
Model Based Methodology and Framework for
Design and Management of Next-Gen IoT Systems
Xu Tao, Davide Conzon, Enrico Ferrera

LINKS Foundation
Turin, Italy

{name.surname}@linksfoundation.com

Laurent Maillet-Contoz,
Emmanuel Michel, Mario Diaz-Nava

STMicroelectronics
Grenoble, France

{firstname.lastname}@st.com

Shuai Li
CEA, LIST

Paris-Saclay, France
{name.surname}@cea.fr

AbdelHakim Baouya, Salim Chehida
Univ. Grenoble Alpes

Grenoble, France
{name.surname}@univ-grenoble-alpes.fr

Juergen Goetz
Siemens AG Corporate Technology

Munich, Bavaria, Germany
juergen.goetz@siemens.com

Abstract—Internet of Things (IoT) is a pervasive technology
covering many applications areas (Smart Mobility, Smart Indus-
try, Smart Healthcare, Smart Building, etc.). Its success and the
technology evolution allow targeting more complex and critical
applications such as the management of critical infrastructures
and cooperative service robotics, which requires real time oper-
ation and a higher level of intelligence in the monitoring-control
command for decision-making. Furthermore, these applications
type need to be fully validated in advance considering that
bugs discovered during real operation could cause significant
damages. In order to avoid these drawbacks, IoT developers and
system integrators need advanced tools and methodologies. This
paper presents a methodology and a set of tools, defined and
developed in the context of the BRAIN-IoT European Union (EU)
project. The overall framework includes both Open semantic
models to enforce interoperable operations and exchange of data
and control features; and Model-based development tools to
implement Digital Twin solutions to facilitate the prototyping and
integration of interoperable and reliable IoT system solutions.
After describing the solution developed, this paper also presents
concrete use cases based on the two critical systems mentioned
above, leveraging the application scenarios used to validate the
concepts developed and results obtained by the BRAIN-IoT
project.

Index Terms—Model-Based System Engineering, Internet of
Things, Digital Twin, Brain-IoT

I. INTRODUCTION

Nowadays, the IoT concept is adopted in new application
domains, allowing fast digitalization of contemporary society
[1]. The application of IoT in innovative scenarios such as
critical infrastructures management, and cooperative service
robotics demand to satisfy a set of strict requirements in term
of low latency, high reliability, adaptability, heterogeneity and
scalability, highly more challenging than the ones required by
the traditional (e.g., domotics) environments. To satisfy these
requirements, the IoT developers needs to introduce in their
solutions next generation Internet of Things (next-gen IoT)
technologies, e.g., Edge Computing, Artificial Intelligence
(AI), Digital Twin, among others [2], thus leading them to
become more complex to design and manage and requiring

the introduction of methodologies and tools that ease the users
their development and runtime management.

Recently, several approaches have been proposed to ease
the development of IoT systems (see section III-A). However,
these solutions do not generally support all the functionalities
required by next-gen IoT applications and focus only on
development, not supporting the other phases of the appli-
cation life-cycle, e.g., deployment, validation, monitoring and
adaptation at runtime. Currently, the market asks for IoT so-
lutions supporting business critical tasks that can be deployed
rapidly and with low costs. Such solutions need to allow
the design of applications involving several interconnected
heterogeneous platforms and smart things and, at the same
time, be able to deploy, monitor and evolve the designed
complex solution adapting automatically and at runtime to
environmental changes.

This paper is organized as follow: Section II presents the
motivation and the requirements that has led to the devel-
opment of the BRAIN-IoT Modeling & Verification Frame-
work presented in this work. In Section III-A, some existing
model-based system engineering approaches are discussed.
Then, the BRAIN-IoT modeling methodology is introduced
in Section IV and the implementation of the methodology is
illustrated in Section V. Next, two use cases, in Section VI,
are exploited to demonstrate the functionalities provided by
the BRAIN-IoT Modeling & Verification Framework. Finally,
Section VII concludes the paper.

II. MOTIVATION AND REQUIREMENTS

The design of an IoT system today presents considerable
complexity. Several factors contribute to this complexity: first,
an understanding of IoT is still too focused on IoT tech-
nologies and objects (device types, communication protocols,
cloud, database type, etc.). Such a vision loses sight of the
true purpose of the system to develop and leads most of the
time to unsatisfactory solutions. Then, the wide variety of
IoT systems, in terms of their deployment, is a technological

Copyright © 2020 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

80



source of complexity: IoT systems can be considered with a
”local” deployment such as an automatic lighting system of
a house (measurement, storage, data analysis and execution
of the application on a single ”device” connected to the
owner’s smartphone), or systems with a ”highly distributed”
architecture such as a weather forecasting system (sensor
networks for data capture capabilities, plus a cloud for storing,
analyzing data and running the end-user application). Another
aspect concerns the need to integrate legacy systems, i.e.,
IoT systems not designed from “zero”, the problem is then
to create new innovative services on the basis of existing
infrastructures. In this case, it is necessary to ”connect” what
exists and then develop / integrate supporting components
(authentication, monitoring, data distribution, data analysis,
etc.). The objective of this work is to develop a framework that
supports the designer of complex next-gen IoT applications,
easing the use of disruptive technologies, e.g., Digital Twins.

For this scope, the solution proposed needs to allow i)
modelling several aspects of an IoT system: the physical
layer, the IoT devices, the system layer, the system behaviors
and the interactions among the components. ii) Composing
IoT services also provided by different IoT platforms, using
a model-based design approach and semantically annotated
data formats to support interoperability among heterogeneous
systems. iii) Formally verifying and validating the models
designed with the framework. iv) The automatic generation
of code from the models to be deployed on real devices. v)
Supporting the co-simulation approach, with the creation of
a mixed reality environment, where virtual and real entities
can interact with each other. vi) Monitoring the IoT applica-
tions at run-time, keeping the models and the physical world
synchronized with each other. The next section will provide a
state-of-the-art (sota) of the solutions available to design and
manage next-gen IoT applications.

III. BACKGROUND

A. SOTA

A system design process that adheres to the principles and
methods related to ”system engineering” allows to understand
the design phase of a complex system w.r.t. expected function-
ality, cost, time, and quality. In the area of critical systems,
system engineering is in full development and benefits from
domain-specific and often user-specific solutions. Model-based
system engineering is a strong trend, and recent projects such
as AGeSys [3] and Connexion [4] highlight its importance and
have provided an important foundation for the development
of tooled solutions. This work places particular emphasis on
the importance of having interoperable, open, and scalable
solutions.

In the field of IoT, however, the offer has not yet reached
this level of maturity, even though stakeholders are investing
heavily in the implementation of model-based design solutions
for distributed software architectures, such as Ericsson for
network software through its development solution based on
the Papyrus [5] open source tool; or THALES through the

establishment of its Capella [6] engineering chain; or Dassault
System with its Delmia [7] solution.

More specifically, in the field of IoT system engineering,
the Internet of Things - Architecture (IoT-A) project [8]
proposes a methodological framework of design based on the
elaboration of a set of models for the specification of the
system according to different views. It is important to note that
the reference models proposed by IoT-A are independent of
modeling languages that could be used to represent them, even
though different case studies applying this methodology have
been developed using Unified Modelling Language (UML)
models.

In the world of standards, the international standardization
organization Object Management Group (OMG) has developed
the System Modeling Language (SysML) [9] with the aim
of treating software systems, CPS or organizational systems
alike. The generality of SysML requires that it be specialized
and, like any language, it must also be accompanied by a
specific methodology for each application domain so that its
use is best adapted to a given field of application and reach
a level of maximum efficiency. This is for example what has
been achieved for the field of critical embedded systems in
the AGeSys project, or for the field of nuclear power plants
control-command systems in the project Connexion.

Like embedded real-time systems, execution platforms are
a prime concern for IoT systems. The problem of platform
modeling and application allocation on the execution plat-
forms, in the field of embedded real-time systems, has been
addressed by the OMG in the context of the Modeling and
Analysis of Real-Time and Embedded systems (MARTE) [9]
standard, which complements SysML on this aspect. However,
MARTE needs to be taken up for two aspects: the first is
related to its richness which makes it a complex language
to handle and requires to be supported by a methodological
approach targeting the essential elements to the modeling of
IoT systems; the second point is that it remains very focused
on the embedded concerns, and only addresses very little dis-
tributed system aspects, in particular the aspects related to the
communications and the interactions between the distributed
components. The link between the system / platform model,
and the component / communication standards, needs to be
refined and even developed for some new cases, e.g., OMG
CORBA Component Model (CCM) [10], DDS for Lightweight
CCM (DDS4CCM) [11], Service oriented Architecture Mod-
eling Language (SoAML) [12] and more recently Unified
Component Model (UCM) [13]).

The authors have identified that no one of the approaches
described above is able to satisfy all the requirements listed
in Section II. Besides, methodologies proposed for the IoT
domain today do not benefit from dedicated model-based
development tools. Indeed, either these methodologies target
closed systems (e.g. critical embedded systems) or their only
goal is to only establish a guideline for the design process. In
the latter case, neither languages, nor development techniques,
are defined. However, the choice of a modelling language, and
its dedicated tools that will exploit the models, is imperative

81



for the development of well-suited integrated development
environment for the specific needs of the IoT domain.

B. Progrees Beyond SOTA

In this paper, the authors propose system engineering so-
lution for the IoT domain. The proposed solution combines
standard languages with methodologies, while remaining open
to domain-specific practices. Furthermore, the approach fosters
tools related to the modelling languages and methodologies.
The authors of this work believe this solution aims at filling
the gaps in the current system engineering offering for IoT
systems, while not omitting current developer practices.

The solution provides such main features: i) Modelling
methodology: A lightweight methodology accompanies IoT
Modelling Language (IoT-ML). Using the language’s capacity
to describe different levels of abstraction, the methodology
proposes to model entities representing system, software, and
hardware components. By relating such components among
them, and by linking them to their domain-specific represen-
tation and tools, the authors of this paper promote a system
holistic view of the whole IoT solution. ii) System behavior
modeling: It is based on IoT-ML and integrated with World
Wide Web Consortium (W3C) Web of Things (WoT) Thing
Description (TD), thus the service provided by the IoT devices,
communication protocol and its data structure can be modeled
as well. iii) IoT physical layer modeling and validation: It
models the IoT devices, BRAIN-IoT adopted the digital twin
concept to provide the ability for system application validation
on the modeled IoT devices before deploying in the production
environment. iv) Models@Runtime: One particular aspect that
is not well explored in the IoT domain, and critical embedded
systems domain altogether, is the human-friendly monitoring
of system state at runtime, directly through the system models.
A model-based runtime monitoring approach usually helps
identify and fix deviations observed at runtime, compared to
formal specifications defined in the models. In the BRAIN-
IoT solution, not only is runtime formal validation a priority,
but the authors also wish to benefit from monitoring to enable
behavior explanations friendly to humans. v) Code generation:
The code to be deployed is automatically generated from the
models.

As mentioned, the core of the system engineering solution
proposed for IoT is based on IoT-ML and its Papyrus tooling.
However, as a reminder, this work wishes to promote integra-
tion of domain practices through linking artefacts or refining
models. The following sections describe some domain-specific
languages and tools that refine entities in the system model.

IV. BRAIN-IOT MODELING METHODOLOGY

This section will present the modelling methodology pro-
posed BRAIN-IoT. As the primary objective, BRAIN-IoT aims
to allow modeling in different abstraction layers. Firstly, it
designs the system-level model composed by the involved
components’ functionalities and interactions based on the
system requirements. The system model also eases the linking

towards real devices and external services through meta-
data generation, and human-friendly monitoring of device
behaviors. Then, the system-level model will be refined as
a formal software-level model whose correctness will be
checked by using the statistic modeling checking and formal
verification. The obtained correct software model is used by a
code generator to generate the software artefacts. Finally, IoT
devices can be modeled as the refined physical-level models
to validate and test the IoT applications before deploying to
the real physical infrastructure. Hence, it allows to have three
different abstraction level models, including the system-level
architecture models, software-level components models, and
physical-level IoT devices, the focus of each abstraction level
is as follows: i) system-level models focuses on composability
of services provided by the IoT devices/platforms and the
overall system behaviors. The system model also serves as an
aggregator of blocks that are refined in lower level models, i.e.,
the software and device described further. Finally, the authors
of this paper promote exploitation of the system model, not
just for design, but also to help deployment, fast prototyping,
and human-friendly monitoring of behaviors at runtime. ii)
software-level models are the formal models of computation
with their formal validation capabilities, and their runtime to
guarantee execution conformity to formal specifications, are
obtained from the system-level models through the syntactical
transformation. iii) IoT physical device models allow the
virtual representation of the edge domain of an IoT system
following a Digital Twin approach, i.e., the possibility to
combine a virtual world with a physical one to validate the
behavior and performances of a complete system or a system
of systems in various steps. This is necessary when the system
is complex (the number of devices is high, from 100’s to
1000’s) and/or in the case of critical systems. These models
allow the modeling and simulation of the components perform-
ing the sensing / actuating, computing and communication
functions, which are the fundamental functions of an IoT
system. This approach could also facilitate the carry-out of
data analysis. However, to design and validate the physical
device, the digital twin model must be refined. This paper
describes the additional modeling levels required to perform
such design. The additional models will allow designing and
validating both the hardware components and the embedded
software them. The main expected benefits are twofold: first,
the elimination of the main bugs impacting the behavior and
the performances of the end devices (e.g., power consumption,
reach) and the whole system; second, the increase of the
system robustness to facilitate and accelerate the complete
system deployment in a more secure manner.

V. BRAIN-IOT MODELLING & VALIDATION FRAMEWORK

This section presents the BRAIN-IoT modelling & Vali-
dation framework developed to implement the methodology
described in Section IV. BRIAN-IoT Modelling & Validation
Framework defines a domain-specific Modelling Language
describing IoT devices capabilities and system-level behaviors;
it also provides toolset supporting the syntax of the modelling

82



Fig. 1. BRAIN-IoT Modelling & Validation Framework Components

language, allowing model verification, model checking, auto-
matic code generation to provide rapid model-based devel-
opment approach, and Models@Runtime monitoring features.
The components in the BRAIN-IoT modeling & Validation
framework are shown as in Fig. 1.

There are four main components in the BRAIN-IoT Mod-
elling & Validation Framework: BRAIN-IoT Modelling Lan-
guages and Modelling Tools, BRAIN-IoT Code Generators,
and BRAIN-IoT Repository. The detailed introduction for each
component are presented in the following subsections.

A. BRAIN-IoT Modelling Language

The BRAIN-IoT Modelling Language is decomposed for
three purposes: the system modelling language, the software
modelling language, and the physical layer modelling lan-
guage. Each of these modelling languages suits a different
concern according to the abstraction layer. As a reminder, these
abstraction layers are the system behavior, the software, and
the physical layer. The authors of this paper believe using
a domain-specific language, and de-facto common practice,
suits the needs and habits of the domain-specific developer.
Relationships are manually input to relate elements of each ab-
straction layer. This allows to have a holistic view of the whole
architecture. Each of the following sub-sections describe a
particular modelling language for a particular abstraction layer.

1) System Modelling Languages and Tools:
a) System Modelling Language: The IoT-ML is the

system modelling language of BRAIN-IoT. It federates the
specifications of heterogeneous sub-systems within a global
IoT system. The language provides the necessary constructs
to design the structural and behavioural system architecture
of the system, entities abstracting the software, and entities
abstracting the execution platform. At its conceptual core, IoT-
ML integrates the concepts present in the IoT-A architecture
reference model. Such a model is shown in Fig.2, extracted
from the standard.

Fig. 2. IoT-A concepts in IoT-ML

IoT-ML is implemented as a UML profile. The UML is a
generic modelling language with heavy roots in the object-
oriented community. A UML profile is an extension of UML.
It is composed of stereotypes that give additional syntax and
semantics to the base UML elements that the stereotype ex-
tends. IoT-ML aggregates syntax and semantics from standard
UML profiles to benefit from the languages they implement.
SysML is used to benefit from its ability to describe and trace
requirements. MARTE is used not only for the design of real-
time embedded systems design, but also because it fosters the
construction of models that may be used to make quantitative
predictions taking into account IoT characteristics. IoT-ML
takes a subset of stereotypes from such standards, and adds
new stereotypes of its own representing concepts of IoT-A that
are not present in MARTE or SysML. For example Virtual
Entity, that can be both software and hardware, is a concept
that does not exist in the UML standard profiles.

As a UML-based model, IoT-ML is a graphical modelling
language. The language focuses on structural modelling. Such
models are represented in UML composite structure diagrams.
Components have internal structures that show parts exposing
their interfaces through ports that are then connected together.

IoT-ML also focuses on behavioral modelling in the form of
UML state-machines. In such models, the behavior represents
the component’s different states. States can pass from one
to the other, based on captured events. Events may be due
to operation calls or signalling. Specific behaviors may be

83



executed upon transitioning across states, or entering / exiting
/ staying in a state.

While IoT-ML can already be used for domain-generic IoT
systems modeling, within BRAIN-IoT, the authors of this
paper have showcased that the core of IoT-ML (based on
MARTE, SysML, extended with IoT-A concepts) is generic
and rich enough to build domain-specific extensions for both
IoT standards and IoT technologies. Indeed, IoT-ML has been
extended with new concepts for the W3C TD standard. For
example, the main concept of the W3C TD is the Thing,
which can be either software or hardware or both. To showcase
IoT-ML for a particular IoT technology, the authors of this
work chose to integrate sensiNact [14] concepts into IoT-
ML. The sensiNact platform interoperates several different
middleware and communication protocols common to the IoT
domain, e.g., Message Queue Telemetry Transport (MQTT),
Constrained Application Protocol (CoAP). Its particularity is
that it has a common data model to represent all devices
connected to different protocols. It is then possible monitor
such devices’ variables through common sensiNact API. The
common API are also used in behaviors, described with the
sensiNact domain-specific textual language, to prototype be-
haviors actuating the devices according to monitored variables.

Thanks to the profile mechanism of UML, all these domain-
specific stereotypes can co-exist with the core IoT-ML stereo-
types on the same UML base elements. Otherwise said, a same
structural or behavioral element, of an IoT-ML architecture
model, can be annotated with information specific to W3C
TD or sensiNact. This fosters model re-use, separation of
concerns, and model consistency through annotating the same
base elements.

The mission of W3C WoT (Web of Things) is to counter
the fragmentation in the IoT world through standardized com-
plementing building blocks - e.g., metadata and Application
Programming Interfaces (APIs) - based on Web technology.
WoT enables easy integration and interoperability across IoT
platforms and application domains. Therefore, the goal of
WoT is to preserve and complement existing IoT standards
and solutions like for the BRAIN-IoT domains Robotics and
Critical Water Infrastructure. In this context, the usage of WoT-
compliant Thing Descriptions (TDs) lays the foundation of
interoperable standardized solutions for the various BRAIN-
IoT domains and avoids their silo-like separation in order to
overcome the problematic diversity of IoT systems.

There are several prominent W3C standard recommenda-
tions for WoT based on the W3C WoT architecture1; the WoT
Architecture specification describes the abstract architecture
for the W3C WoT. This abstract architecture is based on
a set of requirements that were derived from use cases for
multiple application domains. A set of modular building blocks
is also identified whose detailed specifications are given in
other documents. The architecture document describes how
these building blocks are related and work together. Systems

1https://w3c.github.io/wot-architecture/

based on WoT architecture may cross different domains and
integrate several vocabularies and ontologies.

The WoT Thing Description (TD)2 can be considered as
the entry point of a Thing (much like the index.html of a
Web site). Its specification is the core enabling technology.
Different application layer protocols and media types can be
described in a TD .

A TD abstracts the capabilities of individual Things into
3 categories called Interaction Affordances: Properties for
sensing and controlling parameters, Actions for invocation of
physical (and hence time-consuming) processes, and Events
for the push model of asynchronous communication. A TD
includes information models representing functions, transport
protocol description for operating on information models,
security information and general metadata about the device.

In summary, a WoT TD comprises the application logic
requirements (e.g., values and alerts of a Thing). Devices are
required to put a TD either inside them or at locations external
to the devices, and to make the TD accessible so that other
components can find and access them. As soon as available for
a Thing, its TD can be used for flexible implementation and
simulation (if required). To support the implementation, WoT
Scripting API 3 specifies a common programming interface
for Thing implementations as well as Consumer applications
implemented by different programming languages.

b) System Modelling Tools and Relationship with Run-
time: While IoT-ML is expressive enough to encompass IoT
design, only with its modelling tools can exploit the full
benefits of this formalism. One of the main goals of the IoT-
ML modelling tools is to help deployment and connect it to
deployed devices at runtime. This is accomplished through
model transformation. Since IoT-ML, in BRAIN-IoT, has
extensions specific to other IoT standards and technologies,
the modelling tool offers transformation tools to go from one
formalism to the other. The goal of such transformations is to
bridge the gap between the runtime and the system model.

The IoT-ML models are made in the Papyrus modeller tool.
The modelling tool is a typical Eclipse Eclipse Modeling
Framework (EMF) [15] environment. It offers graphical ed-
itors, palettes to populate diagrams, and tree views to visit the
hierarchical UML-based models.

An IoT-ML model, with TD stereotypes annotating its base
elements, can be transformed to a TD in the JSON-based
Serialization for Linked Data (JSON-LD) physical format. As
a reminder, the TD files in JSON-LD are embedded on the
real devices and polled at runtime. The authors of this paper
believe this accelerates deployment of interfaces described in
the system model. Furthermore, it bridges the gap between a
natural way of describing architecture by the system engineers,
and the text-based interface description by the developer. The
importance to foster such a collaboration is explained in [16].

Using the same shared architecture model, the authors of
this work can also transform the structure of the architecture

2https://w3c.github.io/wot-thing-description/
3https://w3c.github.io/wot-scripting-api/

84



into a sensiNact data model. The behaviors in the architecture,
represented as state-machines, are transformed to equivalent
sensiNact domain-specific language scripts. By then connect-
ing to the sensiNact gateway, the data model and its sensiNact
scripts can be run to monitor devices variables, and prototype
system-level behaviors w.r.t. the runtime devices that should
comply to the system model.

One last feature of the IoT-ML modelling tool is its ability to
monitor its state machines. Although the connection between
IoT-ML and sensiNact allows us to monitor variables and
actuate devices, and therefore validate that the runtime is
consistent with the system model, it is not always sufficient to
understand the internal behaviors of the devices. For example,
actuating a device, and noticing a variable change, may not be
sufficient to understand what’s happening for the human being.
Therefore to provide human-friendly behavior explanations, it
is possible to monitor state machines in an IoT-ML model. The
state machines are animated and they mirror what’s happening
in the device state machines. What triggers the animations
are messages that are sent to the IoT-ML modelling tool.
Such messages are either sent by automatically generated code
instrumentation points (i.e., during code generation itself of the
state machine), or by any source that builds a string respecting
the message format of the state machine monitoring tool.

The system model in IoT-ML, although connectable to
existing runtimes, is not sufficient to develop the actual blocks
that are to be deployed to form the runtime. Therefore its
entities that represent software and hardware, must be refined,
respectively, into a software architecture model and a physical
architecture model. The next sections describe such models.

2) Physical Layer Modelling Approach: The BRAIN-IoT
Physical Layer Modeling Approach allows the refinement of
the digital twin model to an architectural model of the physical
design including its functional and extra-functional properties.
This model can be directly used by the device as well as the
Integrated Circuits (ICs) designers as a reference model. This
proposal follows a top-down model-based design approach
composed of black box and white box models, called virtual
twins. They are functionally equivalent to the physical IoT
devices and can be used to serve different purposes. One model
can be seamlessly replaced by the other, as they all share the
same functional specification that represents faithfully the IoT
device at its boundaries. They feature the functional and extra-
functional properties of the IoT device (behavior, security,
energy efficiency, reach, etc.).

a) Black box model: The black box (BB) model is
an abstract representation of the IoT device. It is a sim-
ple service-oriented model that represents its functionality,
regardless of the internal architecture that implements its
behavior. The BB model can be considered as the functional
reference of the end-device. It can be reused whatever the
implementation choices, or even in case of replacement of
the physical device by another one, as long as the functional
specification and interfaces remain unchanged. It provides the
functional contract, the other models or the physical device
shall comply to. Executable, it is a non-ambiguous, repeatable

and deterministic model of the end-device specifications. It
abstracts the internal architecture of the end-device, as well as
the embedded software. The BB model takes as input a file
containing the data values that would be obtained from a real
sensor operating in real conditions.

b) White box model: The second step of the top-down
methodology is the creation of a white box (WB) model of the
end-device representing the internal architecture of the device.

This architecture is composed of one or several sensors
or actuators, a micro-controller, and one or several con-
nectivity elements. Sensors are typically exposing an Inter-
integrated-circuit (I2C) interface for digital data (or I/Os for
analogue one), to let the microcontroller (MCU) read and
write into registers to gather the data from the sensor, while
the connectivity Internet Protocols (IPs) can be programmed
through a Serial Peripheral interface (SPI) bus or through a
Universal Asynchronous Reception and Transmission (UART)
connection. The Hardware Abstraction Layer (HAL) of the
MCU provides an API to access the hardware resources from
the embedded software.

The White-box model represents this typical architecture
that is described using the SystemC/TLM IEEE 1666 modeling
language [17]. The model of the micro-controller typically
includes a model of the embedded processor, such as Quick
EMUlator (QEMU) or Instruction Set Simulators, and the
models of all the peripheral blocks. This list obviously varies
with each micro-controller, but usually includes the timers, the
reset / clock / power controllers, the interrupt controller, and
the hardware accelerators available for the part number. It also
includes I/O models - UART, GPIO, I2C or SPI controllers
- that are used to interact with the other elements of the
end-device. The MCU is modelled to accurately represent
the bus transactions initiated by the processor. The sensor
model serves I2C requests issued by the micro-controller,
and implements the behavior of the block, to react to the
programming sequences. The connectivity model serves SPI
or UART requests issued by the micro-controller, and imple-
ments the behavior of the block, to react to the programming
sequences. In the current developments, the authors have
decided to perform the communication as an abstraction of
all the communication data path by issuing Hypertext Transfer
Protocol (HTTP) requests to the network. When detailed com-
munication protocol information is needed, the connectivity
models can be connected to an elaborated communication
model including communication medium such as LoRaWAN,
serving protocol-specific commands. The WB model conforms
to the functional contract of the end-device, as prescribed by
the BB model.

c) Benefits of the Physical Layer Modelling Approach:
The benefits BRAIN-IoT physical modeling language brings
to the IoT domain are 1) Early verification of the embedded
software, in charge of: data gathering from sensors; local
processing (data formatting, data analysis, power management,
payload construction, encryption, etc.); transmission of the
encrypted data or metadata using the device connectivity
capabilities (Bluetooth, LoRa, SigFox, etc.). 2) A system

85



verification can be achieved in advance without the debug
limitations inherent to physical devices, the models offer full
inspection and observabilicould yty capabilities for debug and
analysis; 3) The complexity of large-scale systems (from tens
to thousands of end-devices) can be addressed by instantiating
the appropriate number of models in the simulation platform;
4) The system reliability is increased, as the validation strategy
of the end-device is strengthened by adding scenarios focusing
on device robustness considering its interaction with system
environment.

3) Formal Software Modelling Language and BRAIN-IoT
Code Generator: The Behaviour, Interaction, Priority (BIP)
Modeling language, introduced in [18], is the software model-
ing language in BRAIN-IoT. It supports the methodology for
building systems from atomic components. It uses connectors,
to specify possible interactions between components, and
priorities, to select amongst possible interactions.

BIP is a highly expressive component-based language that
supports the specification of composite, hierarchically struc-
tured components starting from the atomic ones. In BIP, the
atomic components are finite-state automata having transitions
labeled with ports and states that denote control locations
where component waits for interactions. Ports are actions
that can be associated with data stored in local variables and
used for interactions with other components. Connectors relate
ports from components by assigning them to a synchroniza-
tion attribute, which may be either trigger or synchronous.
A compound type defines a level of the hierarchy. It con-
tains instances of component and connectors types (i.e., sub-
components) with connection definitions and also priorities
to schedule the interactions between these components. A
compound component offers the same interface as an atom,
so, externally, there is no difference between a compound and
an atom. Inner ports from sub-components can be exported.

The BIP formalisms allow the rigorous specification and
analysis of IoT systems components behavior. Moreover, the
component-based approach supported by BIP facilitates por-
traying behavior with reusability, and maintainability features.

The BRAIN-IoT Code Generator relies on BIP language to
describe the system behavior. It accepts as an input a formal
specification of system architecture and system behavior using
the BIP language, then it translates the system model into a
set Java code artifacts. The generated Vanilla code could be
simulated independently to the BRAIN-IoT execution platform
called Fabric [19], and thus, the user could check the validity
of the behavior specified at the BIP level. When the code
is simulated and validated by designers, the code is wrapped
in an envelope called bundles that fit the Brain-IoT execution
platform. BRAIN-IoT Code Generator is an Eclipse plugin that
includes two modules: (i) BIP language processor with the full
support of BIP grammar and syntax checking, (ii) Java code
generator of BIP model.

Using BRAIN-IoT Code Generator, the mapping of a formal
BIP language integrates all the structures related to com-
ponents development engineering such as composability and
reusability. Moreover, the target language is independent of

any technology; all the existing operating systems embed the
processing ability of JAVA language.

The information flow of the components described above
within the BRAIN-IoT modeling & validation framework is
shown in Fig. 1. It is firstly responsible for designing IoT
system application, which is going to be constructed, based
on the actions and relations between the available devices -
e.g., sensors, actuators, Cyber Physical Systems (CPSs) - and
external services, e.g., weather forecast, open data, third-party
IoT platforms, databases. The system level application is mod-
elled along with the relevant IoT environment using BRAIN-
IoT System Modeling Language (IoT-ML) through BRAIN-
IoT modeling tool, representing the system-level behavior
models and describing its self-adaptive behavior. Then, the
IoT-ML model is refined to BIP model representing functional
software-level components model. Finally, the BIP model is
converted in source code as system behavior OSGi bundles
through BRAIN-IoT Code Generator. The generated bundles
are then released and stored in BRAIN-IoT repository, to
be deployed and executed in the production environment.
Furthermore, it also offers the ability to use development-
time models to supervise running execution platform states.
This solution enables monitoring the IoT devices’ status and
system configurations. This is possible, because BRAIN-IoT
modeling tool supports the Models@runtime paradigm, allow-
ing to synchronize the system’s behavior and the real system.
In addition, the generated OSGi bundles can be validated
leveraging IoT device models developed with BRAIN-IoT
physical layer modeling language to validate the correctness of
the system behavior, before deploying in the physical world. In
the BRAIN-IoT repository, stores the public/private modeling
library that contains the system level models, BIP behavior
models, and WoT TD for the IoT device/platform. In the
BRAIN-IoT Service Artifacts library, there are System Behav-
ior Artefacts generated from the BRAIN-IoT Code Generator.

VI. BRAIN-IOT USE CASE

In this section, the methodology and the modeling frame-
work proposed has been evaluated using BRAIN-IoT use
cases [20].

A. Service Robotic

In a warehouse there are two zones: a loading area and a
storage area. These zones are divided by an automatic door.
This door has a QR code attached on each side which is legible
only when the door is closed. In the loading area there are 3
carts each with a QR code attached (different for each case)
and three robots responsible for warehouse management are
also located. The robots are equipped with vision cameras that
allow reading the QR codes they find. The model of the robots
is a RB1 base from Robotnik company. They are capable of
detecting and raising carts and also transport them from one
point to another in an autonomous way. The warehouse is
controlled through an Orchestrator that assigns the carts to the
storage areas and orchestrates the robots. On the other hand,
the storage area is divided into 3 sub-zones (A, B, C) where

86



Fig. 3. Simulation environment of the Use Case

Fig. 4. Example of Composite Structure Diagram in IoT-ML Describing
Robot, Door, and Orchestrator

carts can be stored. The Fig. 3 shows the scenario of the use
case in the simulation environment. The logic of the system is
that the robot takes the cart from the loading area and places
it in the storage area, on the way, it detects an elevator door.
The robot scans the QR code of the door. It then sends the
QR code to a Fleet Management System (FMS) with a door
open request, FMS opens the door. After the door opened, the
robot will send again the QR code to the FMS with a door
close request.

Firstly, the authors modeled the system level components
and the interaction interfaces using IoT-ML with the BRAIN-
IoT as shown in Fig. 4, in which, the FMS is represented
by an Orchestrator, with a robot and door connected to an Or-
chestrator that sends commands to both devices. Moreover, the
behavior of the FMS is modeled using BRAIN-IoT modeling
language with BRAIN-IoT modeling tool as shown in Fig. 6,
and the behavior of the door in Fig. 5

Then the system models are refined as BIP software models
and as the inputs of the code generator, the generated artefacts
are deployed in the robot. While the robot is running, its status
and warehouse coordinates configurations will be monitored
through the monitoring tools. The software architecture is as
shown in Fig. 7. As a reminder, the EventBus is a service
provided in BRAIN-IoT for the communication in a distributed
environment and the Robotic Operating System (ROS) Edge
Node is an adaptor deployed in the robot for communicating
with other applications deployed in the BRAIN-IoT Fabric
through the EventBus. Orchestrator Behavior represents the

Fig. 5. Door Behavior

Fig. 6. Fleeet Management System Behavior

system level behavior and orchestrates the robot and the door.
ROS Edge Node provides the adaptor for ROS environment
to communicate with other components via eventBus, the cur-
rent version is extended with Behavior Translator to connect
Papyrus using User Datagram Protocol (UDP). Papyrus will
provide the visual realtime monitoring of the robot state tran-
sitions with the state machine, it is integrated with ROS Edge
Node. To demonstrate the Models@Runtime feature, here the
authors monitored two aspects: one is the configuration of the
warehouse coordinates, another is the runtime status of the
robot.

a) Runtime Robot Status Monitoring: The sequence of
the workflow is as following: 1) ROS Edge Node receives
the command events from Orchestrator. 2) ROS Edge Node
sends the command to the robot, meanwhile, it converts the

Fig. 7. Service Robotic Monitoring

87



command to the messages can be received by Papyrus. 3)
When Papyrus receives the command transition message, it
will dynamically display the state change.

b) Runtime Warehouse coordinates monitoring: Before
the application is deployed, the end-user will configure the
warehouse through SensiNact studio, these values will be
delivered to warehouse manager through SensiNact Gateway
and EventBus, then stored in three tables, which are picking
points table storing the coordinates in the loading area, storage
points table storing the coordinates in the storage area, and
cartStorage points table storing the corresponding place point
in the storage area of each cart. On the other side, during
runtime, whenever a robot changes the attribute value in the
table due to the mission of moving a cart, the warehouse
manager will send an update event to sensiNact Gateway, then
be delivered to sensiNact studio. Hence, the updates will be
reflected in the sensiNact studio.

B. Critical Water infrastructure management

The services of water supply are associated to a series
of infrastructures that are considered, in accordance with
European norms, as critical, and therefore, they are bound to
a series of conditions for their development, especially in the
technological aspect.

In the water management sector, most of the processes
are associated to disperse infrastructures in large and varied
geographical sites, with numerous interactions with other
elements and services related to the human activities. The
sharing of information in a safe and efficient manner is a
challenge to optimize the actions in urban surroundings to
simplify and improve the citizen’s life. The development of
models and their implementation in multi-access platforms
(internal usage, clients, responsible entities, etc.), constitutes
a knowledge and technological challenge for the sector. They
require development for the correlation of data, its analysis
and the creation of indicators and processes for a better usage
of the infrastructure’s maximum potential.

In the water management use case, the scenarios aim to
leverage prediction models (based on the collected data),
to: increase the security of water supplies, optimize the
underlying costs, enhance the services for end-users and
connect the infrastructure to other urban services. Analyzing
gathered data will help to create more accurate indicators
for decision-making, and for real-time, smart and adaptive
control procedure and generally more efficient and automated
business processes. For evaluating scenarios and developments
carried on during the project, a mock-up called MEDUSA
was built in the facilities. In the Critical Infrastructure of
Water Management System, four use cases have been defined
to evaluate the main features, concepts and developments of
the BRAIN-IoT project. In this paper for space reasons, only
the Resilience Use Case is described. The objective of this
Use Case is to validate the resilience of the system in case
of hydraulic failures. Normally, the hydraulic system works
according to a defined consumption curves at the entrance
of the water meters sections. These curves represent the real

Fig. 8. Model of critical water infrastructure

consumption in various points of Coruña city (Elevado, Cola
and Cabecera). The curves are obtained with the opening
and closure of the electric valves of every section of water
meter, simulating the real consumption of the customers. The
resilience of the system is validated in terms of guarantee that
the consumption can be ensured in those points. One scenario
is to simulate the failure of an electric valve in a pipe and to
ensure that BRAIN-IoT platform can recirculate the water for
another pipe, controlling the electric valves that allows that,
and according to the Detection and Responsive System (DRS)
that have been trained for these real failures. Another possible
scenario is to simulate the failure of a flow meter and to ensure
that BRAIN-IoT platform can recirculate the water for another
section with the same goal of ensuring the consumption curves.
DRS uses Machine Learning techniques for the detection of
failures. The responsive part is based on defined rules, acting
as expert system. In the scenario described above, there are
three main parts involved: 1) data gathering from the IoT
devices 2) An algorithm for detecting the anomalies/failure
3) Control system for reacting the abnormal situation. Point 2
and 3 will be the main components of DRS.

In the critical water infrastructure architecture (see Fig. 8),
heterogeneous sensors are placed in various remote locations
to collect and transmit data through a LoRaWAN network,
obtaining a huge amount of data to be used for training anoma-
lies detection algorithm with the limited number of physical
devices. The authors have developed the simulated IoT devices
models to generate the data. The system model performs
data gathering (from an input table), data encapsulation and
encryption, and data transmission to the network through
HTTP requests, as an abstraction of the complete LoRaWAN
communication data path: gateway + LoRa server / MQTT.
Then, the data are processed and stored in the edge database.
System security and robustness against vulnerabilities and
attacks are guaranteed.

Fig. 9 shows an example of the simulation results, at
the system level, obtained by the data transmission, data
recovery, processing and display in the EMALCSA application
dashboard of a water meter end device. The curves represent,
for each device: i) the percentage of valve openness, ii) the
water flow measured as output of the valve, iii) the saturation

88



Fig. 9. Plot, in end user dashboard, of the data gathered by a water meter
end device model

of the pipe.
The authors also aim implementing the control system

in point 3 using the BRAIN-IoT Modeling & Validation
Framework, following the proposed modeling methodology
to get the intended system control models, then, generate
the application artefacts. Its correctness will be validated in
the simulated devices, hence the risk of physical critical
infrastructure damage could be reduced before deploying to
the real environment.

VII. CONCLUSION AND FUTURE WORKS

This paper has presented the Model Based Methodology
and Framework proposed for design and Management of
next-gen IoT Systems. This solution provides a Model-Based
Engineering (MBE) approach to ease the development of the
IoT systems. It offers a system-level model, which captures the
system functionalities and behaviors to help refinement of the
software-layer modelling; it facilitates the linking towards real
devices and external services through meta-data representation
in WoT TD; the application code is generated from model for
monitoring and controlling the IoT infrastructure; it supports
the system application validation leveraging the simulated
IoT devices developed with the BRAIN-IoT physical layer
modeling language; finally, it allows monitoring the IoT sys-
tem behaviours and its configurations in a human-friendly
graphical manner through the Models@Runtime approach at
the execution time.

As future work, the Modelling & Validation framework
will be extended to also support AI modelling. In particu-
lar the authors will evaluate the feasibility of using system
modeling languages to either describe finely machine learning
algorithms, or their deployment, in the goal of accelerating
development and promoting interoperability between AI (sub)-
systems. Furthermore, the Critical Water Infrastructure man-
agement use case will be further developed including the con-
trol part and the associated actuators models to demonstrate the
complete functionalities provided by the modeling framework.
Furthermore, the authors would provide a survey to some users
and get some evaluations to demonstrate the benefits brought
by the solutions proposed in this paper.

ACKNOWLEDGMENT

The work presented here was part of the project ”Brain-IoT-
model-Based fRamework for dependable sensing and Actu-
ation in iNtelligent decentralized IoT systems” and received
funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 780089. The
authors thank Robotnik Automation S.L.L. and EMALCSA
for providing the environment, real and simulated to test the
solution.

REFERENCES

[1] G. P. Fettweis, “The tactile internet: Applications and challenges,” IEEE
Vehicular Technology Magazine, vol. 9, no. 1, pp. 64–70, 2014.

[2] O. Vermesan and J. Bacquet, Next generation Internet of Things:
Distributed intelligence at the edge and human machine-to-machine
cooperation. River Publishers, 2019.

[3] AGeSys Consortium. AGeSyS Atelier de Genie Systeme. [Online].
Available: https://www.aerospace-valley.com/sites/default/files/encart
html/index.html

[4] Y. Sun, G. Memmi, and S. Vignes, “A model-based testing process for
enhancing structural coverage in functional testing,” in Complex Systems
Design & Management Asia, 2016.

[5] S. Dhouib, A. Cuccuru, F. Le Fèvre, S. Li, B. Maggi, I. Paez, A. Rade-
marcher, N. Rapin, J. Tatibouet, P. Tessier et al., “Papyrus for iot—a
modeling solution for iot,” Proceedings l’Internet des Objets (IDO:
Nouveaux Défis de l’Internet des Objets: Interaction Homme-Machine
et Facteurs Humains. Paris, France, 2016.

[6] P. Roques, “Mbse with the arcadia method and the capella tool,” in
Proceedings of ERTS 2016, Toulouse, France, 2016.

[7] Z. M. Bzymek, M. Nunez, M. Li, and S. Powers, “Simulation of
a machining sequence using delmia/quest software,” Computer-Aided
Design and Applications, vol. 5, no. 1-4, pp. 401–411, 2008.

[8] M. Bauer, M. Boussard, N. Bui, F. Carrez, C. (SIEMENS, J. (ALUBE,
C. (SAP, S. Meissner, A. IML, A. Olivereau, M. (SAP, W. Joachim,
J. Stefa, and A. Salinas, “Internet of things – architecture iot-a deliver-
able d1.5 – final architectural reference model for the iot v3.0,” 2013.

[9] H. Espinoza, D. Cancila, S. Gérard, and B. Selic, “Using marte and
sysml for modeling real-time embedded systems,” Model-Driven Engi-
neering for Distributed Real-Time Systems: MARTE Modeling, Model
Transformations and their Usages, pp. 105–137, 2013.

[10] W. Emmerich and N. Kaveh, “Component technologies: Java beans,
com, corba, rmi, ejb and the corba component model,” in Proceedings
of the 8th European software engineering conference, 2001.

[11] Object Management Group, “Dds for lightweight ccm (dds4ccm),” 2009.
[12] B. Elvesæter, C. Carrez, P. Mohagheghi, A.-J. Berre, S. G. Johnsen, and

A. Solberg, “Model-driven service engineering with soaml,” in Service
Engineering, 2011, pp. 25–54.

[13] Object Management Group, “Unified component model for distributed,
real-time and embedded systems,” 2020.

[14] L. Gürgen, C. Munilla, R. Druilhe, E. Gandrille, and J. Nascimento,
sensiNact IoT Platform as a Service, 08 2016, pp. 127–147.

[15] F. Budinsky, “The eclipse modeling framework,” Doctor Dobbs Journal,
vol. 30, pp. 28–32, 08 2005.

[16] V. C. Pham, S. Li, A. Radermacher, S. Gérard, and C. Mraidha, “Foster-
ing software architect and programmer collaboration,” in Proceedings of
the 21st International Conference on Engineering of Complex Computer
Systems (ICECCS), 2016.

[17] “IEEE 1666-2011; IEEE standard for standard systemc language ref-
erence manual,” standard, 2011.

[18] A. Basu, S. Bensalem, M. Bozga, J. Combaz, M. Jaber, T.-H. Nguyen,
and J. Sifakis, “Rigorous component-based system design using the BIP
framework,” IEEE Software, vol. 28, no. 3, pp. 41–48, May 2011.

[19] R.Nicholson, T.Ward, D.Baum, X.Tao, D.Conzon, and E.Ferrera, “Dy-
namic fog computing platform for event-driven deployment and orches-
tration of distributed internet of things applications,” pp. 239–246, 2019.

[20] E. Ferrera., X. Tao., D. Conzon., V. S. Pombo., M. Cantero., T. Ward.,
I. Bosi., and M. Sandretto., “Brain-iot: Paving the way for next-
generation internet of things,” in Proceedings of the 5th International
Conference on Internet of Things, Big Data and Security - Volume 1:
IoTBDS,, INSTICC. SciTePress, 2020, pp. 470–477.

89


