
Parallelization of Cryptographic Algorithm Based on Different
Parallel Computing Technologies

Lesia Mochurada, Glib Shchura

a Artificial intelligence Department, Lviv Polytechnic National University, Lviv, 79013, Ukraine

Abstract

The analysis of efficiency of application of four technologies of parallel programming for

parallelization of algorithm of block encryption Advanced Encryption System is carried out in

the work. The obtained results showed that the average execution time of this algorithm can be

increased three times with a processor and thousands of times with a graphics processor. The

advantages and disadvantages of each of the technologies are analyzed. But it is shown that

each of them can be suitable for different scenarios. That is why it is important for a

programmer to know OpenMP, Java Threads, Java ForkJoin, CUDA and other technologies

that exist for parallelization. The software is developed and a number of numerical experiments

are carried out. The reliability of the obtained encryption results is confirmed. To eliminate the

influence of external factors on the reporting time, the algorithm was performed 10 times in a

row and the average value was calculated. The largest increase in speed is obtained using

CUDA to parallelize the Advanced Encryption System algorithm and is more than 300000,

which is a very significant improvement. After that, we get an acceleration of three times for

OpenMP and 2.8 on average for encryption and decryption using both Java technologies.

Keywords 1
Advanced Encryption System algorithm, OpenMP technology, Java Threads, CUDA,

acceleration.

1. Introduction

The demand and need to increase the speed of software applications continues to grow as programs

are developed that require more computing power. Until 2004, Moore's Law allowed the number of

transistors in a processor to automatically increase software performance [1]. That is, if the processor

executes more instructions per second, the software will also run faster. However, due to the physical

limitations of processors, as well as the heating of components, it is impossible to continue to rely on

Moore's Law to achieve faster and faster execution of algorithms.

One alternative is parallel computing, which takes advantage of a multi-core computer

architecture [2-4]. In this model, multiprocessors communicate with each other through a shared cache

contained in апараті. However, the software needs to be adapted so that it can use multiple processors

to work on a single task, that is, use concurrency techniques to change the way code is written and

executed.

One of the most interesting and popular areas of modern development is the transition from the

implementation of calculations on the central processing unit (CPU) to the calculations on the GPU

graphics processing unit (GPU). In particular, Nvidia proposed its solution by developing the CUDA

(Common Unified Device Architecture) parallel computing architecture. Nvidia offers examples of

practical application of CUDA to solve general-purpose problems [5-8]. The observed increase in

performance compared to the CPU in these examples is from 10 to 100 times.

Parallel execution of a sequential flow of instructions on the CPU has certain basic limitations and

simply adding executable blocks can not achieve a significant increase in speed. At the same time,

IT&AS’2021: Symposium on Information Technologies & Applied Sciences, March 5, 2021, Bratislava, Slovakia

EMAIL: lesia.i.mochurad@lpnu.ua (L. Mochurad); hlib.shchur.kn.2017@lpnu.ua (G. Shchur).

ORCID: 0000-0002-4957-1512 (L. Mochurad); 0000-0002-3796-2866 (G. Shchur).

©️ 2021 Copyright for this paper by its authors.

Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:hlib.shchur.kn.2017@lpnu.ua

GPUs were originally created to execute parallel instructions. Most of the GPU, in contrast to the CPU,

is occupied by executable units, which gives an advantage in the speed of tasks related to parallel data

processing, namely when the same sequence of operations is applied to a large amount of data and the

number of instructions exceeds the number memory accesses. Thus, the GPU architecture allows to

achieve greater efficiency in parallel computing.

Another important advantage of using a GPU for general-purpose computing is that when computing

on a GPU, the CPU remains less loaded and can be used to perform other tasks.

The paper analyzes different approaches to parallelization of the Advanced Encryption System

(AES) block encryption algorithm. This algorithm is a block encryption algorithm that is used today in

a wide range of security applications [9].

The object of research is to study the properties that allow to parallelize AES algorithms.

The subject of the research is parallel programming technologies OpenMP, Java Threads, Java

ForkJoin and CUDA.

The purpose of this work is to analyze the effectiveness of various parallel computing technologies

to the standard algorithm of extended AES encryption.

2. Theoretical Basis

AES algorithm.

This algorithm is known as Rijndael - asymmetric block encryption algorithm (block size 128 bits,

key 128/192/256 bits). As Selent found, Reindale's algorithm "uses a combination of exclusive OR

(XOR) operations, replacing octets to rotate the rows of an S-box array" and a column and a mixture of

columns. It was successful because it is easy to implement and can be run without much expense on a

regular computer [10].

The AES algorithm works in both directions, used to encrypt and decrypt any type of binary file. As

an input file, it receives a file divided into blocks of 128 bits (16 bytes) and a key of 128, 196 or 256

bits. This paper uses a 128-bit key [11]. For each block, there is another 128-bit block with encrypted

data. Operations are performed on a 4x4 matrix that contains a corresponding block called a state.

Figure 1 shows a graphical representation of the algorithm, highlighting the main transformations

that occur over the state. It is important to note that these transformations are applied several times in

CBC (Cipher Block Chaining) mode, which means that after the first round of encryption on plain text,

additional operations will be applied on the encrypted text. This increases security. These

transformations are described below:

Figure 1: Block diagram of encryption and decryption using the AES algorithm

● Key expansion: This is a common program used to expand the input key and get

16∗(Nr + 1) new bytes. Therefore, a different key is used in each round of the algorithm. The

number of rounds depends on the length of the key, because a 16-byte key will be used, there

will be 10 rounds, and the expanded key will be 176 bytes. Methods used to extend the key

include cyclic permutations and arithmetic operations on Galois fields. See more on

Figure 1 [11].

● Add Round Key: In this part of the process, the key is added to the state using an XOR

operation. Part of the expanded key used depends on the integer number [11].

● Sub Bytes/Inverse Sub Bytes: This conversion uses a lookup table to perform byte

substitution, ie the value of each byte is changed by another in the S-box matrix, or the inverse

S-box for decryption. The matrix used was carefully selected for safety. Again, the values of

the matrices are the result of modular arithmetic in Galois fields.

● Shift Rows/ Inverse Shift Rows: In this step, the last three status rows are shifted to

the left for encryption or to the right for decryption. Line 1 is scrolled with an offset of 1, line

2 of 2, and line 3 of 3.

● Mix Columns/ Inverse Mix Columns: This process is really difficult to explain

because it uses Galois field operations in each column of the state matrix. The arithmetic

operations can be calculated in advance and saved in different search tables. Therefore, the

process is reduced to performing multiplications and XOR operations with each status column

and the corresponding search table [10].

All of the above transformations apply to each block into which the input file is divided 10 times in

a row. Each block that is encrypted is independent of the others, which makes it possible to make a

parallel implementation of the algorithm.

3. Setting the Task

To achieve the goal set in the work it is necessary:

• • Explore the application of four different technologies: OpenMP, Java Threads, Java ForkJoin

and CUDA, which implement different strategies to achieve the implementation of the AES

encryption algorithm.

• Develop software that works in parallel.

• Analyze the advantages and disadvantages of each of these technologies, highlighting

applications in which it is convenient to use each of the tools. Similarly, provide a performance

analysis when performing the AES algorithm.

• Compare the speed and efficiency of parallel algorithms implemented on the CPU and GPU.

4. Materials and Methods

Parallelization of the AES algorithm

The AES algorithm cannot be parallel by definition, as each round depends on the results of the

previous encryption round. Although the conversions can be parallel, it makes no sense to use different

threads to calculate operations, in a state of only 16 bytes.

The approach used in this work focuses on the parallel encryption of the blocks into which the file

is divided. This is possible because the encryption process for each block is independent of the others.

For example, suppose you need to encrypt a file of 1048576 bytes. This file will be divided into 16-

byte blocks. Thus, the AES algorithm will be applied to 65536 blocks. Here you can use parallelization

to distribute the work between the available threads depending on the technology used.

AES parallelization using OpenMP

The main feature of OpenMP [12, 13] is an easy transition from serial to parallel code only with the

help of pre-processing directives that tell the compiler which sections of code will be executed in

parallel. This makes it easy for the programmer to parallelize the code. It is important to note that shared

and private data are key to OpenMP and should be defined in the directives, thus establishing

communication and synchronization between threads.

The following is the main function of encryption in AES using OpenMP:

void cipher_control(byte ∗file_in , byte ∗file_out , long long file_size , unsigned long
blocks , byte ∗expanded_key)
{
 unsigned long block ;
 int padding , res ;
 // Check if the size of the input file is multiple of 16
 res = file_size % 16;
 #pragma omp parallel for shared(file_in , file_out , expanded_key)
 for (block = 0; block < blocks ; block++) {
 // Check if it is necessary to add padding to the last block
 if(block == blocks − 1 && res != 0)
 {
 padding = 16 − res;
 for(int i = res;i < res + padding;i++)
 {
 file_in[block ∗ 16 + i] = 0x00;
 }
 }
 //Invoke the cipher process for the corresponding block
 cipher(file_in + block ∗ 16, expanded_key);
 //Copy the encrypted block to the output file
 memcpy(file_out + block ∗ 16, file_in + block ∗ 16, 16 ∗ sizeof(byte));
 }
}

As you can see, this piece of code corresponds to the division of work into blocks. The most

important part is the line where the encryption method is called, which performs the AES algorithm to

encrypt the current block. There are no significant changes in the consistent implementation. Except for

the line that specifies that the loop parallel will be used (#pragma omp parallel for shared(file_in,

file_out, expanded_key)). Which can share in memory the input file, the output file and the encryption

key. Here, in a simple way the algorithm is parallelized by means of OpenMP.

AES parallelization using CUDA

A GPU graphics processing unit is required to run CUDA. Thanks to the GPU architecture, it is

possible to control hundreds of threads and obtain large accelerations [5, 14] The main advantage of

GPUs is that they can run a huge number of parallel threads. On the other hand, the disadvantages are

the high cost of equipment and high energy consumption during execution.

The following is a snippet of the program (AES control function) written in CUDA C, which is used

to control the encryption process. This method works on the GPU.

__global__ void cipher_control(byte *file_in , byte *file_out , long long * file_size ,
unsigned long *blocks , byte *expanded_key , byte *d_sbox , byte *d_m2, byte *d_m3)
{
 byte state [16];
 int block ;
 int padding, res;
 // Get the number of the block that the current thread is managing
 block = blockIdx . x * blockDim . x + threadIdx . x;
 // Check if the size of the input file is multiple of 16
 res = *file_size % 16;
 // Verify the current block is not out of boundaries
 while(block < *blocks) {
 //Copy the corresponding input data to the state matrix
 memcpy(state, file_in + block ∗ 16, 16 ∗ sizeof(byte));
 // Check if it is necessary to add padding to the last block
 if (block == ((*blocks) - 1) && res != 0)
 {
 padding = 16 - res;
 // Add padding only to the required spaces
 for (int i = res;i < res + padding;i++)
 {
 state[i] = 0x00;
 }
 }
 // Invoke the cipher process for the corresponding block

 cipher (state , expanded_key , d_sbox , d_m2, d_m3);

 // Copy the encrypted block
 memcpy(file_out + block * 16, state , 16 * sizeof(byte));
 // Update the current block moving to the next section of memory allowed for this
thread
 block += gridDim . x * blockDim . x ;
 }
}

This function includes the usual C syntax and some special CUDA functions. __global__ indicates

that the method will be executed on the GPU, which means that the same segment of code will be copied

and executed on multiple threads simultaneously. Instruction block

block=blockIdx.x*blockDim.x+threadIdx.x; gets the block number that the current stream needs to

encrypt. Because the program works with multiple blocks of threads, it is important to get the correct

index to avoid racing.

Function cipher (state , expanded_key , d_sbox , d_m2, d_m3) calls the encryption method, this

is where the AES algorithm is actually located and performs operations on the current state. Finally, the

current block to be encrypted is updated by adding block += gridDim.x * blockDim.x. This operation

ensures that the next block to be encrypted by the current stream is not encrypted by another.

Because the size of the input files may not be a multiple of 16, a gasket is added to add the last block

during the encryption process. The number of bytes added is stored in the first byte of the source file.

Then in the process of decryption the information about the attachment is read, and the last bytes are

ignored when saving the decrypted file.

Method cipher_control is called by the following statement inside the main program:
cipher_control <<< 128, 128>>> (/*params*/);

This instruction suggests the GPU to use 128*128=16384 threads to perform the function. In this

paper, the optimal number of threads should be equal to the size of the input file, but this size is variable.

When the number of threads is greater than required, there are threads that consume only resources, on

the other hand, if the number is less, then the required threads will have to do more work. Net 128*128

– this is the optimal number that can work with large and small files.

All methods of reading / writing input / output files are controlled by the processor. All other methods

related to the AES algorithm, such as AddRoundKey, MixColumns, ShiftRows, etc. they are controlled

by the GPU.

AES parallelization using Java threads (Java Threads)

Java integrates support for concurrent operations into its API using various strategies, one of which

is to use Thread objects. These objects are designed for parallel execution. Creating and administering

threads is the responsibility of the developer.

In the case of Java threads, the decryption method was implemented by creating an AES_decipher

object, which is instantiated within each of the created threads. In the case of Java code, the number of

threads used depends on the available hardware. It is recommended to use only 2 threads per core of

one processor.

Once the threads are created, the work is assigned to each of them, dividing by an equal number of

blocks to decrypt. For example, if you had 800 blocks and 8 threads, each thread must perform the task

of decrypting 100 blocks. It is important to take care of the correct distribution of memory, because if

one block is assigned more than one stream, race conditions may occur [15].

The following is a piece of code that is used to process the creation, initialization, and completion

of each thread. Operator .start() indicates that the thread should start running in parallel. On the other

hand, the operator .join() used to indicate that you need to wait for all threads to complete before

continuing the program flow.

//Instantiate the object to cipher
ac = new AES_cipher(file_in , key) ;
 the runtime
 // Assign the work to the threads
 for(int thr = 0; thr < MAXTHREADS; thr++)
 {
 if (thr < MAXTHREADS − 1)
 {

 threads [thr] = new Thread(new AES_cipher(thr * thread_blocks , (+ 1) *
thread_blocks)) ;
 }
 else
 {
 threads [thr] = new Thread(new AES_cipher(thr * thread_blocks, aes_blocks))
; }
 }
 // Start the execution of the threads
 for(int thr = 0; thr < MAXTHREADS; thr++)
 {
 threads[thr].start();
 }
 // Wait for every thread to finish its work
 for(int thr = 0; thr < MAXTHREADS; thr++)
 {
 try
 {
 threads[thr].join();
 } catch (InterruptedException e)
 {
 e.printStackTrace () ;
 }
 }

AES using Java ForkJoin

Java also provides a framework for managing threads, so the programmer does not have to deal with

the administration and synchronization of threads, because they are created in the pool. This framework

is called Java ForkJoin. This works by recursively dividing the initial working block into smaller ones,

until the optimal size is assigned to any of the free threads. It works using a labor theft algorithm, which,

if one of the threads finishes its work and is idle, it will take part of the work from another busy thread.

This is to make execution more efficient and to always support all threads [15].

Two classes were implemented in the work, one for encryption and the other for decryption. The

following is a snippet that separates tasks and causes new tasks to be created for threads. As you can

see, if the task is small enough, it is processed by calling the decryption control method, which is similar

to the one presented in the OpenMP section. Otherwise, the block is split in half and 2 new

AES_decipher objects are created, each with half of the original work. New objects are assigned to the

pool using the invokeAll method. Basically, all you have to do is create a pool and assign it an initial

object that contains all the work.

public void compute() {
 if(this.end - this.start <= THRESHOLD)
 {
 this.decipher_control();
 }
 else
 {
 long mid = (this.start + this.end) / 2;
 invokeAll (new AES_decipher(this.start, mid),
 new AES_decipher(mid, this.end));
 }
}

5. Results

The same file was used to evaluate the effectiveness of the parallel algorithms used to encrypt (EC)

the file and decrypt it (DC). In this way, the correctness of execution was checked, because the

decrypted file corresponds to the same original file. Similarly, the execution time was measured to make

appropriate comparisons. The algorithm was performed 10 times in a row, to subtract the average value,

thereby eliminating the influence of external factors on the reporting time. The test file for encryption

and decryption corresponds to a book in PDF format of 17.9 MB. The key used is read from the TXT

file and was the same for all cases.

In all cases, the computer used for testing has the technical characteristics given in Table 1.

Table 1: Technical characteristics of the computer used in numerical experiments

CPU Intel Core i5-8300H

2.80 GHz

Number of Kernels 8

RAM 8 GB DDR4 SDRAM

Storage capacity 128 GB SSD + 1 TB

HDD

GPU GeForce GTX 1050

OS Windows 10

The results of the obtained acceleration were calculated by implementing the AES algorithm

sequentially using C and Java. In the case of OpenMP and CUDA, the acceleration is compared to the

implementation in C; while Java Threads and ForkJoin use a serial version created in Java. The results

are summarized in Table 2 and in Figure 2.

Table 2: Summary of execution time for parallel implementation of AES

Execution time in ms

C OpenMP CUDA Java Java

Threads

Java

ForkJoin

EC DC EC DC EC DC EC DC EC DC EC DC

2
5

0
0

,9

3
0
8
9
,4

7
2
1

8
2
6
,

2
8
8
4

1
0
0
4
,1

8
4
3

0
,0

0
8
9

0
,0

0
9
9

5
0
4
,6

7
0
4

2
1
0
,6

2
1
2
,6

2
0
3
,8

2
1
9
,3

Figure 2: Comparative graph of the execution time of the parallel AES algorithm

Table 3 shows the acceleration obtained for each of the technologies.

Table 3: Acceleration obtained using four technologies for parallel AES

Technology Acceleration

ES DS

OpenMP 3.027 3.077

Java Threads 2.396 3.311

Java ForkJoin 2.476 3.210

CUDA 281000.000 312067.889

As you can see, the largest increase in speed is obtained using CUDA to parallelize the AES

algorithm and is more than 300,000, which is a very significant improvement. After that, we get an

acceleration of three times for OpenMP and 2.8 on average for encryption and decryption using both

Java technologies. In this sense, we can conclude that when using calculations in an 8-core processor,

the acceleration obtained by AES optimization is close to 3. However, the use of GPUs for the AES

algorithm leads to significantly higher performance. We can conclude that the best implementation of

the parallel AES algorithm in the processor is obtained using OpenMP. However, Java execution time

is less than C. This is due to how Java works and manages memory. Finally, in the case of a GPU, the

best optimization is definitely when using CUDA.

6. Conclusions

The choice of technology for parallel implementation of the algorithm depends on the use required

for the final application. For example, in the case of AES, it can be used in different scenarios. In a

high-level application that has contact with the user, a viable option would be Java Threads or ForkJoin.

However, in low-level applications, such as encrypting messages sent to hardware registers, it is

convenient to use C and OpenMP. Finally, if you have dedicated hardware with a GPU, a definite option

would be CUDA.

The main advantage of OpenMP is related to the simplicity with which the algorithm changes

sequentially to become parallel, as it only requires specifying pre-processing directives. The

disadvantage is that you do not have the versatility and flexibility to change the desired behavior in

parallel. In the case of Java, the disadvantage is that it is necessary to administer the threads manually

and solve synchronization problems. One of the advantages would be the ability to easily work with

high-level applications. For example, processing images and files does not require a high level of

complexity. Finally, CUDA has the advantage of very high acceleration due to the number of flows it

provides, but the disadvantage is that it requires special equipment (GPU), which is expensive and

requires more resources, such as more power and also heats up more. than a regular processor.

As a result of a series of numerical experiments, the efficiency of parallelization of the AES

algorithm by various parallel programming technologies was proved. Obviously, sequential computing

is no longer enough to meet the needs that users currently require. Concurrency needs to be integrated

into software development to achieve the best results in terms of efficiency. In addition, the architecture

of multi-core and multiprocessor systems is fully used in this way. Finally, it should be emphasized that

before using technologies available for multiprocessor processing, it is necessary to conduct a thorough

analysis of the algorithm to be implemented to avoid runtime problems such as race conditions or even

try to parallelize an algorithm that is inherently impossible. Parallelism in software is a very powerful

tool that needs to be used properly for optimal results and helps to create more efficient software.

7. References

[1] Sutter, H. The free lunch is over: A Fundamental Turn Toward Concurrency in Software. Dr.

Dobb's Journal, 30(3), 7 p. (2005).

[2] Mochurad, L., Shakhovska, K., Montenegro, S. Parallel Solving of Fredholm Integral Equations

of the First Kind by Tikhonov Regularization Method Using OpenMP Technology. In: Shakhovska

N., Medykovskyy M. (eds) Advances in Intelligent Systems and Computing IV. CCSIT 2019.

Advances in Intelligent Systems and Computing, vol 1080. Springer, Cham, pp. 25-35.

DOI: 10.1007/978-3-030-33695-0_3, 11 p. (2020) (https://doi.org/10.1007/978-3-030-33695-

0_3).

[3] Mochurad, L., Albota, S. Optimizing the Computational Modeling of Modern Electronic Optical

Systems. In: Lytvynenko V., Babichev S., Wójcik W., Vynokurova O., Vyshemyrskaya S.,

Radetskaya S. (eds) Lecture Notes in Computational Intelligence and Decision Making. ISDMCI

2019. Advances in Intelligent Systems and Computing, vol 1020. Springer, Cham. pp 597-608.

(2020) doi: 10.1007/978-3-030-26474-1_41 (https://doi.org/10.1007/978-3-030-26474-1_41).

[4] Mochurad, L., Boyko, N. Solving Systems of Nonlinear Equations on Multi-core Processors. In:

Shakhovska N., Medykovskyy M. (eds) Advances in Intelligent Systems and Computing IV.

CCSIT 2019. Advances in Intelligent Systems and Computing, vol 1080. Springer, Cham. pp. 90-

106. (2020) DOI: 10.1007/978-3-030-33695-0_8. (https://doi.org/10.1007/978-3-030-33695-

0_8).

[5] Mochurad, L.I., Boyko, N.I. Technologies of distributed systems and parallel computation:

monograph. Lviv: Publishing House “Bona”, 261 p. (2020). ISBN 978-617-7815-25-8.

[6] Farber, R. CUDA Application Design and Development. Waltham, MA: Morgan Kaufmann, 336

p. (2011).

[7] Sanders, J., Kandrot, E. CUDA by Example: An Introduction to GeneralPurpose GPU

Programming. Michigan : Addison-Wesley Professional, 312 p. (2010).

http://www.ddj.com/
http://www.ddj.com/
https://doi.org/10.1007/978-3-030-33695-0_3
https://doi.org/10.1007/978-3-030-33695-0_3
https://doi.org/10.1007/978-3-030-26474-1_41
https://doi.org/10.1007/978-3-030-33695-0_8
https://doi.org/10.1007/978-3-030-33695-0_8

[8] Fedushko, S., Mastykash, O., Syerov, Y., Peracek, T. Model of user data analysis complex for the

management of diverse web projects during crises. Applied Sciences (Switzerland), 10(24), pp. 1–

12 (2020).

[9] Pomogaeva, P.N. Cryptography: from the beginnings to the present day. Bulletin of young

scientists of St. Petersburg State University of Technology and Design 4, 519-525 (2019).

[10] Selent, Douglas. Advanced encryption standard. Rivier Academic Journal, 6(2), pp. 1-14 (2010).

[11] Heron, S. Advanced Encryption Standard (AES). Network Security 2009, 12, pp. 8-12 (2009).

[12] Mochurad, L., Boyko, N., Petryshyn, N., Potokij, M., Yatskiv, M. Parallelization of the Simplex

Method Based on the OpenMP Technology. Proceedings of the 4th International Conference on

Computational Linguistics and Intelligent Systems (COLINS 2020). Volume I: Main Conference.

Lviv, Ukraine, April 23-24, 936-951 p. (2020).

[13] Voss, M.J. OpenMP share memory parallel programming. Toronto, Kanada, 270 p. (2003).

[14] Agarwal, N., Goyal, A., Maheshwari, G., Dugtal, A., Parallel Implementation of Scheduling

Algorithms on GPU using CUDA. International Journal of Computer Applications, Vol. 127, No

2, pp. 44–49 (2015).

[15] Z. Hu, S. Gnatyuk, T. Okhrimenko, S. Tynymbayev, and M. Iavich, “High-Speed and Secure

PRNG for Cryptographic Applications,” IJCNIS, vol. 12, no. 3, pp. 1–10, Jun. 2020, doi:

10.5815/ijcnis.2020.03.01.

[16] M. M. Hassan and G. M. Rather, “Centralized Relay Selection and Optical Filtering Based System

Design for Reliable Free Space Optical Communication over Atmospheric Turbulence,” IJCNIS,

vol. 12, no. 1, pp. 27–42, Feb. 2020, doi: 10.5815/ijcnis.2020.01.04.

[17] Java. The Java Tutorials. url: https://docs.oracle.com/javase/tutorial/ essential/concurrency

/index.html (visitado 24-11-2018).

https://www.scopus.com/authid/detail.uri?authorId=56328252300
https://www.scopus.com/authid/detail.uri?authorId=57200319762
https://www.scopus.com/authid/detail.uri?authorId=27868100200
https://www.scopus.com/authid/detail.uri?authorId=57199330529
http://ceur-ws.org/Vol-2604/paper62.pdf
http://ceur-ws.org/Vol-2604/paper62.pdf
https://docs.oracle.com/javase/tutorial/

