that exposure to online negativity makes our own thinking negative – reading uncivil

comments can immediately increase readers' own hostile cognitions. We define offensive language as

the offence of using language in a way which could offend a reasonable person. Comments and tweets

are having an adverse effect on one's life. The various forms of abusive and offensive content online

are a constant threat to users who use the platform. Hence it has become utterly essential to detect these

unknown sources who are spreading hate among these social platforms so that necessary action can be

taken.

HASOC[1] provided a multilingual track joining Indo-European languages such as Hindi, English, and

German. The tweets classification is done in two sub-tasks, namely A and B, which are then further
classified. This paper emphasizes the problem of offensive language detection. Sub-task A is a coarse-

grained binary classification. Participating systems are required to classify tweets into two classes: Hate

and Offensive (HOF) and Non- Hate and offensive (NOT).

● (NOT) Non-Hate-Offensive - This subcategory does not comprise of hate, offensive, and profane

posts

FIRE ’20, Forum for Information Retrieval Evaluation, December 16–20, 2020, Hyderabad, India.
EMAIL: hirenmadhu16@gmail.com (H. Madhu); shreysatapara@gmail.com (S. Satapara); harshrathod6874@gmail.com (H. Rathod)

ORCID: 0000-0002-6701-6782 (H. Madhu); 0000-0001-6222-1288 (S. Satapara);0000-0001-8599-2501 (H. Rathod)

©️ 2020 Copyright for this paper by its authors.
Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

 CEUR Workshop Proceedings (CEUR-WS.org) Proceedings

● (HOF) Hate and Offensive - This division consists of Hate and offensive content.

Sub-task B is a fine-grained classification offered for English, German, Hindi. Hate-speech and

offensive posts from the sub-task A are further classified into three categories.

● (HATE) Hate speech:- This contains a class of hate speech content.

● (OFFN) Offensive:- Posts under this class contain offensive content.

● (PRFN) Profane:- This subcategory contains profane content.

2. Related Work
Hate speech detection is a vast field of research and attracts many. Here we briefly describe some of

the works done in this area.

The GermEval presented a task that identifies offensive language. The performance was measured by

F1 score, precision, and recall.[2] This was a competition comprising 20 teams working on the shared

task. The best results were achieved using five disjoint sets to train three different classifiers and then

combining them, resulting in a meta-level classifier.[3]

SemEval 2019 focuses on studying the type and target of the offensive language. They presented a

shared task called OffensEval[4]. A schema is defined for taking into account the class and target. The

dataset used is Offensive language identification(OLID). Three sub-tasks were given according to their

annotation schema, which the participating team had to use. Sub-task A was offensive language

identification, Sub-task B was Automatic categorization of offence types Subtask C was Offense target

identification.

Work was done on text classification using CNN by Yoon kim[5]. The CNN models discussed herein

improve upon state of the art on 4 out of 7 tasks, including sentiment analysis and question

classification. These vectors were trained by Mikolov et al. (2013) on 100 billion words of Google

News and are publicly available.[6]

Nobata et al.[7] came up with a model that uses regression techniques to detect hate and offensive

content from a speech. Djuric et al.[8] presented a model that used LR classifiers to identify hate

content. Besides using conventional techniques, this research also used comment embeddings as one of

their features.

3. Dataset
Below we briefly describe the dataset used for HASOC 2020. Given below is the class-wise

distribution of the dataset provided to us during this task.

Table 1
Distribution of Train Set classes

 Subtask 1 Subtask 2

Language HOF NOT NONE PRFN OFFN HATE Total

English 1856 1852 1852 1377 321 158 3708

Hindi 847 2116 2116 148 465 234 2963

German 673 1700 1700 387 140 145 2373

Table 2
Distribution of Test Set classes

 Subtask 1 Subtask 2

Language HOF NOT NONE PRFN OFFN HATE Total

English 391 423 414 293 82 25 814

Hindi 197 466 493 27 87 56 663

German 134 392 378 88 36 24 526

4. Approach

Here we describe the various methodologies we used in different steps of the experiment.

4.1. Preprocessing
For preprocessing, we followed a few simple traditional steps. At first, all of the Twitter handles

were removed. After that, the links in the tweets were removed. All the retweets in the data had

“RT” at the start. So we removed that. Then we removed all the residual blanks and kept the emojis.

As the transformers[9] model we used had emoji support.

4.2. Embeddings
Here we define the methodology that we used to analyze two different subtasks that were given

to us. We have used various models to get the best possible results.

4.2.1. TF-IDF
 It is short for the term frequency-inverse document frequency. One gram and bigrams were

used to create this vectorizer with minimum occurrences of 5 for English. The length of the vectors

derived was 1281

4.2.2. BERT[10]
BERT stands for Bidirectional Encoder Representation from Transformers. The hugging

face[11] transformers library has made many transformers models available for use. From BERT,

we used two models. bert-base-uncased for English and bert-base-multilingual-uncased for English,

Hindi, and German. Matrices of length 768 * MAX_LEN was received for this. MAX_LEN is a

parameter that shows the Max Length of tokenized tweets. Post padding with ‘0’ was used.

4.2.3. OPENAI GPT-2[12]
Similarly, shaped matrices as BERT were received from this transformer model for Hindi,

English, and German.

4.3. Models
We have used various Machine Learning algorithms and Deep Neural Networks, and here we

describe them in detail. We used tensorflow[18] keras[19] to make all the Neural Networks.

4.3.1. SVM[13]
SVM performs exceptionally well in specific NLP scenarios. To implement it, we used the

scikit-learn[14] library. We used SVC with RBF kernel. To implement this with matrices that we

got from transformers, we used the Continuous Bag Of Words method, in which the mean of

embeddings of each word is taken. So the input to SVM was 768 length vectors.

4.3.2. KNN
This was also implemented using scikit-learn library with neighbours set to 3. Here again, the

CBOW method was used.

4.3.3. Naive Bayes[15]
 Naive Bayes also works well for NLP. Here, the CBOW method was used to get the

embeddings.

4.3.4. ANN
The input to this ANN was the CBOW embeddings and tf-idf for English. It was a five-layer

NN with 128, 128, 256, 512 neurons and the last layer had 1 or 4 neurons depending upon the

subtask.

4.3.5. CNN[16]
Here we have used a similar approach as the work produced by Yoon Kim. The architecture of

CNN has layers in the following order.

1. Input: For initializing the input tensors

2. BatchNormalization[20]: To normalize each batch that is being processed.

3. Dropout[17]: Dropout helps to reduce the possibility of overfitting

4. After this, it is divided into various branches. Each branch computes x-gram.

a. Conv1D: The kernel_size is set to x to compute x-gram.

b. GlobalMaxPool1D: To get a vector of length of the number of filters

c. BatchNormalization

5. The above three layers produce one x-gram. After this, all of the x-grams are

merged into one Tensor.

6. The merged tensor is then passed into a Dense layer of 128 neurons.

7. And then, finally, a dense classifier layer with 1 or 4 neurons based on the

subtask.

The architecture described above can be seen in Figure 1.

Figure 1: Architecture of Bigram + Trigram CNN model

First, we experimented with CNN with Bigram, Trigram, and Four-gram. Then after with Bigram

and Trigram. In most cases, the Bigram + Trigram model was working better than the Bigram + Trigram

+ Four-gram model. So, for further analysis, we considered only the Bigram+Trigram model.

For the above models, training Adam optimizer [21] was used. We also used mild kernel

regularization[22] in English subtask 2. We have also used class weights[23] in subtask B for all

languages because there was an imbalance of classes in the dataset.

Table 3
Hyperparameters

Hyperparameter Value

Learning Rate 1e-3

L1 regularization 1e-5

L2 Regularization 1e-4

Dropout 0.5

Filters 64

Activation Relu

Activation in classifier
neuron

SB1- Sigmoid
SB2- Softmax

Loss SB1- binary_crossentropy
SB2 - categorical_crossentropy

Epochs in Subtask 1 English- 10
German- 17

Hindi- 25

Epochs in Subtask 2 English- 25
German- 25

Hindi- 25

TF-IDF Features 1281

Batch_size 256

SVM kernel RBF

SVM regularization 0.025

Neighbours 3

5. Analysis
Experimental results in the available test set show that CNN(bigram + trigram) outperforms all

other models. CNN can exceed most of all baseline models, precisely because of the nature of tweets.

For example, tweets can be indirect texts. (e.g., sarcasm), full of noise and may not follow proper
grammatical structure.

CNN can identify many small and large patterns in a tweet; if some are impacted by the noise[6], it

can still use other patterns to determine the class, which can be seen in Table 4 and 5, which displays

Embedding vs Model F1 Macro scores which is the metric used for scoring in HASOC 2020. The TF-

IDF for vectors for English subtask A works well enough, but the subtask B performance is lower,

which is caused by the imbalance in the dataset's distribution. The bert-based-uncased Bigram +
Trigram model gives the best performance in English. Models for which CBOW was used do not

perform on par with the CNN model for both the subtasks. The bert-base-multilingual-cased and the

gpt2 transformers embedding gives a reasonably similar performance in some situations, and for

some, BERT performs a little better. bert-based-uncased performs better than bert-base-multilingual-

cased in both the subtasks of English.

Table 4
Subtask A F1 Macro Scores of various models on Public Test Data

Embedding TF-IDF bert-base-
uncased

bert-base-multilingual
-cased

OPENAI GPT-2

Language English English English Hindi German English Hindi German

SVM 0.618 0.738 0.719 0.412 0.427 0.827 0.412 0.513

Naive bayes 0.712 0.578 0.558 0.536 0.561 0.679 0.530 0.574

KNN 0.554 0.655 0.602 0.555 0.570 0.698 0.534 0.564

DNN 0.790 0.823 0.729 0.435 0.647 0.815 0.534 0.639

CNN(bi) - 0.868 0.859 0.427 0.629 0.865 0.543 0.679

CNN(bi + tri) - 0.826 0.858 0.482 0.665 0.874 0.508 0.724

Table 5
Subtask B F1 Macro Scores of various models on Public Test Data

Embedding TF-IDF bert-base-
uncased

bert-base-multilingual
-cased

GPT-2

Language English English English Hindi German English Hindi German

SVM 0.246 0.347 0.351 0.213 0.209 0.412 0.210 0.275

Naive bayes 0.284 0.289 0.150 0.218 0.162 0.371 0.188 0.236

KNN 0.285 0.337 0.309 0.288 0.318 0.345 0.261 0.241

DNN 0.470 0.403 0.296 0.187 0.320 0.501 0.119 0.305

CNN(bi) - 0.513 0.498 0.370 0.381 0.438 0.310 0.409

CNN(bi+tri) - 0.543 0.528 0.384 0.410 0.495 0.354 0.428

So from the above work, we concluded to submit the CNN with Bigram + Trigram model with

bert-based-uncased transformer for English subtasks and bert-base-multilingual-cased transformer for

Hindi and German subtasks. The label wise F1 scores for the submitted models are shown in Table 6.

OFFN and HATE categories from subtask 2 have relatively lower F1 scores due to relatively lower

occurrences in the dataset. The final results on the private dataset on which the final ranks were given

are displayed in Table 7.

Table 6
Label wise analysis of models submitted on the public test set

 Subtask 1 Subtask 2

Language HOF NOT NONE PRFN OFFN HATE

English 0.855 0.852 0.789 0.783 0.188 0.000

Hindi 0.305 0.834 0.826 0.203 0.187 0.209

German 0.282 0.875 0.880 0.546 0.046 0.071

Table 7
Final results

Language/Subtask Score Rank Score of rank 1

English/A 0.5017 10 0.5152

English/B 0.2484 5 0.2652

German/A 0.4789 16 0.5235

German/B 0.2627 2 0.2831

Hindi/A 0.4293 23 0.5337

Hindi/B 0.2644 3 0.3345

6. Conclusion
This paper describes offensive text identification into three Indo-European languages. We have shown

our methodology for classifying tweets and posts from social media using multiple models in given

three languages categorizing hate and offensive speech. After analyzing different models, we

observed that the bert-based-uncased Bigram + Trigram model gives the best performance in English

and bert-base-multilingual-cased transformer for Hindi and German subtasks. The results indicate that

organizing profane and hate content is a strenuous task. In future work, we hope that better models

and methods can be used to improve the effect of identifying hate speech.

7. References

[1] Mandl, Thomas and Modha, Sandip and Shahi, Gautam Kishore and Jaiswal, Amit Kumar and

Nandini, Durgesh and Patel, Daksh and Majumder, Prasenjit and Schäfer, Johannes. 2020.

Overview of the HASOC track at FIRE 2020: Hate Speech and Offensive Content Identification

in Indo-European Languages. In Proceedings of the 12th annual meeting of the Forum for

Information Retrieval Evaluation. Working Notes of FIRE 2020 - Forum for Information

Retrieval Evaluation

[2] Michael Wiegand, Melanie Siegel, and Josef Ruppenhofer. 2018. Overview of the GermEval

2018 Shared Task on the Identification of Offensive Language. In Proceedings of GermEval.

[3] Montani, Joaquın Padilla.2018. Tuwienkbs at germeval 2018: German abusive tweet detection.

In14thConference on Natural Language Processing KONVENS 2018, page 45

[4] Marcos Zampieri, Shervin Malmasi, Preslav Nakov, Sara Rosenthal, Noura Farra, and Ritesh

Kumar. 2019b. SemEval-2019 Task 6: Identifying and Categorizing Offensive Language in

Social Media (OffensEval). In Proceedings of The 13th International Workshop on Semantic

Evaluation (SemEval).

[5] Kim, Y.: Convolutional neural networks for sentence classification. CoRR abs/1408.5882

(2014), http://arxiv.org/abs/1408.5882

[6] Mikolov, Tomas & Chen, Kai & Corrado, G.s & Dean, Jeffrey. (2013). Efficient Estimation of

Word Representations in Vector Space. Proceedings of Workshop at ICLR. 2013.

[7] Nobata, C., Tetreault, J., Thomas, A., Mehdad, Y., Chang, Y.: Abusive Language Detection in

Online User Content. In: WWW 2016. pp. 145–153. Montreal (2016)

[8] Djuric, N., Zhou, J., Morris, R., Grbovic, M., Radosavljevic, V., Bhamidipati, N.: Hate Speech

Detection with Comment Embeddings. In: WWW 2015. pp. 29–30. Florence, Italy (2015)

[9] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, I.

Polosukhin, “Attention Is All You Need”. arXiv:1706.03762

https://arxiv.org/pdf/1706.03762.pdf

[10] Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: Pre-training of deep

bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference

of the North American Chapter of the Association for Computational Linguistics: Human

Language Technologies, Volume 1 (Long and Short Papers). pp.4171–4186. Association for

Computational Linguistics, Minneapolis, Minnesota (Jun 2019).

https://doi.org/10.18653/v1/N19-1423

[11] Wolf, Thomas & Debut, Lysandre & Sanh, Victor & Chaumond, Julien & Delangue,

Clement & Moi, Anthony & Cistac, Pierric & Rault, Tim & Louf, Rémi & Funtowicz, Morgan

& Brew, Jamie. (2019). Transformers: State-of-the-art Natural Language Processing.

arXiv:1910.03771v5 [cs.CL] https://arxiv.org/pdf/1910.03771.pdf

[12] Radford, Alec, and Wu, Jeff, and Child, Rewon and Luan, David and Amodei, Dario

and Sutskever, Ilya, Language Models are Unsupervised Multi-Task Learners, (2019)

[13] Marti A. Hearst. 1998. Support Vector Machines. IEEE Intelligent Systems 13, 4 (July

1998), 18–28. DOI:https://doi.org/10.1109/5254.708428

[14] Scikit-learn: Machine Learning in Python, Pedregosa, et al., JMLR 12, pp. 2825-2830,
2011.

[15] Naïve Bayes, Webb, Geoffrey I., Sammut, Claude, Webb, Geoffrey I., Encyclopedia

of Machine Learning, 2010, Springer US, Boston, MA, 978-0-387-30164-8, Webb 2010,

10.1007/978-0-387-30164-8_576, https://doi.org/10.1007/978-0-387-30164-8_576, 713-714

[16] LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W., and

Jackel, L. D. (1989). Back-propagation applied to handwritten zip code recognition. Neural

Computation, 1(4):541–551.

[17] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan

Salakhutdinov. 2014. Dropout: a simple way to prevent neural networks from overfitting. J.

Mach. Learn. Res. 15, 1 (January 2014), 1929–1958
[18] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig

Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian

https://arxiv.org/pdf/1706.03762.pdf

Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard, Rafal Jozefowicz, Yangqing Jia,

Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dan Mané, Mike, Schuster, Rajat Monga,

Sherry Moore, Derek Murray, Chris Olah, Jonathon, Shlens, Benoit Steiner, Ilya Sutskever,

Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol

Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng.

TensorFlow: Large-scale machine learning on heterogeneous systems, 2015. Software is

available from tensorflow.org.

[19] Chollet, F., & others. (2015). Keras. GitHub. Retrieved from

https://github.com/fchollet/keras

[20] Sergey Ioffe and Christian Szegedy. 2015. Batch normalization: accelerating deep

network training by reducing internal covariate shift. In Proceedings of the 32nd International

Conference on International Conference on Machine Learning - Volume 37 (ICML'15).

JMLR.org, 448–456.

[21] Kingma, Diederik & Ba, Jimmy. (2014). Adam: A Method for Stochastic Optimization.

International Conference on Learning Representations.

[22] Andrew Y. Ng. 2004. Feature selection, L1 vs. L2 regularisation, and rotational
invariance. In Proceedings of the twenty-first international conference on Machine learning

(ICML '04). Association for Computing Machinery, New York, NY, USA, 78. DOI:

https://doi.org/10.1145/1015330.1015435

[23] Adaptive Weight Optimization for Classification of Imbalanced Data, Huang, Wenhao,

Song, Guojie, Li, Man, Hu, Weisong, Xie, Kunqing, Sun, Changyin, Fang, Fang, Zhou, Zhi-

Hua, Yang, Wankou, Liu, Zhi-Yong, Intelligence Science and Big Data Engineering, 2013,

Springer Berlin Heidelberg, Berlin, Heidelberg, 978-3-642-42057-3, 10.1007/978-3-642-

42057-3_69

	1. Introduction
	2. Related Work
	3. Dataset
	4. Approach
	4.1. Preprocessing
	4.2. Embeddings
	4.2.1. TF-IDF

	4.2.2. BERT[10]
	4.2.3. OPENAI GPT-2[12]

	4.3. Models
	4.3.1. SVM[13]
	4.3.2. KNN
	4.3.3. Naive Bayes[15]
	4.3.4. ANN
	4.3.5. CNN[16]

