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Abstract—The current market is dynamic and, consequently,
industries need to be able to meet unpredictable market changes
in order to remain competitive. To address the change in
paradigm, from mass production to mass customization, manu-
facturing flexibility is key. Moreover, current digitalization of the
industry opens opportunities regarding real-time decision sup-
port systems allowing the companies to make strategic decisions,
and gain competitive advantage and business value.

The main contribution of this paper is a proof of concept
Prescriptive System with a highly parameterizable simulation
environment catered to meet the needs of Reconfigurable Manu-
facturing Systems allied with an optimization module that takes
into consideration productivity, market demand and equipment
degradation. With this system, the effects of different throughput
rates are monitored which results in better recommendations
to mitigate production losses due to maintenance actions while
taking into consideration the health status of the remaining assets.

In the proposed solution the simulation module is modeled
based on Directed Acyclic Graphs and the optimization module
based on Genetic Algorithms.

The results were evaluated against two metrics, variation of
pieces referred as differential and availability of the system.
Analysis of the results show that productivity in all testing
scenarios improves. Also, in some instances, availability slightly
increases which shows promising indicators.

Index Terms—Reconfigurable Manufacturing Systems, Indus-
try 4.0, Variable Throughput, Genetic Algorithm

I. INTRODUCTION

Nowadays industries face constant changes as the result of
unpredictable market trends. The challenge is to be flexible
enough in order to respond in a timely manner to clients
demand while maintaining a sustainable cost structure to
remain competitive in a fierce business environment. For the
purpose of attending markets needs, it is necessary to increase
the efficiency of manufacturing processes in which machinery
plays a fundamental role.

Reconfigurable Manufacturing Systems (RMS) arise to deal
with uncertainty and individualized demand [1] by combining
advantages of both Dedicated Manufacturing Lines and Flex-
ible Manufacturing Systems [2]. Moreover, during the current
industrial revolution, also referred as Industry 4.0, significant
interest in the upgrade of Prognostics and Health Management

(PHM) frameworks emerge as they allow improvements in
reliability and reduction of costs associated with maintenance
actions [3]. Advances in the Information and Communica-
tion Technologies domain enable the development of more
sophisticated PHM tools, especially, based on Deep Learning
methods as they simplify the process of feature learning
and have superior performance. Deep Learning approaches
represent a promising path towards a one-fits-all framework
[4]. An effective PHM system should be able to timely
predict failures by constantly monitoring health status of the
equipment and also isolate and identify the faults [5]. Addi-
tionally, it must support decision-making systems to take full
strategic advantage of the predictions provided by diagnosis
and prognosis techniques [6]. While prognosis is related to
failure prediction and tries to answer the questions ”What will
happen?” and ”When will it happen?” [7], diagnosis consists
in identifying and isolating the faults. Despite the intuitive
relationship between predictions and prescriptions, and the
undeniable benefits to gain competitive advantage, prescriptive
systems’ area is the field with less research [8]. These systems
intend to recommend one or more courses of action based
on predicted future and, therefore, allow to take proactive
measures [7].

A thorough review of prescriptive systems is given by [8]
where three categories were identified: production schedul-
ing, life cycle optimization, supply chain management and
logistics. For example, regarding inventory management, in
both [9] and [10], spare parts are ordered based on equipment
degradation. In the former, decisions regarding the purchase
of spare parts are decided based on the levels of degradation
observed during irregular inspections. In the latter, long short-
term memory (LSTM) networks are employed to predict
failure probability during different time windows. Then, based
on the information provided by the prediction model, the
appropriate options regarding maintenance and order of spare
parts are chosen.

From the three categories identified, in an industrial context,
maintenance scheduling is the more predominant one. In
[11], a Genetic Algorithm (GA) is employed to optimize
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maintenance scheduling for manufacturing systems with a
fixed structure. In this paper, it is assumed that the infor-
mation regarding failure probabilities is available. Similarly,
in [12], a GA is used to schedule maintenances based on
machine degradation. However, in this case, the variables that
are optimized are the throughputs of machines and possible
maintenance actions instead of discrete time moments. In
general, the proposed optimization procedure searches for the
best trade-off between maintenance actions and throughput
settings. Likewise, in [13] a continuous maintenance system
based on real-time monitoring is proposed. The optimization
module is also based on GA and assures production targets
by searching the best sequence of machine throughputs taking
into consideration equipment degradation. In contrast, in this
paper, a Predictive Maintenance module is integrated and
the GA helps in avoiding unexpected breakdowns based on
constant condition monitoring in real-time. Solving scheduling
problems is not limited to the application of GA but these
algorithms represent the majority of the proposed solutions
[14].

Few Prescriptive Systems are applied to RMS. In this
context, the mitigation of production losses due to machines
downtime can be achieved not only by tuning throughputs
of different machines, but also by routing pieces to healthy
assets. Accordingly, the main contributions of this paper are an
optimization approach that shows good indicators in finding
throughput sequences that balance productivity and mainte-
nance actions in a RMS context, as well as a straightforward
simulation module based on Directed Acyclic Graphs (DAG)
that allows quick layout changes and easy parametrization
of the shop-floor namely, scheduling of maintenance shifts,
different types of failures and types of equipment.

The remainder of this paper is organized as follows. In
section II both simulation module and optimization module
are discussed. Then, in section III, the scenarios that are tested
in order to validate the solution were presented. Additionally,
some preliminary results are discussed. A more in depth
analysis of the results presented in the previous section can
be found in section IV and finally, in section V conclusions
and future work are discussed.

II. IMPLEMENTATION

The proposed Prescriptive System is mainly composed of
two modules: simulation module and optimization module. In
the following subsections each module is further described and
this current section concludes with the interactions between the
two.

A. Simulation

The goal is to model manufacturing layouts such as the one
presented in Fig. 1 so it allows easy changes in configurations
in order to respond to different demands in the future. These
configurations possess crossovers and all machines within the
same stage execute the same tasks. Consequently, pieces in
stage i can be transferred to any machine at the stage i+1.

According to [15], these configurations are defined as Class II
RMS.

Fig. 1. Generic Manufacturing Layout

Accordingly, DAGs were chosen to model the system. This
approach allows the rapid response in changing layouts con-
figuration and the control of pieces flow in the manufacturing
system. In order to implement it, the package Networkx, only
available in Python, was chosen.

Each node of the graph represents a machine and the edges
connections between machines that might be, for instance,
conveyor belts. The edges are weighted and represent path
priority. The lowest the weight the higher the priority. This
approach allows to favour, for example, the shortest path when
deciding to which machine should the piece be sent.

The machines are represented by the class Machine and each
instance represents a node of the graph. This approach allows
high parameterization of the equipment and the parameters can
be separated in three main groups:

• Identifying Parameters: relate to the identification of the
equipment

– machine id;
– type of machine;
– age;
– line;
– stage;

• Operations Parameters: relate to the machine operation
– available operations;
– current throughput;

• Reliability-related parameters: relate to degradation of the
equipment

– mean time to repair (MTTR);
– mean time between failures (MTBF);
– types of failures.

Concerning to identifying parameters, line and stage cor-
respond to the position of the machine in the layout, Fig. 1,
while the remaining parameters in this category are related to
specifications of the equipment. In respect of operation param-
eters, available operations relate to the range of operations that
the machine can perform and current throughput identifies the
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production rate at which the equipment is operating. Lastly,
regarding reliability-related parameters, this are of the utmost
importance to simulate the degradation of the equipment. In
terms of different types of failures, each machine can have
associated different ones which will correspond to different
MTTR and, as a result, maintenance actions will have different
periods of time. Also, MTBF will be used as a mean to predict
the failure.

In addition, in this case, the machines are also responsible to
control the flow of production in the shop-floor. Each machine
has a state machine associated as the one represented in Fig.
2.

Fig. 2. State Machine associated with each machine

The machine has four states. It starts in its IDLE state and if
the machine is not going to start any maintenance, maintenance
= 0, and is available, the machine can receive pieces. Once the
pieces are received they are processed. When the processing
time ends, three things might happen: if the next machine
is available the piece is dispatched and then the machine
can return to its IDLE state or IN MAINTENANCE state.
Otherwise, it will transition to WAITING state. This transition
happens when there are no available machines and the current
machine behaves as a buffer until a possible machine becomes
available. While in the WAITING state, the machine cannot
receive any pieces. In the case that the machine does not
have the respective tool, the piece experiences the same cycle,
however, processing times are equal to zero. In short, the
edges of the graph provides the different connections between
machines and each connection is only admissible if green-
lighted by the destination machine state.

In addition, not only machines can be parameterized but also
other parts of the manufacturing environment. The simulation
module developed in this paper takes into consideration,
different simulation times, maintenance shifts and different
sequences of operations to apply to different raw materials.
Simulation times are related to how many seconds each tick
(time unit in the simulation environment) worth and how many
working weeks are being simulated. Also, it defines how many

working days and working hours are considered. In regards to
maintenance shifts, if one decides to integrate them in the
simulation, the starting times and duration of said shifts can
be defined. The only thing, which in some cases might be
considered a limitation, is the fact that the maintenance shifts,
by default, are periodic. Simply put, in every working day
the shift starts at the same time and has the same duration.
Additionally, different sequences of operations can be applied
to the pieces in order to achieve different final products as long
as the needed operations are available in the current machines
and as long as the operations can be performed in a sequential
manner as represented in Fig. 1. All these features allows the
simulation of a wide variety of scenarios not only on time
domain but also specification wise.

In this paper, it is assumed that the information regarding
probability failures is known, as no predictive model is pro-
posed. Recalling the parameters associated to each machine,
namely, reliability-related ones, both MTBF and MTTR are
known. In a simplified manner, MTTR refers to the average
time to repair certain component and MTBF the forecasted
time between failures [16]. Both these terms will allow to
simulate degradation of the equipment as well as management
of maintenance actions in order to implement the present
system. As a result, the prediction of a pending failure will be
calculated based on the difference between MTBF and current
simulation time. If that difference is below a certain threshold,
the failure will be signaled and maintenance scheduling takes
place. Both Fig. 3 and Fig. 4 exemplify how the maintenance
scheduling is handled. The difference between MTBF and
current simulation time corresponds to a certain time window.
This time window is the time to failure and is represented
by the yellow area. If during that time window a shift
takes place, blue area, then the maintenance of the respective
equipment will occur when the shift starts (Fig. 4). Otherwise,
an emergency maintenance is triggered (Fig. 3).

Fig. 3. Pending Failure that will result into an emergency maintenance

Fig. 4. Pending Failure that will result into a scheduled maintenance
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Furthermore, different machines’ throughputs have different
impacts in degradation of the equipment. As stated in [12],
when a machine decelerates it is expected that its degradation
slowdown, and vice-versa if a machine increases its through-
put. To simulate the degradation effects influenced by the
chosen production rates, the MTBF will be inversely propor-
tional to production rate. Similar to [13], five throughputs are
available where mode 2 increases production rate two times
in regards to baseline production, mode 1 production rate is
1.5 times higher, mode 0 corresponds to baseline throughput,
mode -1 production rate decreases in 1.5 times and, lastly,
mode -2 where production rate decreases 2 times.

B. Optimization

The optimization module is key to the implementation of the
Prescriptive System as it is responsible for the compensation of
production losses due to machines’ downtime. A standard GA
approach was chosen as its employment is well documented
and produces near-optimal solutions [17]. GAs can be under-
stood as an abstraction of the theory of evolution by natural
selection by Darwin and are suitable to solve multi-objective
problems [18]. The genetic variability within a population is
simulated through mutation and crossover operators and the
selection is done based on the survival of the fittest [19].

The optimization module can be triggered in two instances:
when an emergency maintenance takes place, or when a
maintenance does not finish during a maintenance shift. As
a result, two types of maintenance can be identified:

• Emergency Maintenance - a maintenance that occurs
outside a maintenance shift;

• Scheduled Maintenance - a maintenance that is allocated
to a maintenance shift.

Emergency maintenances are more costly not only because
of resources allocation, but also their impact in production.
Even if a scheduled maintenance continues beyond the shift
duration, the losses in production are lower because the
downtime during maintenance shift is expected, which does
not happen in a context of an emergency maintenance. When
formulating the optimization problem, both types of mainte-
nance are taken into consideration with different weights, as
their impact is also different on production weekly goals.

The used approach follows very closely the one presented in
[13]. The proposed formulation was applied to three parallel
machines and can easily be applied to N parallel machines.
However, other configurations require some fine-tuning in their
weights and the addition of some terms depending on the
problem. In summary, the goal is to extend the mentioned
formulation to a more broad spectrum of layouts and adapt it
to the RMS system considered in this Prescriptive System.

Every week, the production should comply with the cus-
tomers orders so the GA optimizes a maximum of one week
and once the current week ends, the throughputs return to their
baseline unless new optimization takes place in that week and
the process repeats itself once again. In this regard, each gene
of the chromosome will represent the throughput of machine
i at the day j as represented in Fig. 5.

Fig. 5. Chromosome Structure. Source: [13]

Ti,j is an integer between -2 and 2 and corresponds to the
machine i operation mode at the day j. Thus, the size of the
chromosome is variable and equal to i× j.

Companies’ main goal is to attend customer’s needs while
remaining competitive and profitable. Therefore, it is crucial to
meet production targets in the most efficient way. Accordingly,
the fitness function (1) not only takes into consideration
production targets but also machines’ degradation.

F = min

[
Kp (W − P )2 +Ksm

N∑
i

Fsmi +Kem

N∑
i

Femi+

Knw

N∑
i

Fnwi +Kch

N∑
i

Cchi +Ksd

N∑
i

Si

]
(1)

subject to: Fsmi , Femi , Fnwi = {0, 1, ..., N} ∀i
Cchi = {0, 1, ..., d} ∀i

Si ≥ 0 ∀i
The first term is the difference between production weekly

target, W , and number of pieces produced, P , by the sys-
tem, squared. In essence, it evaluates how far the system
production is from the target and the square ensures that the
algorithm does not favour solutions that exceedingly surpass
the target, and the non-negativity of the values. The following
three terms are regarding the different maintenances. Each
type of maintenance is different and, as a result, also their
weight in the fitness function. The second and third term is
scheduled maintenance, sm, and emergency maintenance, em,
respectively, and their different impacts were already stated.
Throughout the formulation of the fitness function, initially
there was no distinction between those two maintenances and
the results were good so if a more broad approach is desired
the maintenance might not be distinguished. However, the
prescriptive system proposed has scheduled maintenance shifts
integrated and the distinction between the two makes sense
since they have different impacts in the production system.
The fourth term is also related to maintenance, but it is
regarding the first three days of the next week, nw. To increase
production the throughput of some machines has to inevitably
increase, which accelerates the degradation of those machines.
So, this term is to prevent new failures in the beginning of the
next week as it will affect the production goals of the next
week.

The constant change of throughputs in a real production line
is not practical. As a result, the last two terms are introduced
to promote homogeneous solutions. The first term of the two,
ch, corresponds to the number of changes in relation to the
baseline, mode 0, and the second is the standard deviation, S,
of the suggested throughputs to machine i.

Initially, the weights considered were the same as the ones
presented in [13]. After several simulations, it was observed
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that the convergence of the solutions was not quite as desired.
At the boundary of solutions that achieve the weekly targets
and solutions with deficits, sometimes close to 2%, but with
throughput rates more homogeneous, the latter were given
priority (i.e., better fitness values). This behaviour was further
proved by the conduction of a sensitivity analysis where
the contributions from the different types of maintenance
were considered constant and the remaining terms of the
Equation (1) variable. As a term of comparison, margins of
1% in relation to production in regards to the desired targets
were considered acceptable. So, the weights needed to be
refined. Accordingly, based on the previous sensitivity analysis
and additional simulations, the finals weights are as follows:
Kp = 10,Ksm = 900,Kem = 1000,Knw = 300,Kch = 300
and Ksd = 400.

C. Prescriptive System

The proposed Prescriptive System involves the two modules
explained above and an overview can be found in Fig. 6.
Once a failure is detected and if the requirements regarding
the conditions in which the maintenance will occur are met,
the optimization module is triggered. As shown in Fig. 6,
represented by blue rectangles, two instances of the simulation
module are present: Manufacturing Environment Simulation
and Simulation Module. The former corresponds to the simu-
lation of the shop-floor of interest and the latter is an image of
the former. However, in this case, its purpose is solely to feed
the optimization module with the needed variables to evaluate
the candidate solutions: pieces produced and number of main-
tenances during current week and the following one. These
outputs are what allows the calculation of the solution fitness
value represented by Equation (1). Additionally, in both these
modules, a model to predict failures can be easily integrated.
This cycle between optimization module and simulation model
stops once the termination criteria is met. In this paper, the
optimization stops when the maximum number of generations
is exceeded. When the optimization module finishes, the best
solution is recommended (white rectangle) and applied to the
manufacturing environment simulation if the operator decides
to.

III. SYSTEM VALIDATION AND VERIFICATION

To evaluate the proposed system the testing was divided
into two phases. Firstly, a set of tests are applied in order
to analyze and validate the results provided by the GA as
well as to prove that this system might be easily applied to
configurations not fully connected or easily upgraded to handle
failure in transport equipment. Secondly, scenarios that are
more complex are investigated in order to check scalability.
The simulation time in all tests is one working week. Also,
there will be two shift changes per working day, where
maintenance actions can be performed. One in the beginning of
the day and other in the middle. The metrics used to assess the
performance of the system are the variation of pieces produced
in relation to target, named as differential, and an extension
of availability per machine [20] to the whole system defined

Fig. 6. Overview of the proposed Prescriptive System

by the ratio of total real operation time of all machines by
the total theoretical operation time of all machines. Taking
into consideration Fig. 1, the configurations will be referred
as nxm, where n corresponds to the amount of stages and m the
amount of production lines. The GA parameters were selected
after several runs and set to:

• Population size = 100;
• Maximum generations = 100;
• Mutation Rate = 0.2;
• Crossover Rate = 1.0;
• Crossover Method: Single-point crossover;
• Selection Method: Elitism.
All tests were performed in a personal computer with the

specifications: Intel core i5-3750 CPU @ 3.40GHz and 8.00
GB RAM.

A. First Set Scenarios

All tests were performed using a 3x2 configuration. In the
first test, one of the machines is down a whole working day
and another machine is on the verge of failing in the following
week. In the second one, the same machine is down, however
there is a second machine that fails in the middle of the
week, during half-day. In the third and last test of this set,
there are no broken machines but the connections from one
of the machines are interrupted which isolates the equipment
and, consequently, pieces processed by it have nowhere to
flow to. The main goal of all tests is to understand, under
different conditions, if the weekly target is achieved and how
the algorithm deals with the different maintenance moments.
However, the Test 3 is performed not only as a mean to study
the previous statements but also as a tool to prove that this
system might be applied to layouts different than the one
presented in Fig. 1 where all stages are fully-connected. It
may be applied, for example, to layouts where the stages
have different number of machines. Also, it demonstrates that
failures related to transportation equipment can be considered
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as long as the failure predictions are fed to the algorithm in
order to trigger the optimization module.

In Table I, the effects of maintenances and connection inter-
ruptions during normal operation without optimization module
are represented and summarized. Expected Production is the
number of pieces produced by the system if no disturbances in
the system occur. Pieces produced are the pieces that system
manufactured under the conditions explained previously for
each test without the intervention of the Prescriptive System.
Also, differential and availability are the metrics previously
explained taking into consideration that no optimization took
place.

TABLE I
EFFECTS OF FAILURES IN THE SYSTEM WITHOUT OPTIMIZATION MODULE

Expected
Production

Pieces
Produced Differential Availability

Test 1 796 731 -8,16% 96,3%
Test 2 796 698 -12,31% 94,4%
Test 3 796 607 -23,74% 92,0%

B. First Set Results

Each test was executed three times. In Table II, the averages
of these three runs are presented, together with standard
deviation, σ, of differentials.

TABLE II
RESULTS OF FIRST TESTING SET WITH OPTIMIZATION MODULE

Pieces
Produced Differential σ Availability Processing

Times
Test 1 796 -0,044% 0,259% 96,3% 4,27h
Test 2 795 -0,084% 0,258% 94,4% 7,9h
Test 3 796 0% 0,000% 92,0% 2,87h

Recalling the conditions the test 1 was under, one of the
possible outcomes could be the advancement of the failure
that was scheduled to the beginning of the following week.
However, this did not happen. In the second test, two optimiza-
tion moments occurred, one per each failure. This is further
supported by the fact that in both cases the availability did not
change, which means that the downtime neither increased or
decreased. In the third test, it is confirmed that the system can
handle other types of situations and/or layouts. In this case,
both differential and standard deviation are 0% because in all
three runs the weekly target was scrupulously achieved.

C. Second Set Scenarios

Previous tests showed that the system behaves as expected
so scenarios that are more complex were tested in order to in-
vestigate the scalability of the system. For each configurations
tested, two types of situations were considered:

• Type A - weekly production target equal to expected
production;

• Type B - weekly production target 1,2 times higher than
expected production.

The purpose of type B tests is to explore situations where
market demand increases and verify if the manufacturing

system can still comply in those situations. Four different
configurations were tested and Table III summarizes all the
scenarios as well the effects of number of maintenances in
the system without the optimization module. It was decided
to increase the number of maintenances as the configurations
increase in size in order to test similar levels of stress. This
increase, in Table III, is referred as ”Number of maintenances”.
Expected Production and Pieces Produced, as well as, differ-
ential and availability, have the same meaning as the presented
in Table I. Each configuration has two different targets as they
correspond two each type as stated before.

TABLE III
SCENARIO DEFINITION OF THE SECOND TESTING SET

Config.

Number
of

mainte-
nances

Expected
Produ-
ction

Pieces
Produced

(Diffe-
rential)

Availa-
bility Target Test

name

3x3 1 1194 1113
(-6,78%)

97,5% 1194 Test1a
97,5% 1433 Test1b

4x4 2 1532 1412
(-7,83%)

97,9% 1532 Test2a
97,9% 1838 Test2b

7x7 5 1554 1490
(-4,12%)

97,5% 1554 Test3a
97,5% 1865 Test3b

10x10 8 2030 1954
(-3,14%)

98,3% 2030 Test4a
98,3% 2436 Test4b

D. Second Set Results

In all tests the target was achieved within 1% margin and,
in some cases, the availability slightly increased. Those cases
are marked in bold in Tables IV and V. In these instances, the
increase in availability was because the algorithm “pushed”
some failures to next week as a result of a reduction in
the throughputs of the respective machines. In addition, this
happened in higher order configurations, which indicates that
is likely due to the higher redundancy in these systems.

TABLE IV
RESULTS FOR TESTS TYPE A

Pieces
Produced Differential σ Availability Processing

Times
Test1a 1193 0% 0,181% 97,5% 3,0h
Test2a 1533 0,13% 0,134% 97,9% 8,7h
Test3a 1554 0% 0,273% 98,0% 30,9h
Test4a 2024 -0,279% 0,203% 98,7% 71,3h

TABLE V
RESULTS FOR TESTS TYPE B

Pieces
Produced Differential σ Availability Processing

Times
Test1b 1434 0,07% 0,057% 97,5% 3,1h
Test2b 1838 0,108% 0,112% 97,9% 9,7h
Test3b 1864 -0,018% 0,241% 97,8% 29,5h
Test4b 2438 0,096% 0,102% 98,5% 77,3h

Still, in respect to the increase in availability, the com-
parison between Fig. 7 with Fig. 8 gives an insight of how
the algorithm dealt with the different maintenance actions.
These figures are related to Run 1 of test4b and its results
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can be found in Table VI. In Fig. 8, maintenance regarding
machines J5 and G7 disappeared from the current week and
the throughputs in those machines are, in general, lower than
baseline. This is consistent with Equation (1) as maintenances
in next week, F nw are less penalizing than current week and
the algorithm found a way of decreasing the fitness value by
pushing the maintenance to next week without jeopardizing
the achievement of the weekly target. In addition, considering
once more Fig. 8, maintenance regarding machine G8 was
advanced in relation to Fig. 7 however, this advancement trans-
lated into a scheduled maintenance instead of an emergency
maintenance which is also consistent with the fitness function
as emergency maintenances, F em, are more penalizing than
scheduled maintenances, F sm.

Fig. 7. Part of layout of configuration 10x10. Simulation correspondent to
Run1 of test4b where no optimization took place. The red vertical bands
represent the time that a machine is under maintenance and the blue horizontal
lines are the throughput rates in place during certain day.

Fig. 8. Part of layout of configuration 10x10. Simulation correspondent to
Run1 of test4b where the measures recommended by the Prescriptive System
were adopted.The red vertical bands represent the time that a machine is under
maintenance and the blue horizontal lines are the throughput rates in place
during certain day.

TABLE VI
RESULTS OF RUN1 OF TEST4B

Target Pieces Produced Differential Availability
2436 2441 (+5) 0,205 % 98,8 %

To evaluate how the results vary from configuration to
configuration in order to draw some conclusions, the averages
of the differential were plotted and the graphs are presented in
Fig. 9 and Fig. 10, tests type A and tests type B, respectively.

Fig. 9. Differential Averages per Configuration in tests type A

Fig. 10. Differential Averages per Configuration in tests type B

IV. DISCUSSION

The results show large improvements in the pieces differ-
ential and, in some instances, a slight increase in availability.
Despite the decrease in differential, in some instances, the
target value was not fully met, presenting low deficits (<1%),
but always by far better than the results without optimization.

The parameters of the GA are problem dependent. In the GA
implementation employed in this system, both generations and
population size are fixed. However the size of each chromo-
some is not. Remembering previous sections, the chromosome
size is equal to N×d where N is the total number of machines
and d, the days from the point the optimizer was triggered
until the end of the week. So, not only between different
configurations but also within configurations, the chromosome
size varies but the parameters are not recalculated. This could
led to believe that the algorithm when applied to bigger
configurations would generate worse solutions.

When comparing the averages of each configuration, the
desired results are that they gravitate towards zero with low
deviations. The solutions seem to follow this behaviour, how-
ever, there is a visible increase in deviation from configuration
3 to configuration 4, Fig. 9, in tests of type A but it did
not go beyond 1%. In fact, this corresponds to an average
deviation of 0,279% as can be observed in Table IV. Therefore,
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this increase does not seem enough to jeopardize the results
regarding the tested configurations, and can be attributed to
the search strategy and convergence of the GA. However,
more testing should be conducted. Despite the increase in
complexity of the system, the GA model was always able to
find solutions with 1% margin. As a matter of fact, the biggest
differential was a deficit of 0,542% that occurred during Run
1 of Test4a. Additionally, note that the Test 4 refers to a
configuration 10×10 meaning that 100 machines are operating
which is already a considerable amount of equipment.

V. CONCLUSION

A Prescriptive System capable of adapting machines’
throughput depending on variable demand and taking into
consideration pending machine failures was presented. The
factory is modelled based on graphs theory which allows a
quick response in layout changes and the throughput sequences
are managed by a simulation-based GA. The proposed system
was evaluated to different layouts and showed consistent
results among them – the Differential decreased and had a
positive influence in the availability of the system as previously
stated.

There is no denying that Prescriptive Systems rely heavily
on each company’s goals and specifications, which leads to
one of the main reasons for the lack of prescriptive systems in
the current literature. In this respect, this paper tries to tackle
this gap by implementing both manufacturing simulation en-
vironment and optimization module in a considerably generic
manner. Thus, regarding the optimization module, despite the
objectives being already established they were chosen in order
to be suitable to any manufacturing industry.

The proposed system was developed with a future inte-
gration with a Predictive Maintenance Module in mind and
that would be one of the immediate improvements that could
be done to this system in order to offer a whole cohesive
framework that assists in the process of making decisions
based on constant monitorization of the machines health
status. Also, further research should be conducted not only
by increasing the number of runs per tests but also explore
how the system performs with real-data. In addition, other
limitation that needs to be addressed are the long processing
times needed which are a huge restriction when applied to real-
life scenarios. In this case, the exploration of distributed or
parallel GA approaches can help to overcame this constraint.
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