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Abstract  
Research and prediction of the physical properties of biomaterials and biostructures are 
associated with the effects of memory, spatial correlation and self-organization processes. 
Taking into account the fractal structure of biomaterials allows us to identify new regularities 
of their behavior in mechanical and related processes. Mathematical models of non-
isothermal moisture transfer and visco-elastic deformation in biomaterials with taking into 
account the fractal structure of the environment was constructed. One-dimensional 
mathematical models of deformation-relaxation processes in environments with fractal 
structure which characterized by the effects of memory, spatial nonlocality and self-
organization are considered. Taking into account that the fractional parameters of fractal 
models allow to describe the deformation-relaxation processes in biomaterials in comparison 
with traditional methods more fully in the paper, the optimal approximation method, the 
Proni’s method was proposed. This method allows to reduce the problem of identification the 
fractional parameters which are the part of the creep and relaxation kernels structure to 
finding the solutions of systems of linear equations. Software to implement the obtained 
models was developed.  

 
Keywords  1 
Moisture transfer, visco-elastic deformation, effects of memory, Proni’s method, finite-
difference method  

1. Introduction 

Investigation of deformation-relaxation processes have shown that the using of fractional 
integrate-differential apparatus for modeling those processes allows more appropriately, on the basis 
of physical considerations,  generalize experimental data to identify model parameters [1, 3, 5]. 
Particularly important are the works devoted to research of regular and irregular modes of the process 
of heat treatment of biomaterials in terms which makes it possible to take into account the effects of 
"memory" and self-organization of the material. Initially, there are studies to find an effective method 
for identifying fractal parameters of models [2, 4, 5]. 

Replacing real environment properties with their idealized models is based on the fact that the 
some of the properties of this environment appear most clearly. Then, by rejecting everything that is 
irrelevant, the ideal model can be constructed which be characterized by these dominant 
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characteristics of real environment. In particular, considering only the properties of elasticity and 
viscosity, it is possible to construct the simpler rheological models that are used in viscosity theory 
studies. They can be formed by the series or parallel connection of the elastic element, behavior of 
which obeys to the Hooke's law, and the viscous, obeys to the Newton's law of viscosity [14, 22]. 

The simpler models which are constructed by that way will not take into account material 
properties such as "memory", the complex nature of spatial correlations, and the self-organizing 
effects  that  are  characterize  for  biomaterial  [9,  11].  Therefore,  it  is  suggested  to  use  the  fractional-
order integro-differentiation mathematical apparatus to record the Newton's law of viscosity, which 
will allow take into account the above mentioned properties of this material [6-8, 10, 12, 13]. 

This work is devoted to solving the actual scientific task of increasing the efficiency of 
mathematical modeling of heat and mass transfer processes and visco-elastic deformation of 
biomaterials with taking into account the effect of "memory" and self-organization in the heat 
treatment process to provide appropriate quality of the material. 

The algorithm of identification of fractal parameters of models was developed, which is based on 
the use of the iterative method and co-ordinate descent. The experimental data of biomaterial creep 
was approximated using fractional exponential operators also identified relationship between the 
fractional component and materials species, temperature and humidity fields. 

The characteristics of the heat and moisture transfer processes and stress-strain state during heat 
treatment process with accounting the fractal structure of material with different thermo-mechanical 
material parameters treatment modes were analyzed. 

2.  Production of a problem 
2.1. The visco-elastic deformation problem 

The mathematical model of the rheological behavior of anisotropic capillary-porous materials in 
the heat treatment process with taking into account the fractal structure of the environment can be 
described by equations of equilibrium with fractional order g ( )10 £< g  in spatial coordinates 1x  and 

2x  for the sample with such spatial dimensions { } [ ] [ ]{ }2121 ;0;0; llxx ´==W  [15, 16, 18, 19]: 
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Where ( )122211 ,, eeee =T , ( )TTTTT 321 ,, eeee =  – deformation vectors, vector components Te  caused 
by changes in temperature TD  and moisture content UD : 
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where 22112211 ,,, bbaa  – coefficients of temperature expansion and humidity compression; ijC  – 
components of the elasticity tensor of the orthotropic body, ijR , ijR~  –  value of integrals of relaxation 
kernels of fractional-differential models: 
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We set the following boundary and initial conditions: 

( )2,1,0

,0

,0

0

0

==

=

=

=

=

=

j
tij

lxij

xij

jj

j

e

e

e

 (5) 

Also the stress-deformable state of biomaterial components should be satisfies the equation of 
equilibrium. 

2.2. The heat-mass transfer problem  

The mathematical model of the distribution of temperature-humidity fields in biomaterials with a 
fractal  structure,  the stress-strain state  of  which is  discussed in the paragraph 2.1,  is  described by a  
system of differential equations in partial derivatives of fractional order by time t  and spatial 
coordinates 1x  and 2x  [7, 8, 13, 17, 18, 20, 21]: 
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and appropriate initial conditions 
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and boundary conditions of third kind 
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where, ( )21,, xxT t - temperature, ( )21,, xxU t  - humidity, ),( UTc  - thermal capacity, )(Ur  - density, 

0r  - basis density, e  - phase transition coefficient, r  - heat of vaporization, ),( UTil  - coefficients 
of thermal conductivity, ),( UTai  - coefficients of humidity conductivity, ),( UTd  - thermogradient 
coefficient, ct  - ambient temperature, pU  - relative humidity of the environment, ),( na ci t  -  heat  



 

 

transfer coefficient, ),,( njb ct  - moisture transfer coefficient, a  - fractional order of derivative by 
the time ( )10 £<a . 

3. Identification of fractional-exponential creep kernels by approximation 
the experimental data using the Proni’s method 

The mathematical model (1)-(2) of visco-elastic deformation in fractal media for the one-
dimension case can be written using the Boltzmann-Volterr’s integral equation [16]: 
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where t  - time; ( ) ( )UTUT ,,, bbaa ==  - fractional order of the derivative which are dependent on 
temperature T  and moisture U ; ( )te  - deformation; ( )ts  - tension; 00 ,se  -   the  value  of  
deformation and tension on the initial time moment 0t ;    ( ) ( )tGtG ¢,  - time dependent functions; 
( ),,, UTzt -P ( )UTztR ,,-  - creep and relaxation kernels (memory functions), ,a

zD  b
zD – fractional 

derivatives by the variable z  with the order ba ,  ( )1,0 ££ ba  accordingly. 
The general view of the creep kernel for fractional-differential rheological models (1)-(5) will be 

follows [16]: 
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where E - modulus of elasticity, E
ht =  (h - the coefficient of viscosity), ( )jyy 21 ,E  - the Mittag-

Leffler’s function, ( ) ( ) ( )( )bajjbayybayy ,,,,,, 2211 t=== . 
Since the Proni’s approximation method, which is valid for a linear combination of exponential 

functions, will be used to parameters identification of creep data the equation (11) will be transformed 
in the paper. 

The two-parameter Mittag-Leffler function is given by the formula [16]: 
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Taking into account the equation (12) and the corresponding substitutions, we rewrite the 
appearance of the creep kernel (11) as follows: 
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where ( )ba ,ii AA = , ( )ball ,ii =  - amplitudes and indices dependent on the fractional parameters 

ba , , ts ln= , ( )set = . 
In [16] it is pointed out that for functions which have the form such as ( )sP  there is some definite 

linear relationship between its ( )1+n  equidistant values: 
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where ic  - searching constant values ( )1=nc , h -  the  time  interval  is  longer  than  between  two  
consecutive values. 

Since (13) is a solution of equation (14), then parameters il  can be found by using this method. 
Let i

hie xl =-

 then to determine each value ix  we need to solve the algebraic equation: 
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To determine ic  the following system of linear equations must be solved: 
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where *
2

*
2

*
1 ,...,, nPPP  - ordinates. 

Finding from (15) the n  solutions nxxxx ,...,, 21=  we can find the parameters il : 

h
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To determine the amplitudes iA  you must determine the n  ordinates - **
2

*
1 ,...,, nPPP and also find 

the solution of the following system of linear equations: 
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where h
i

iep l-=  , 
i

s
i

i

ieAA
l

l 0-

=¢ , ( )ni ,1= , 0s  - initial time moment. 

The fractionally-exponential creep kernels can be identified according to the following 
experimental data [20], which are given in Table 1. 

 
Table 1 
Experimental creep data 

k  kP (mm) k  kP (mm) k  kP (mm) k  kP (mm) 

1 2,2 7 2,82 13 2,93 19 0,88 
2 2,31 8 2,85 14 2,94 20 0,86 
3 2,61 9 2,87 15 1 21 0,84 
4 2,68 10 2,9 16 0,9 22 0,79 
5 2,73 11 2,91 17 0,85 23 0,77 
6 2,75 12 2,93 18 0,87 24 0,74 

 
To determine the fractional parameters a  and b  it is suffices for each rheological model to 

distinguish two exponential functions, that is we consider the relation (13) for the case 2=n . 
Accordingly, the 2n ordinates are required to find il  parameters. To do this, let's break down the 
experimental data into 4 groups by summing up six ordinates in each. As a result of calculations we 
get that 28,15*

1 =P ; 28,17*
2 =P ; 49,9*

3 =P ; 88,4*
4 =P . The system of linear equations (16) will 

look like: 
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Wherefrom 0373,00 =с , 5822,01 -=с . The algebraic equation (15) will have the form: 
.00373,05822.02 =+- xx  (21) 

The roots of which are equal respectively 5089,01 =x , 0733,02 =x . 



 

 

The initial time moment according to our experimental data is 3
0 10=t  (h) and step 500=Dt  (h). 

Taking into account the corresponding replacement of variables, the h value in formula (17) will be 
equal to 37,2876. 

The values of il  will be follows: 0181,01 =l , 0701,02 =l .                               
Here are obtained creep kernels for the Maxwell’s, Voigt’s and Kelvin’s fractional-differential 

models: 
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Accordingly, for the Maxwell’s model the parameters will be determined from the ratios: 
bl -=11 , bal -+=12 . From where we find that the fractional-differential parameters are: 

0520,0=a , 9819,0=b . 
Using formula (12) we find parameters 1l  and 2l  for the Voigt and Kelvin models, which will 

have the following view: bal 211 -+= , bl -=12 . The fractional-differential parameters will have 
the following values: 8779,0=a , 9299,0=b . 

The parameters a  and b  which describe the creep kernel are functionally dependent on the 
humidity and temperature of the medium. The experimental creep data were investigated at 
temperature CT °= 23 , humidity %65=U  and elastic modulus aE MP=13800 . 

In the expressions which describe the creep kernels, the parameter t ÷
ø
öç

è
æ = E

ht  where h  - 

viscosity is still unknown. We find it by finding the amplitudes iA . To do this, we must solve the 
system of linear equations (18): 
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where 6749,0
1

-= ep , 6139,2
2

-= ep . 
Having found 2008,191 =¢A  and 9208,32 -=¢A , when 9078,60 =s  we obtain the following values 

of amplitudes: 3938,01 =A , 4460,02 -=A . 
Since 2A  it  is  not  in  the  range  of  amplitude  values,  we  find  the  t  parameter  value  from  1A , 

( )÷ø
öç

è
æ

G=
-

b
t b

EA1 . For Maxwell and Voigt models the parameter 3
, 10155,0 -×=FMt ,  for  Kelvin  is  

210975,0 -×=Kt . 

4. Obtained results 
4.1. The parameter identification result 

For the sample of biomaterial, whose modulus of elasticity is ( )МПа8,13=E  with the humidity 
value ( )%45=W , the fractional-differential parameters identification were conducted for the 
Maxwell, Kelvin and Voigt models by the Proni’s method. 

The deformation curves (12) identified from the experimental biomaterial creep data [21] for the 
Voigt model (Fig. 1), as well as for the Maxwell and Kelvin models. They were investigated under 
constant load and in the absence thereof. 



 

 

 
Figure  1: Identification of fractional-differential parameters for the Voigt model at biomaterial 
humidity W=15% 

 
The obtained graphical dependences of deformations depending on time are similar to the well-

known model of hygro(thermo)-mechanical deformations which describe the deformations in 
biomaterial with change of its load, temperature and humidity. The developed model also takes into 
account the formation of residual deformations which are characterized by the "memory" effects of 
biomaterial. According to Fig. 1 after unloading of the material the creep deformities remain. The 
maximum deviation of the approximate values from the experimental values does not exceed 4,7%. It 
can be concluded that an approximant in the form of a linear combination of Mittag-Leffler’s 
functions is an effective tool for approximation the experimental creep data of biomaterial. 

Thus, the experimental data of biomaterial creep were approximated using fractional-exponential 
functions and their fractional parameter was distinguished which are characterizing the influence of 
the fractal structure of the material. The coefficients of creep and relaxation kernels which are 
necessary for implementation the mathematical model of heat-mass transfer (6)-(9) and viscoelastic 
deformation (1)-(5) of biomaterials with fractal structure are obtained. 

4.2. The visco-elastic deformation result 

Let's carry out a numerical implementation of the mathematical model (1)-(5) of visco-elastic 
deformation using the fractional-Voigt model as a basis. Considering the results of identification we 
will select the following values of parameters: E = 5,19 (GPa), W = 45%, fractional order of the 
model - 8856,0=a . The finite-difference method described in [10, 16, 19] is used to find the 
numerical solution of the two-dimensional visco-elastic deformation problem. The dynamics of the 
stress components 12s  for different biomaterial species depending on change of fractal items is shown 
as an example.  



 

 

 
Figure 2: Dynamics of the stress components 12s  

 
The influence of fractal parameters on the dynamics of stresses and strains components depending 

on time is analyzed (Fig. 2). It is established that the difference between the stress components with 
taking into account the fractal structure and without for biomaterial with higher density does not 
exceed 16.7%, but the difference for the biomaterial with lower density reaches 19.6 - 24%. 

 

 
Figure 3: Dynamics of the deformation components 11e  

 
In Fig. 3 and Fig. 4 the dynamics of the deformation components 11e , 22e for the biomaterial 

depending on the change of the fractal element b  is investigated. The remaining fractal parameters 
did not change in the process of numerical implementation and took the following values - 0.5a = , 

0.5b = . 
 



 

 

 
Figure 4: Dynamics of the deformation components 22e  

 
The deformation curves for the integer parameter  1b =  differ significantly from the curves using 

the fractal parameter b . The deformations in the radial direction of the anisotropy of biomaterials 
with taking into account the fractal structure are greater than in the tangential. 

5. Conclusion 

Taking into account the two-parameter Mittag-Leffler function and the corresponding substitutions 
the general appearance of the original problem is reduced to the standard form of a linear combination 
of exponential functions which makes it possible to use the Proni’s method. Fractional-differential 
parameters for mathematical models of Maxwell, Kelvin, and Voigt viscous-elastic deformation in 
biomaterials  by experimental creep kernels curves are identified. The properties of fractional order 
for each mathematical model of visco-elastic deformation in fractal media are taken into account and 
analyzed on parameters approximating process. And the other conditions that must be fulfilled for 
applying the Proni’s method described above. 

The obtained results can be used for further investigation of mathematical models of visco-elastic 
deformation processes  in biomaterials, as in media with a fractal structure. 

For the fractional Voigt model for biomaterial with high density the identification method 
(iterative method) was chosen correctly, since the approximated curves are in good agreement with 
the experimental data. During the study of the creep of the biomaterial during, it is possible to record 
the formation of residual deformations, the magnitude of which is defined as the difference between 
the visco-elastic deformations in the initial state (heated or wet biomaterial) and the end state (chilled 
or dry biomaterial). Residual stresses describe the memory effect of biomaterial . Developed methods 
and algorithms of parametric identification of rheological models of creep and relaxation for the study 
of viscoelastic behavior of biomaterials by using experimental data allow to calculate the parameters 
of the models, in particular the orders of fractional derivatives. Numerical studies have shown that the 
described algorithms and techniques are characterized by sufficient efficiency. They can be used to 
solve problems of parametric identification of generalized rheological models with using fractional 
derivatives. 
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