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Abstract
In many practical problems, it is important to take into account that our computational and measur-
ing resources are limited. In this paper, we overview main resource limitations for different types of
computers, and we provide two case studies explaining how to best take this resource limitation into
account.
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1. Formulation of the Problem

What are the goals of science and engineering. We want to know what will happen in the
future, and we want to decide what to do to make this future better. In a nutshell:

• predicting the future is what science is about, and

• deciding what to do is more the area of engineering.

Need for measurements and computations. To predict the world’s future and to decide
how to improve this future, we need to understand how the world works. Some of the situations
we can simply observe, but in most cases, we need to measure the values of different quantities.

Based on the measurement results, we deduce the algorithms describing dynamics of the
world’s processes – and formulate selection of the best action and/or device as an appropriate
optimization problem. To use prediction algorithms and to solve the corresponding optimization
problem, we often need to perform a large number of computations. For example, to reasonably
accurately predict tomorrow’s weather, we need to use high-performance computers.

Comment. Some problems require so many computational steps that we cannot solve them even
on the fastest computers. For example, to predict in which direction a tornado will go, even the
existing high-performance computers are not sufficient:
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• to predict where the tornado will do in the next 15 minutes, we need to spend several
hours on a high-performance computer;

• by that time, the tornado has already moved and caused damage.

Our resources are limited. In principle, for the same computational problem, we may have
different algorithms. Which algorithm should we select?

Traditional approach of theoretical computer science uses asymptotic analysis to compare
different algorithms. For example, we analyze how the computation time grows with the size 𝑛

of the input, and we select an algorithm that leads to the shortest possible time for large 𝑛. This
analysis implicitly assumes that we can have an unlimited amount of resources:

• we can have inputs of arbitrary large size 𝑛,

• we can have an arbitrary large memory to store this data and to store all needed interme-
diate results,

• we can perform an arbitrary large number of computations, etc.

In practice, our resources are limited. It is therefore important to consider how this limitation
affect computations and measurements.

What we do in this paper. In this paper:

• we provide a brief overview of the corresponding resource limitations, and

• we also present two case studies explaining, in some detail, how to take these resource
limitations into account.

Comment. In most cases, we focus on our own related results – although, of course, in each of
these problems, there are many other results and techniques. The reason for this selection is that
the results that we cite are usually mathematically reasonably simple – this is why we selected
them: for our own results, we know how we can simplify these results into easy-to-follow
not-too-complex ones.

We believe that overall, these results provide a good introduction to the great variety of
related problems.

White-box and black-box computing. In our analysis, we will distinguish between:

• traditional (white-box) computing and

• practically important black-box computing.

White-box computing corresponds to the usual analysis of theoretical computer science, when
we know, step-by-step, what our algorithms are doing. This corresponds to:

• situations when we write our own code “from scratch”, and

• situations when we only use open-source software.

In practice, however, we often use proprietary code, i.e., a code that its producer does not
explain. We can use it, but we are not allowed to see the algorithm – we only see the results.
Similarly, in defense applications, we may need to use classified code – e.g., the code used to
control the corresponding devices.



2. White-Box Computing: Three Types of Situations and
Related Resource Limitations

Three types of situations. In our analysis, we will distinguish between three different com-
putational situations.

• One such situation is regular-scale computing, when we perform computations on a usual
computer, be it a single laptop of an affordable computer cluster.

• Regular-size computations work well in many cases, but, as we have mentioned earlier,
there are many practical situations where regular-scale computing is not sufficient, where
we need large-scale computing – what is usually called high-performance computing.

• For some situations, the opposite is true: we do not need even the full computational
power of a regular laptop, it is sufficient to use limited computational power of an easier-
to-carry smaller device such as a cell phone or a smart watch. It is natural to call such
situations small-scale computing.

Let us describe what are the typical resource limitations of these three types of situations – and
what can we do to best takes these resource limitations into account.

Resource limitations of small-scale computing: energy. For small-scale computing – such
as computing on cell phones – by definition, computational ability is not a problem. The main
need for such small-scale devices comes from the fact that regular computers are not very
portable: it is easier to carry a cell phone than a computer.

This portability is a problem: to perform computations, we need energy. For a more or less
stationary device like a regular computer, this is not a problem: we just plug in the computer,
and get the energy non-stop. For portable devices, energy is a problem: we can only plug it in
once in a while, and in a small volume, we can only a limited amount of energy. So, for such
devices, the main resource limitation is energy.

This require a serious change in algorithms – since most traditional algorithms are designed
to minimize computation time, without taking into account energy limitations. In particular,
this means that energy-needing auxiliary procedures like garbage collection – that periodically
frees the no-longer-used part of computer memory – have to be performed only based on need,
and not, as in usual computers, periodically or whenever this leads to faster computations; see,
e.g., [1] and references therein.

For example, a regular laptop usually updates when it is idle, when it is not doing any
computations:

• this preserves its computational speed when it is used, and

• no matter how many updates we make, it does not affect its computing abilities.

For portable devices, any such procedure uses some portion of stored energy, so it needs to be
performed as rarely as possible.

The corresponding optimization of computations is a very challenging task, especially taking
into account that some operating systems running on this devices are proprietary. Since the



operating system uses a significant amount of energy, we thus face a partly-black-box problem
even when the computational algorithms that we run on these devices are white-box ones; see,
e.g., [2].

Resource limitations of regular-size computing: cost and cloud computing. For regular-
size computing, computational ability is not a problem – otherwise, we would have needed
a high-performance computer. As we have mentioned earlier, for such computers, energy is
also not a problem: we just plug in. So is there any limited resource? Yes, a very mundane one:
money.

The possibility to save money comes from the fact that the amount of needed computations
changes with time:

• we have daily fluctuations, since most computations are performed at daytime,

• we have seasonal computations – e.g., a tax-advising company needs a lot of computations
before the taxes deadline, stores need to perform more computations before Christmas,
when many people are shopping for Christmas gifts, etc.

In all these cases, we have a choice:

• we can buy as many computers that we need at peak times, or

• we can buy fewer computers and at peak time, rent computation time on other computers.

Computations involving rented computation time are known as cloud computing; see, e.g., [3, 4,
5, 6, 7]. This name comes from the fact that we do not care where exactly these computations are
performed – as long as they are performed. So, the possible locations of processors performing
such computations do not form a clear shape, the resulting geographic shape is amorphous and
often fast-changing, like a cloud in the sky.

So how much computing power should we buy and how much should we rent? Detailed
answers to this question can be found in [8, 9, 10, 11]. In this paper, we show the optimal
money-saving solution for the simplest case, when we have:

• full information about the costs and

• full information about our computational needs.

This means, in particular, that we know:

• the cost 𝑐0 per computational step of in-house computations (including the corresponding
part of the cost of buying the computers),

• the cost 𝑐1 > 𝑐0 per computational step of rented out-of-house computations, and

• probability distribution of the future computer needs 𝑥 , which can be described, e.g., by
the probability density function (pdf) 𝜌(𝑥).



Based on this information, we need to select the optimal amount 𝑥0 of computational power
that we should buy.

For each value 𝑥 > 𝑥0, we rent the missing amount 𝑥 − 𝑥0 of the computational power. Thus,
the overall expected cost of all these computations is equal to

𝑐0 ⋅ 𝑥0 + 𝑐1 ⋅ ∫

∞

𝑥0

𝑐1 ⋅ (𝑥 − 𝑥0) ⋅ 𝜌(𝑥) 𝑑𝑥.

To find the optimal value 𝑥0, we can differentiate this expression with respect to 𝑥0 and equate
the derivative to 0. As a result, we get the equation

𝐹 (𝑥0) = 1 −

𝑐0

𝑐1

,

where 𝐹 (𝑥) is the cumulative distribution function corresponding to the given pdf. This equation
described the optimal amount of computing power that we should buy.

Comment. In [8, 9, 10, 11], one can also find:

• algorithms for solving this problem in more realistic settings, when we know the costs
and needs with some uncertainty,

• algorithms for deciding when a long-term contract is beneficial, and

• algorithms that help companies providing cloud computing to find the optimal locations
of their computers around the world.

Resource limitations of large-scale computing: energy again. For large-scale computing,
as we have mentioned earlier, one of the main problems is that some important practical
problems still cannot be solved on such computers – computer engineers are working on this.
For the existing computers, what is the main limitation? Somewhat surprisingly, the main
limitation is again energy, the same as for small-scale computing. Indeed, we can simply plug
in a regular-size computer, but a usual company-wide or university-wide connection can only
support a limited number of such plugged-in computers.

For a high-performance computer – which, crudely speaking, consists of hundreds and
thousands of usual computers – we need to build a special power station, and even this may
not be sufficient. How can we minimize the power needed for computations?

To answer this question, we need to go back to computer design:

• When we design a high-performance computer, we want to maximize the overall number
of computations per second. From this viewpoint, a seemingly natural idea is to run all
the processors at their maximum speed.

• It turns out that from the viewpoint of energy consumption, this is not the best arrange-
ment.

To be more precise, if the power 𝑃𝑖 used by each processor 𝑖 was exactly proportional to this
processor’s computation speed 𝑓𝑖 – i.e., to the number of computational operations per second,
this would not matter:



• if 𝑃𝑖 = 𝑘 ⋅ 𝑓𝑖 ,

• then, no matter how we distribute the task between processors, the overall power 𝑃 would
be similarly proportional to the overall number 𝑓 of computational steps per second:

𝑃 = 𝑘 ⋅ 𝑓 .

In practice, however, the linear dependence of 𝑃𝑖 on 𝑓𝑖 is only a rough approximation, the actual
dependence 𝑃𝑖 = 𝐹(𝑓𝑖) is non-linear.

As a result, instead of having all the processor work at their maximal speed, a better idea is:

• to have each processor work at the speed 𝑓𝑖 at which the ratio
𝑃𝑖

𝑓𝑖

=

𝐹(𝑓𝑖)

𝑓𝑖

is the smallest

possible, and

• to use more processors if needed.

If at some point, the task requires a smaller overall computation speed 𝑓 , then, to minimize
energy consumption:

• we make some processors idle, while

• others will work at their optimal speed (optimal in terms of energy consumption).

Quantum computing and its resource limitations. As we have mentioned several times,
there is a practical need to increase computation speed beyond what we can do now. This need
faces a fundamental physical limitation: that, according to relativity theory, the speed of all
processes is limited by the speed of light. As a result:

• for a usual laptop of approximately 30 cm size, it takes 1 nanosecond for the light to travel
from one side of the computer to another, and

• during this time, even the cheapest 4-GHz laptop performs 4 operations.

To drastically speed up processing, we need to drastically decrease the computer size – and this
means to make memory cells drastically smaller. Already each cell consists of thousands of
molecules. With further size decrease, we will get to the level of individual molecules – and at
this level, we have to take into account physical laws of the micro-world – the law of quantum
physics.

Computations that take quantum effects into account are know as quantum computing; see,
e.g., [12]. One of the main features of quantum physics – see, e.g., [13, 14] – is that, in addition
to classical states 𝑠, 𝑠′, . . . – which, in quantum physics, are denoted by |𝑠⟩, |𝑠′⟩, etc. – we can
also have superpositions of these states, i.e., states of the type

𝑐𝑠 |𝑠⟩ + 𝑐𝑠′ |𝑠
′
⟩ + … ,

where 𝑐𝑠 , 𝑐𝑠′ , . . . , are complex values for which

|𝑐𝑠 |
2
+ |𝑐𝑠′ |

2
+ … = 1.



If we measure, in this superposition state, a classical variable 𝑣, then we get the value 𝑣(𝑠)

with probability |𝑐𝑠 |
2, the value 𝑣(𝑠′) with probability |𝑐𝑠′ |

2, etc. The sum of all these probabilities
should add to 1 – which explains the above condition on the values 𝑐𝑠 , 𝑐𝑠′ , . . .

In particular, a quantum analogue of the usual bit – i.e., an element that can be in two possible
states 0 and 1 – is a quantum bit (qubit, for short), i.e., the state of the type

𝑐0|0⟩ + 𝑐1|1⟩.

Similarly, a quantum analogue of a 2-bit state is a general 2-qubit state

𝑐00|00⟩ + 𝑐01|01⟩ + 𝑐10|10⟩ + 𝑐11|11⟩,

etc.
There are many efficient quantum algorithms, e.g., Grover’s algorithm [15, 16, 12].

• This algorithm enables to find an element with a given property in an unsorted 𝑛-element
array in time proportional to

√

𝑛.

• On the other hand, for non-quantum algorithms, not to miss the desired element, we
need to look at all 𝑛 elements, so we need at least 𝑛 computational steps, and 𝑛 ≫

√

𝑛.

Grover’s algorithm requires 𝑛-qubit states. At this moment, the number of available qubits
is the main limitation to quantum computing, the main limited resource. What happens if we
only have 𝑠 < 𝑛 qubits, i.e., if we can only implement 𝑠-qubit states? In this case, we can:

• divide the 𝑛-element array into 𝑛/𝑠 fragments of size 𝑠, and

• apply Grover’s algorithms to each fragment; see, e.g., [17].

For each fragment, Grover’s algorithm requires
√

𝑠 steps, so the overall computation time will
be

𝑛

𝑠

⋅

√

𝑠 =

𝑛

√

𝑠

. This amount:

• is still smaller than the time 𝑛 needed in the non-quantum case, and

• decreases as the resource bound 𝑠 increases (and reaches the Grover’s value 𝑡 ∼
√

𝑛 when
we reach the case 𝑠 = 𝑛).

3. Black-Box Computing: Related Resource Limitations

General case. For black-box computing, when computations include calls to a “black-box”
(proprietary or classified) program, a natural idea is to minimize the number of such calls:

• For proprietary programs, when we often need to pay for each class, this minimizes the
overall costs.

• For classified programs, when each call is an extra vulnerability, this minimizes the risk.

• For programs that take a long time to compute, this also minimizes the overall computation
time.



What can we compute in this manner? Usually, commercial software provides a turn-key
solution to the corresponding problem, a solution that does not require additional programming.
There exist commercial software for deep learning, for solving partial differential equations, etc.

This software produces the result 𝑦 = 𝑓 (𝑥1, … , 𝑥𝑛) of processing the inputs 𝑥1, … , 𝑥𝑛, but what
is usually does not do is produce the accuracy of this result. To be more precise, most black-box
packages compute the result implicitly assuming that the inputs are exactly known. In practice,
the inputs come from measurements, and measurements are never absolutely accurate: the
result 𝑥𝑖 of measuring the 𝑖-th input are, in general, different from the actual (unknown) value
𝑥𝑖 of this input.

Thus, when we apply the black-box algorithm 𝑓 to the measurement results 𝑥𝑖 , the result 𝑦
of this computation will be, in general, different from the desired value 𝑦 = 𝑓 (𝑥1, … , 𝑥𝑛):

𝑦 = 𝑓 (𝑥1, … , 𝑥𝑛) ≠ 𝑦 = 𝑓 (𝑥1, … , 𝑥𝑛).

An important question is: how accurate is the computation result? In other words, how big can
the difference Δ𝑦

def

= 𝑦 = 𝑦 be?
This question is very practically important. For example, if we are prospecting for oil and we

learned that the given area contains 𝑦 = 200 million tons, then:

• if this amount is 200 ± 20, this is good news and we should start drilling, but

• if it is 200 ± 300, then maybe there is no oil at all, and it is better to perform additional
measurements before we spend a large amount of money on possibly useless drilling.

Let us formulate this problem in precise terms. Usually, the measurement errors Δ𝑥𝑖
def

=

𝑥𝑖 − 𝑥𝑖 are relatively small. So, taking into account that 𝑥𝑖 = 𝑥𝑖 − Δ𝑥𝑖 , we can expand the
expression

Δ𝑦 = 𝑓 (𝑥1, … , 𝑥𝑛) − 𝑓 (𝑥1 − Δ𝑥1, … , 𝑥𝑛 − Δ𝑥𝑛)

in Taylor series and keep only linear terms in this expansion. As a result, we get the expression

Δ𝑦 =

𝑛

∑

𝑖=1

𝑐𝑖 ⋅ Δ𝑥𝑖 ,

where 𝑐𝑖

def

=

𝜕𝑓

𝜕𝑥𝑖

.

What do we know about the measurement errors?

• In some cases, we know the probability distribution of each measurement error Δ𝑥𝑖 , and
we know that these measurement errors are independent. In many cases, this distribution
is normal (Gaussian) with mean 0 and known standard deviation 𝜎𝑖 .

• In other cases, we do not have any information about the probabilities, we only know the
upper bound Δ𝑖 on the absolute value of the corresponding measurement error: |Δ𝑥𝑖 | ≤ Δ𝑖 ;
see, e.g., [18].



How can we use this information to find bounds on Δ𝑥𝑖?

Seemingly natural idea. If we know the values 𝑐𝑖 , then, e.g., for the normal distribution, we

can conclude that the linear combination
𝑛

∑

𝑖=1

𝑐𝑖 ⋅ Δ𝑥𝑖 is also normally distributed, with mean 0

and standard deviation 𝜎 =

√
𝑛

∑

𝑖=1

𝑐
2

𝑖
⋅ 𝜎

2

𝑖
.

In case of upper bounds, when each measurement error Δ𝑥𝑖 can take any value from the

interval [−Δ𝑖 , Δ𝑖], the largest possible value of the sum
𝑛

∑

𝑖=1

𝑐𝑖 ⋅ Δ𝑥𝑖 is attained when each term

𝑐𝑖 ⋅ Δ𝑥𝑖 in this sum is the largest possible.

• For 𝑐𝑖 ≥ 0, the term 𝑐𝑖 ⋅ Δ𝑥𝑖 is increasing, so its largest value is attained when Δ𝑥𝑖 attains
its largest value Δ𝑖 . The corresponding largest value of the 𝑖-th term is 𝑐𝑖 ⋅ Δ𝑖 .

• For 𝑐𝑖 ≤ 0, the term 𝑐𝑖 ⋅ Δ𝑥𝑖 is decreasing, so its largest value is attained when Δ𝑥𝑖 attains
its smallest value −Δ𝑖 . The corresponding largest value of the 𝑖-th term is −𝑐𝑖 ⋅ Δ𝑖 .

In both cases, the largest value of the 𝑖-th term is |𝑐𝑖 | ⋅ Δ𝑖 , so the largest value Δ of the sum Δ𝑦 is
equal to

Δ =

𝑛

∑

𝑖=1

|𝑐𝑖 | ⋅ Δ𝑖 .

Straightforward approach and its limitations. If we knew the values 𝑐𝑖 , then we could use
the above formulas and find the desired characteristic 𝜎 or Δ of the approximation error Δ𝑦.

The algorithm 𝑓 (𝑥1, … , 𝑥𝑛) is given as a black box, we do not know the corresponding expres-
sion and thus, we cannot simply differentiate this expression. However, what we can do is use
numerical differentiation, according to which, for sufficiently small value ℎ𝑖 , we have

𝑐𝑖 =

𝜕𝑓

𝜕𝑥𝑖

≈

𝑓 (𝑥1, … , 𝑥𝑖 + ℎ𝑖 , 𝑥𝑖+1, … , 𝑥𝑛) − 𝑦

ℎ𝑖

.

This way, we get the desired expressions for 𝜎 and Δ – but we need to make 𝑛 + 1 calls to 𝑓 : the
first call to compute 𝑦 and then 𝑛 more calls to compute 𝑛 partial derivatives 𝑐𝑖 .

In many data processing algorithms, we use thousands of inputs, and each call to 𝑓 may
require minutes or even hours, so this is not a very feasible idea. What can we do?

Case of probability distributions: Monte-Carlo simulations. In situations when we know
the probability distributions, the answer is well known: use Monte-Carlo simulations. Namely,
for some integer 𝑁 , we:

• 𝑁 times simulate the variables 𝛿𝑥 (𝑘)
𝑖

, 𝑘 = 1, … , 𝑁 , whose distribution is the same as the
distribution of the corresponding measurement errors Δ𝑥𝑖 , and then

• compute the values

𝛿
(𝑘)

= 𝑓 (𝑥1, … , 𝑥𝑛) − 𝑓 (𝑥1 − 𝛿𝑥
(𝑘)

1
, … , 𝑥𝑛 − 𝛿𝑥

(𝑘)

𝑛
).



By using the same Taylor expansion as before, we conclude that

𝛿
(𝑘)

=

𝑛

∑

𝑖=1

𝑐𝑖 ⋅ 𝛿𝑥
(𝑘)

𝑖
.

Since the values 𝛿𝑥 (𝑘)
𝑖

have the same distribution as the measurement errorsΔ𝑥𝑖 , we can conclude
that the distribution of the values 𝛿

(𝑘) is exactly the same as the desired distribution of the
approximation errors Δ𝑦.

In particular, for the normal distribution, we can estimate 𝜎 as

𝜎 ≈

√

1

𝑁

⋅

𝑁

∑

𝑘=1

(𝛿
(𝑘)

)

2

.

Good news is that the accuracy of this estimation is proportional to
1

√

𝑁

(see, e.g., [19]) and

does not depend on the number of inputs 𝑛.

For example, if we want to find 𝜎 with accuracy
1

√

𝑁

= 20%, we need to take 𝑁 = 25 iterations

and thus, 25 calls for the program 𝑓 – which is much smaller than thousands of calls needed for
straightforward estimation.

What if we only know the upper bounds? At first glance, in this case the situation is
hopeless: we do not know what distribution to use. However, interestingly, a Monte-Carlo
approach is possible in this case as well; see, e.g., [20, 21]. The idea is to use Cauchy distribution,
i.e., the distribution with probability density function

𝜌(𝑥) =

1

𝜋 ⋅ Δ

⋅

1

1 +
(

𝑥

Δ
)

2
.

The use of Cauchy distribution is based on the following property of this distribution:

• if independent random variables Δ𝑥1, . . . , Δ𝑥𝑛 are Cauchy-distributed with parameters Δ𝑖 ,

• then the linear combination
𝑛

∑

𝑖=1

𝑐𝑖 ⋅Δ𝑥𝑖 of these random variables is also Cauchy-distributed,

with parameter Δ =

𝑛

∑

𝑖=1

|𝑐𝑖 | ⋅ Δ𝑖 .

This expression is exactly what we want.
Thus, to find Δ:

• we simulate 𝛿𝑥
(𝑘)

𝑖
to be Cauchy-distributed with parameter Δ𝑖 ;

• then the values
𝛿
(𝑘)

= 𝑓 (𝑥1, … , 𝑥𝑛) − 𝑓 (𝑥1 − 𝛿𝑥
(𝑘)

1
, … , 𝑥𝑛 − 𝛿𝑥

(𝑘)

𝑛
)

are Cauchy-distributed with the desired value of the parameter Δ. We can then find this
value Δ by applying, e.g., the Maximum Likelihood method [19].



How quantum computing can help. Sometimes, some parts of the input are irrelevant. For
example, to predict tomorrow’s weather, if the wind blows from the North, then what was to
the south of this area does not matter. If we could find such irrelevant bits and not process
them, this will make our computations faster. How can we find such irrelevant bits?

Here, quantum computing can help in the following way. In the simplest case, in which the
input 𝑥 is just one bit, and we consider one bit 𝑓 (𝑥) of the output, the question is whether the
input is relevant at all, i.e., whether 𝑓 (0) = 𝑓 (1).

• In non-quantum computing, we can only have inputs 0 or 1. So, to check the equality
𝑓 (0) = 𝑓 (1), we need to call 𝑓 twice: for 𝑥 = 0 and for 𝑥 = 1.

• It turns out that in quantum computing, we can check this property by using only one
call to 𝑓 – but in this call, the input should be a superposition of 0 and 1; see, e.g., [22, 12].

A similar reduction is possible for some multi-bit cases [12].

4. Measurements under Limited Resources: Two Case Studies

Two types of situations. In addition to limited resources for computations, we can (and do)
also have limited resources for measurements. In this section, we consider case studies covering
two possible types of situations: when we can only measure individual quantities, and when
we can measure combinations of different quantities.

Measuring individual quantities: general description and the case study of a robotic
boat. Measurements require even more resources than computations: they require time, they
require energy. It is therefore desirable to minimize the number of measurements that we need
to describe some spatial or temporal-spatial phenomenon with a given accuracy.

In some cases, we need to develop a measurement schedule at the very beginning. For this
case, general ideas on how to minimize the number of measurements, see, e.g., [23, 24, 25] and
references therein. Further minimization can be achieved if we make the measurement plan
adaptive: we will decide what to measure next based on the results of previous measurements. In
this section, let us concentrate on the case of a single passive measuring device: e.g., a spaceship
following a given trajectory or a robotic boat floating along the river.

This choice of examples may need some explanation. Probably no one will wonder why we
need measurements performed by a spaceship, but why do we need a floating robotic boat? The
answer to this question is very straightforward: with planes, satellites, and drones, most of the
Earth’s surface has been accurately mapped. We know the elevations at different locations, we
know how much plants are there. Similarly, we have a reasonable understanding of the oceans,
and of major rivers. The least explored geographic objects are small rivers. To get a complete
picture of Earth’s geography, we need to describe their depths and flows at different locations.
This is important for ecological studies, this is important to understand how water circulates –
since big rivers are usually fed by smaller ones. To get a good description of a small river, the
usual way is to traverse the river and measure the corresponding parameters as we go. The
problem is that there are many small rivers, and it is not realistic to expect human researchers
to traverse all of them.



To solve this problem, researchers are working on designing robotic boats; see, e.g., [26] and
references therein. The idea is to place this boat at the origin of the small river and let is flow
along the river and measure the corresponding parameters. The problem is that measurements
and transmission of the resulting data use some energy, and since boat is autonomous, it can
only carry a limited amount of energy. So, the question is: how to get the desired map of the
river by using the smallest possible number of measurements.

The main idea behind this minimization is straightforward:

• when we are passing through a part of the trajectory where the depth (or any other
quantity of interest) is approximately constant, then there is no sense of measuring this
quantity too frequently; but

• when we come to the part of the trajectory where the quantity starts changing, then we
must measure it with the highest possible frequency.

Let us describe the corresponding problem in precise terms. We know reasonably well the
trajectory followed by a spaceship or the trajectory followed by a floating robotic boat or by
another similar device. Let 𝑥 be the parameter describing the device’s location on this trajectory
– e.g., the length of the path that it has already covered along this trajectory. At some values 𝑥 ,
we perform some measurements. We may want to measure some quantity in its location – e.g.,
the depth at this location. We may want to measure some quantity that depends not only 𝑥 , but
also on some other parameters 𝑦1, …. For example, for the boat, we may want, by sending a
signal in several directions, to measure the depths not only right beneath the boat, but also on
other locations (𝑥, 𝑦1) on the line orthogonal to the trajectory.

In general, based on the measurements, we want to find the while dependence 𝑞(𝑥, 𝑦1, …) of
the measured quantity on all these parameters, and we want to measure all these values with
accuracy 𝜀. How can we reach this goal by using the smallest possible number of measurements?

A natural idea is to use a simple approximation

𝑞(𝑥, 𝑦1, …) = 𝐶1 ⋅ 𝑞1(𝑥, 𝑦1, …) + … + 𝐶𝑘 ⋅ 𝑞𝑘(𝑥, 𝑦1, …)

to describe the local behavior of the corresponding field. In this approximation:

• the functions 𝑞1(𝑥, 𝑦1, …), . . . , 𝑞𝑘(𝑥, 𝑦1, …) are fixed, and

• the parameters 𝐶1, … , 𝐶𝑘 change from location to location.

In many cases, the field is smooth, so it can be locally approximated by linear or quadratic
functions. For example, if we are interested in the depth 𝑑(𝑥) at different points along the
trajectory, then we can use approximations 𝑑(𝑥) ≈ 𝐶1 + 𝐶2 ⋅ 𝑥 or take 𝑑(𝑥) ≈ 𝐶1 + 𝐶2 ⋅ 𝑥 + 𝐶3 ⋅ 𝑥

2.

• In the first case, 𝑘 = 2, 𝑞1(𝑥) = 1, and 𝑞2(𝑥) = 𝑥 .

• In the second case, 𝑘 = 3, 𝑞1(𝑥) = 1, 𝑞2(𝑥) = 𝑥 , and 𝑞3(𝑥) = 𝑥
2.

How we proceed depends on:

• whether we know the probability distribution of the measurement error – e.g., Gaussian
with standard deviation 𝜎 – or



• whether we only know the bound Δ on the measurement error.

In both cases, we first perform 𝑘 + 1 (or more) measurements corresponding to the values 𝑥 (𝑖),
𝑦
(𝑖)

1
, . . . , where 𝑖 = 1, 2, … , 𝑘 + 1. Let 𝑞(𝑖) be the corresponding measurement results.

In the probabilistic case, we form the resulting system of approximate equations:

𝑞
(1)

≈ 𝐶1 ⋅ 𝑞1 (
𝑥
(1)
, 𝑦

(1)

1
, …

)
+ … + 𝐶𝑘 ⋅ 𝑞𝑘 (

𝑥
(1)
, 𝑦

(1)

1
, …

)
;

…

𝑞
(𝑘+1)

≈ 𝐶1 ⋅ 𝑞1 (
𝑥
(𝑘+1)

, 𝑦
(𝑘+1)

1
, …

)
+ … + 𝐶𝑘 ⋅ 𝑞𝑘 (

𝑥
(𝑘+1)

, 𝑦
(𝑘+1)

1
, …

)
.

We can use the usual Least Squares method (see, e.g., [19]) to find the estimates 𝐶1, … , 𝐶𝑘 for
the corresponding parameters 𝐶1, … , 𝐶𝑘 . This method also provides us with the variance of
these estimates, and with the covariances describing correlation between these estimates.

Based on these variances and covariances, for all future values 𝑥 and for all corresponding
values 𝑦1, …, we can compute the standard deviation for the predicted value

𝑞(𝑥, 𝑦1, …) = 𝐶1 ⋅ 𝑞1(𝑥, 𝑦1, …) + … + 𝐶𝑘 ⋅ 𝑞𝑘(𝑥, 𝑦1, …).

As long as this value is smaller than or equal to the desired accuracy 𝜀, we do not perform any
additional measurements. The next group of measurements is performed at the first future
value 𝑥 at which the standard deviation becomes equal to 𝜀.

In the case of upper bounds, for each future value 𝑥 and for all possible values of the
variables 𝑦1, …, we find the range [𝑞, 𝑞] of possible values 𝑞(𝑥, 𝑦1, …) by solving the following
two optimization problems. To find the upper bound 𝑞, we maximize the expression

𝐶1 ⋅ 𝑞1(𝑥, 𝑦1, …) + … + 𝐶𝑘 ⋅ 𝑞𝑘(𝑥, 𝑦1, …)

under the constraints

𝑞
(1)

− Δ ≤ 𝐶1 ⋅ 𝑞1 (
𝑥
(1)
, 𝑦

(1)

1
, …

)
+ … + 𝐶𝑘 ⋅ 𝑞𝑘 (

𝑥
(1)
, 𝑦

(1)

1
, …

)
≤ 𝑞

(1)
+ Δ;

…

𝑞
(𝑘+1)

− Δ ≤ 𝐶1 ⋅ 𝑞1 (
𝑥
(𝑘+1)

, 𝑦
(𝑘+1)

1
, …

)
+ … + 𝐶𝑘 ⋅ 𝑞𝑘 (

𝑥
(𝑘+1)

, 𝑦
(𝑘+1)

1
, …

)
≤

𝑞
(𝑘+1)

+ Δ.

To find the lower bound 𝑞, we minimize the same expression under the same constraints. In
both optimization problems, we optimize a function which is linear in terms of the unknowns
𝐶1, … , 𝐶𝑘 under constraints which are also linear in terms of the unknowns. Such optimization
problems are known as linear programming problems. There exist efficient algorithms for
solving such problems; see, e.g., [27].

The next measurement is performed at a location for which the prediction accuracy is 𝜀, i.e.,
for which the interval [𝑞, 𝑞] has the form [𝑞 − 𝜀, 𝑞 + 𝜀] for some 𝑞, i.e., equivalently, for which

𝑞 − 𝑞 = 2𝜀.



Measuring combinations of quantities: general description and the case study of Covid-
19 testing. When we measure, we are interested in some property. In some situations, only
a few objects have the property of interest. In such situations, the possibility to measure
combinations of quantities corresponding to individual objects can save on the number of
measurements.

For example, if we are prospecting for oil, we save a lot of efforts if, instead of drilling at each
possible location, we perform some measurements of the area as a whole and only drill in those
areas which, according to these combined measurements, have oil.

Another example is Covid-19 testing. In the ideal world we should test everybody, but the
number of available test kits is limited. If instead of testing all 𝑁 people from a given area, we
apply the test to a mixture of samples from a group of several (𝑠1) people, we can decrease the
required number of tests kits – since:

• we can dismiss all the groups where no one was Covid-positive, and

• we need to continue testing only folks from the remaining groups; see, e.g., [28, 29, 30].

In [30], we considered the arrangement when after the group testing, we individually test
everyone from still-suspicious groups. However, if there are many such folks, a reasonable idea
is to combine these remaining folks into new groups of size 𝑠2 < 𝑠1, and test each new group, etc.,
until, after 𝑛 such stages, on the following stage 𝑛 + 1, we test all remaining possibly-positive
folks individually. Let us analyze what is the optimal approach to such multi-stage group testing.

Let 𝑝 denote the proportion of people in a given area that test Covid-positive. This number
can be (and is) estimated based on the preliminary random testing. Thus, overall, we have 𝑁 ⋅ 𝑝

Covid-positive folks.
The value 𝑝 is small, so for sufficiently small group sizes 𝑠𝑘 , the probability that we have two

Covid-positive folks in each group is small. Since most of 𝑁 ⋅ 𝑝 Covid-positive folks belong to
different groups, after 𝑘 stages, we will have 𝑁 ⋅ 𝑝 different groups of size 𝑠𝑘 – and thus, we
have 𝑁 ⋅ 𝑝 ⋅ 𝑠𝑘 possibly-positive folks.

On the first stage, we test
𝑁

𝑠1

folks. After 𝑘 stages, we have 𝑁 ⋅ 𝑝 ⋅ 𝑠𝑘 possibly positive folks.

We divide them into groups of size 𝑠𝑘+1. Thus, on the (𝑘 + 1)-st stage, we get
𝑁 ⋅ 𝑝 ⋅ 𝑠𝑘

𝑠𝑘+1

testing

groups. Hence, on the (𝑘 + 1)-st stage, we need to perform
𝑁 ⋅ 𝑝 ⋅ 𝑠𝑘

𝑠𝑘+1

tests. The overall number

of tests is therefore equal to

𝑁

𝑠1

+

𝑁 ⋅ 𝑝 ⋅ 𝑠1

𝑠2

+ … +

𝑁 ⋅ 𝑝 ⋅ 𝑠𝑘−1

𝑠𝑘

+

𝑁 ⋅ 𝑝 ⋅ 𝑠𝑘

𝑠𝑘+1

+ …

We want to select the values 𝑠𝑘 that minimize this overall number of tests.

Towards finding the optimal testing strategy. Let us first select an integer 𝑘 > 1 and
minimize the overall number of tests with respect to 𝑠𝑘 . Differentiating the above expression for
the overall number of tests with respect to 𝑠𝑘 and equating the derivative to 0, we conclude that

−

𝑁 ⋅ 𝑝 ⋅ 𝑠𝑘−1

𝑠
2

𝑘

+

𝑁 ⋅ 𝑝

𝑠𝑘+1

= 0.



Dividing both sides by 𝑁 ⋅ 𝑝, multiplying both sides by 𝑠𝑘 , and moving the negative term to
the other side, we conclude that

𝑠𝑘

𝑠𝑘+1

=

𝑠𝑘−1

𝑠𝑘

. This is true for all 𝑘, so the value
𝑠𝑘

𝑠𝑘+1

is the same

for all 𝑘. Let us denote this ratio by 𝑞. Thus, the values 𝑠𝑘 form a geometric progression with
common ratio 𝑞.

At the end, we check individually, so 𝑠𝑛+1 = 1. Thus, we get 𝑠𝑛 = 𝑞, 𝑠𝑛−1 = 𝑞
2, . . . , until we get

𝑠1 = 𝑞
𝑛. Thus, 𝑛 = log

𝑞
(𝑠1) =

ln(𝑠1)

ln(𝑞)

. For these values 𝑠𝑘 , each term
𝑁 ⋅ 𝑝 ⋅ 𝑠𝑘

𝑠𝑘+1

in the expression

for the overall number of tests is equal to 𝑁 ⋅ 𝑝 ⋅ 𝑞, and there are 𝑛 such terms – as many as
stages in the testing procedure. Thus, the overall number of tests is equal to

𝑁

𝑠1

+ 𝑛 ⋅ 𝑁 ⋅ 𝑝 ⋅ 𝑞 =

𝑁

𝑠1

+

ln(𝑠1)

ln(𝑞)

⋅ 𝑁 ⋅ 𝑝 ⋅ 𝑞.

Minimizing this expression with respect to 𝑞 means minimizing the ratio
𝑞

ln(𝑞)

. Differentiating

this expression with respect to 𝑞 and equating the derivative to 0, we conclude that ln(𝑞)−𝑞⋅
1

𝑞

= 0,

i.e., that ln(𝑞) = 1 and thus, 𝑞 = 𝑒.

For 𝑞 = 𝑒, the above expression for the overall number of tests takes the form
𝑁

𝑠1

+ 𝑁 ⋅ 𝑝 ⋅ 𝑒 ⋅

ln(𝑠1). There is only one parameter left undetermined – the value 𝑠1. Differentiating the above

expression with respect to 𝑠1 and equating the derivative t 0, we get −
𝑁

𝑠
2

1

+ 𝑁 ⋅ 𝑝 ⋅ 𝑒 ⋅

1

𝑠1

= 0.

Multiplying both sides by 𝑠
2

1
, dividing both sides by 𝑁 ⋅ 𝑝 ⋅ 𝑒, and moving negative terms to the

other side, we conclude that 𝑠1 =
1

𝑝 ⋅ 𝑒

.

Thus, we arrive at the following recommendation.

Optimal testing schedule. We first combine folks into groups of size 𝑠1 =

1

𝑝 ⋅ 𝑒

, and test

combined samples from each group. All the people from groups whose combined sample tested
negative are Covid-negative and thus, do not need any additional testing.

The remaining folks are combined in groups of size 𝑠2 =

𝑠1

𝑒

. We test combined samples

from each group. All the people from groups whose combined sample tested negative are
Covid-negative and thus, do not need any additional testing.

The remaining folks are combined in groups of size 𝑠3 =

𝑠1

𝑒
2
, etc. At the end, we reach the

stage at which 𝑠𝑛+1 ≈ 1, i.e., where the remaining folks need to be individually tested.

How many tests do we need for the optimal testing schedule. Substituting the expression

𝑠1 =

1

𝑝 ⋅ 𝑒

into the formula for the overall number of tests, and taking into account that

ln(𝑠1) = | ln(𝑝)| − 1, we conclude that we need

𝑁

𝑠1

+ 𝑁 ⋅ 𝑝 ⋅ 𝑒 ⋅ ln(𝑠1) = 𝑁 ⋅ 𝑝 ⋅ 𝑒 + 𝑁 ⋅ 𝑝 ⋅ 𝑒 ⋅ (| ln(𝑝)| − 1),

i.e., we need
𝑁 ⋅ 𝑝 ⋅ | ln(𝑝)| ⋅ 𝑒



tests.

Is this method optimal? This is indeed the best we can do – at least asymptotically the best.
Indeed, we need to find 𝑁 ⋅ 𝑝 elements out of 𝑁 . The number of such possible arrangement is

(

𝑁

𝑝 ⋅ 𝑁)
=

𝑁 !

(𝑝 ⋅ 𝑁 )! ⋅ ((1 − 𝑝) ⋅ 𝑁 )!

.

Each test has 2 possible results, so after 𝑡 tests, we have 2
𝑡 possible combinations of results. To

get all
(

𝑁

𝑝 ⋅ 𝑁)
possible answers, we need to have 2𝑡 ≥

(

𝑁

𝑝 ⋅ 𝑁)
, i.e., we need 𝑡 ≈ log

2
(

𝑁

𝑝 ⋅ 𝑁)
.

Asymptotically, for each integer 𝑞, we have 𝑞! ≈
(

𝑞

𝑒
)

𝑞

, so

log
2
(𝑞!) ≈ 𝑞 ⋅ (log

2
(𝑞) − log

2
(𝑒)) = 𝑞 ⋅ log

2
(𝑞) − 𝑞 ⋅ log

2
(𝑒).

Thus,

𝑡 ≈ log
2
(

𝑁

𝑝 ⋅ 𝑁)
= log

2
(𝑁 !) − log

2
((𝑝 ⋅ 𝑁 )!) − log

2
((1 − 𝑝) ⋅ 𝑁 )!) =

𝑁 ⋅ log
2
(𝑁 ) − 𝑁 ⋅ log

2
(𝑒) − 𝑝 ⋅ 𝑁 ⋅ log

2
(𝑝 ⋅ 𝑁 ) + 𝑝 ⋅ 𝑁 ⋅ log

2
(𝑒)−

(1 − 𝑝) ⋅ 𝑁 ⋅ log
2
((1 − 𝑝) ⋅ 𝑁 ) + (1 − 𝑝) ⋅ 𝑁 ⋅ log

2
(𝑒).

Terms proportional to log
2
(𝑒) cancel each other. So, taking into account that the logarithm of

the product is equal to the sum of logarithms, we get

𝑡 ≈ 𝑁 ⋅ log
2
(𝑁 ) − 𝑝 ⋅ 𝑁 ⋅ log

2
(𝑁 ) − 𝑝 ⋅ 𝑁 ⋅ log

2
(𝑝)−

(1 − 𝑝) ⋅ 𝑁 ⋅ log
2
(𝑁 ) − (1 − 𝑝) ⋅ 𝑁 ⋅ log

2
(1 − 𝑝).

Terms proportional to 𝑁 ⋅ log
2
(𝑁 ) cancel each other, so

𝑡 ≈ −𝑁 ⋅ (𝑝 ⋅ log
2
(𝑝) + (1 − 𝑝) ⋅ log

2
(1 − 𝑝)).

For small 𝑝, we have 1 − 𝑝 ≈ 1 and log
2
(1 − 𝑝) ∼ 𝑝, so

(1 − 𝑝) ⋅ log
2
(1 − 𝑝) ∼ 𝑝 ≪ 𝑝 ⋅ log

2
(𝑝),

thus the smallest possible number of tests is indeed proportional to

𝑁 ⋅ 𝑝 ⋅ | log
2
(𝑝)| = 𝑁 ⋅ 𝑝 ⋅

| ln(𝑝)|

ln(2)

.

This expression differs from our number of tests by a factor 𝑒 ⋅ ln(2) ≈ 1.88; so, modulo a small
multiplicative constant, our method is indeed asymptotically optimal.
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