
Rule Mining in Action: The RuM Toolkit
Anti Alman

University of Tartu
Estonia

anti.alman@ut.ee

Claudio Di Ciccio
Sapienza University of Rome

Italy
diciccio@di.uniroma1.it

Dominik Haas
WU Vienna

Austria
dominik.haas@s.wu.ac.at

Fabrizio Maria Maggi
Free University of Bolzano

Italy
maggi@inf.unibz.it

Jan Mendling
WU Vienna

Austria
jan.mendling@wu.ac.at

Abstract—Procedural process modeling languages can be dif-
ficult to use for process mining in cases where the process
recorded in the event log is unpredictable and has a high
number of different branches and exceptions. In these cases,
declarative process modeling languages such as DECLARE are
more suitable. Declarative languages do not aim at modeling the
end-to-end process step by step, but constrain the behavior of
the process using rules thus allowing for more variability in the
process model yet keeping it compact. Although there are several
commercial and academic process mining tools available based on
procedural models, there are currently no comparable tools for
working with declarative models. In this paper, we present RuM,
an accessible and easy-to-use rule mining toolkit integrating
multiple DECLARE-based process mining methods into a single
unified application. RuM implements process mining techniques
based on Multi-Perspective DECLARE, namely the extension of
DECLARE supporting data constraints together with control-
flow constraints. In particular, RuM includes support for process
discovery, conformance checking, log generation and monitoring
as well as a model editor. The application has been evaluated
by conducting a qualitative user evaluation with eight process
analysts.

Index Terms—Rule Mining, Process Analytics Tool, Declarative
Process Models, Process Mining

I. INTRODUCTION

Process mining is the area of Business Process Management
(BPM) which is focused on the analysis of business processes
based on event logs containing information about process
executions. A key artifact used in process mining is a process
model. The most common type of process models used for
process mining are procedural models, which aim at describing
end-to-end processes and allow only for activities that are ex-
plicitly triggered through the control-flow. However, modeling
the entire control-flow step by step can be inconvenient in
some cases. For example, if the process is unpredictable and
has a high number of different branches and exceptions, the
models could become quickly unreadable. In these cases, it
may be better to use declarative process models that model
the process as a set of rules that the process should follow.
Although there are several commercial and academic process
mining tools available based on procedural models, there are
currently no comparable tools for working with declarative
models.

In this paper, we present RuM, a novel and easy to use pro-
cess mining toolkit based on the declarative modeling language
DECLARE [1]. RuM implements process mining techniques
for both standard DECLARE and MP-DECLARE [2], the latter

being the multi-perspective extension of DECLARE supporting
data constraints together with control-flow constraints. RuM
also provides a model editor that is fully MP-DECLARE
compliant and equipped with a chatbot that supports inexpert
users in defining DECLARE constraints using natural language
expressions.

To assess the feasibility of RuM, we conducted a qualitative
user evaluation of which we sketch here the main findings.1

In general, the application was well received and it was
recognized to be timely and highly needed by all participants.

To download RuM and get access to additional infor-
mation about the tool, please refer to the RuM project
website: https://rulemining.org. A tutorial on the use of
the tool is available at https://git.io/JUvw4. A short video
screencast showing a quick overview of RuM is available
at https://youtu.be/nXFNDDbOcU0. In [3], we describe the
techniques implemented in RuM in detail. In addition to
what presented in [3], we introduce in this paper a new
functionality (process monitoring) and an additional tool that
eases the management and retrieval of models and event logs
(the inventory).

The remainder of this paper is structured as follows. Sec-
tion II gives a short overview of the functionalities of RuM and
lists the process mining techniques available in the application.
Section III describes the maturity of the tool by summarizing
the results of our user evaluation and concludes the paper by
spelling out directions for future work.

II. FUNCTIONAL OVERVIEW

RuM is the first software platform natively designed to
analyze declarative, rule-based process models. To that end, we
have integrated and improved existing prototypes, but also cre-
ated completely new features that enhance the user experience
during the process analysis. To cater for the interoperability of
the tool, we resort on existing standards for input and output
files, namely XES [4] for the event logs and decl [5] for the
models.

Figure 1 shows the home screen of the tool, giving di-
rect access to its main functionalities. In the following,
we describe those functionalities and the inventory, with
which the user can save, restore and alter the diverse ar-
tifacts imported from the file system or created during the
mining and analysis of processes and event logs. For the

1For a full description of the user evaluation the reader is referred to [3].

Copyright © 2020 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

https://rulemining.org
https://git.io/JUvw4
https://youtu.be/nXFNDDbOcU0


Fig. 1. The home screen of RuM with access to the discovery (Section II-A),
conformance checking (Section II-B), log generation (Section II-C), MP-
DECLARE editor (Section II-D), and monitoring (Section II-E) functionalities.
The button to open the inventory is depicted as a box in the bottom-left corner
(Section II-F).

sake of space, we shall delve more in the detail of the
novel monitoring functionality and the inventory. For further
information on the whole set of techniques, please refer
to [3], the online tutorial (https://git.io/JUvw4) and video
(https://youtu.be/nXFNDDbOcU0).

A. Discovery

Figure 2 illustrates the user interface (UI) of the discovery
panel applied to an example event log describing the treatment
of patients suffering the from the sepsis disease in a hospital.
Four methods are available for process discovery: Declare
Miner [6], MINERful [7], MP-Declare Miner [8] and MP-
MINERful. The MP variants add to the base mining algorithms
a post processing step for discovering data conditions.2 We
remark that MP-MINERful is a novel integration of MINERful
with the post processing step, created specifically for RuM.

The discovery results can be explored by using three
complementary views: through a process map (DECLARE
view), a textual description (textual view), or as a procedural
model (automaton view).3 We remark that these views support
filtering based on activity support and constraint support thus
providing the possibility for users to show/hide outlier behav-
iors. The filters are applied on the fly without rediscovering
the model to speed up the user interaction.

B. Conformance Checking

RuM implements three techniques for conformance check-
ing: Declare Analyzer [2], Declare Replayer [10] and Data-
Aware Declare Replayer.4 The Declare Analyzer takes as input
a model and an event log, and returns constraint activations, vi-
olations, and fulfilments in the input log. The Declare Replayer
and the Data-Aware Declare Replayer report trace alignments.
The Data-Aware Declare Replayer can also account for the
data perspective.

2Notice that all the “data-aware” versions of the techniques provided in
RuM support a richer language at the expense of lower efficiency.

3The rendering of the automaton is based on the MINERful library [9].
4https://github.com/Clyvv/DataAwareDeclareReplayer

The conformance checking results are presented in groups.
Each group displays the results for a specific trace or a specific
constraint. For each group, the name of the group is displayed
along with general descriptive statistics about the group. To
foster interaction in the process analysis, the user can freely
switch among groups and toggle an extended view for each
group to see more details. This allows users to explore the
results at a high level of detail while also being relatively
compact in terms of user interface [3, Fig. 4].

C. Log Generation

There are two log generation methods available in RuM:
Alloy Log Generator [5] and MINERfulLog Generator [11].
The main difference between these methods from the user’s
standpoint is that the Alloy Log Generator can also account
for the definition of data conditions in the input process model.
Among other options, the user can specify the percentage of
traces that trivially satisfy the constraints in the output log (that
is, traces that comply with the constraints in the input model
because their activations never occur) and the percentage of
negative traces (i.e., traces that violate at least one of the
constraints in the input model) [3, Fig. 6]. The generated log
can be exported in the XES format.

D. MP-DECLARE Editor

In order to provide a comprehensive toolset for working
with DECLARE process models, RuM contains a model editor,
which is the first one supporting both standard DECLARE
and MP-DECLARE [3, Fig. 5]. The MP-DECLARE editor uses
the decl file format for importing and exporting the models.
All aspects of the format are supported: activity definitions,
attribute definitions, activity-attribute bindings and constraints
with all the allowed data and time conditions. The used
visualization devices are the same as those of the model
discovery panel, i.e., the model can be visualized using the
standard DECLARE graphical notation, as text or in the form
of an automaton. The editor is also equipped with a chatbot
(Declo [12]) supporting the user in designing MP-DECLARE
models using natural language.

E. Monitoring

There are two monitoring methods available in RuM: MP-
Declare with Alloy5 and MobuconLTL [13]. The main differ-
ence between these methods from the user’s standpoint is that
MP-Declare with Alloy can also account for the definition of
data conditions in the input process model.

The monitoring tool analyzes the state of each constraint
and updates it for every event in a trace. The states follow
the five-truth-values introduced for DECLARE in [14] and are
visually depicted with different colors: temporarily satisfied
(though currently satisfied, the constraint can become violated
in the remainder of the trace: green), temporarily violated
(vice-versa, it can become satisfied in the future: yellow),
permanently satisfied (azure) or permanently violated (red).
Orange indicates that there is a conflict between some of the

5https://github.com/b26140/Rule-mining-tool-with-monitor-extension

https://git.io/JUvw4
https://youtu.be/nXFNDDbOcU0
https://github.com/Clyvv/DataAwareDeclareReplayer
https://github.com/b26140/Rule-mining-tool-with-monitor-extension


Fig. 2. Discovery UI with the DECLARE view.

Fig. 3. Monitoring UI.

constraints, i.e., there is no possible sequence of future events
that could satisfy all the conflicting constraints. The user can
replay the whole trace, manually process the events in the trace
one by one or jump to a specific event in the trace.

F. The Inventory

Figure 4 illustrates the inventory, a novel artifact aimed at
easing the management of the event logs and process models
in use during the process analysis with RuM. All the files im-
ported from the file system are retrievable from the inventory
as well as all the discovered and edited process models and
the generated logs. The users can save the intermediate results
of their analysis as so-called snapshots so as to fetch them
later on. Next to each snapshot, the inventory offers action

buttons that can activate a related functionality: e.g., event logs
can be directly re-routed as an input for discovery, whereas
process models can be sent to the conformance checking, log
generation, editor, or monitoring panels.

III. MATURITY AND FUTURE REMARKS

A qualitative user study, presented in [3], was conducted
to assess the feasibility of RuM. Our aim was to (1) gain
insights into how users from different backgrounds perceived
the application and (2) identify means for improving it. We se-
lected eight process analysts as participants for our study. Four
of the participants had little to no knowledge of DECLARE,
the other four identified themselves as DECLARE experts. The
study concluded with a post-survey questionnaire consisting of



Fig. 4. The inventory.

multi-point Likert scales including the System Usability Scale
(SUS) [15] and scales covering satisfaction, expectation con-
firmation, continuation intention, and usefulness. The average
SUS score of 81.875 resulting from the evaluation of RuM
shows that the toolkit was very well received and ready to be
used in real scenarios with users having different backgrounds
(a SUS score of 69.69 is considered average while a score
above 80 is considered to be good or excellent [16]).

For future work, we aim at extending the user analysis upon
the integration of the user feedback into our implementation
of RuM. Furthermore, we will extend the current capabilities
both from the perspective of the available functionalities (e.g.,
with the mining of branched-DECLARE constraints [17]) and
visualization schemes (e.g., with the graphical editing of
models).

ACKNOWLEDGMENTS

The authors would like to thank all the participants of the
user evaluation for taking the time to evaluate RuM and for
providing us with invaluable feedback on how RuM can be
improved in the future.

The work of A. Alman was partly supported by the Estonian
Research Council (project PRG887). The work of C. Di Ciccio
was partly supported by MIUR under grant “Dipartimenti
di eccellenza 2018-2022” of the Department of Computer
Science at Sapienza University of Rome.

REFERENCES

[1] M. Pesic, H. Schonenberg, and W. M. P. van der Aalst, “DECLARE: Full
support for loosely-structured processes,” in EDOC, 2007, pp. 287–300.

[2] A. Burattin, F. M. Maggi, and A. Sperduti, “Conformance checking
based on multi-perspective declarative process models,” Expert systems
with applications, vol. 65, pp. 194–211, 2016.

[3] A. Alman, C. Di Ciccio, D. Haas, F. M. Maggi, and A. Nolte, “Rule
mining with RuM,” in ICPM, B. F. van Dongen, M. Montali, and M. T.
Wynn, Eds. IEEE, 2020.

[4] C. W. Gunther and H. M. W. Verbeek, XES - standard definition, ser.
BPM reports. BPMcenter.org, 2014, vol. 1409.

[5] V. Skydanienko, C. Di Francescomarino, C. Ghidini, and F. M. Maggi,
“A tool for generating event logs from multi-perspective Declare
models,” in BPM (Dissertation/Demos/Industry), 2018, pp. 111–115.

[6] F. M. Maggi, C. Di Ciccio, C. Di Francescomarino, and T. Kala, “Parallel
algorithms for the automated discovery of declarative process models,”
Inf. Syst., vol. 74, pp. 136–152, 2018.

[7] C. Di Ciccio and M. Mecella, “On the discovery of declarative control
flows for artful processes,” ACM Trans. Manage. Inf. Syst., vol. 5, no. 4,
Jan. 2015.

[8] V. Leno, M. Dumas, F. M. Maggi, M. La Rosa, and A. Polyvyanyy,
“Automated discovery of declarative process models with correlated data
conditions,” Inf. Syst., vol. 89, p. 101482, 2020.

[9] J. Prescher, C. Di Ciccio, and J. Mendling, “From declarative processes
to imperative models,” in SIMPDA. CEUR-WS.org, Nov. 2014, pp.
162–173.

[10] M. de Leoni, F. M. Maggi, and W. M. P. van der Aalst, “An alignment-
based framework to check the conformance of declarative process
models and to preprocess event-log data,” Inf. Sys., vol. 47, pp. 258–277,
2015.

[11] C. Di Ciccio, M. L. Bernardi, M. Cimitile, and F. M. Maggi, “Generating
event logs through the simulation of Declare models,” in EOMAS, 2015,
pp. 20–36.

[12] A. Alman, K. J. Balder, F. M. Maggi, and H. van der Aa, “Declo: A
chatbot for user-friendly specification of declarative process models,” in
BPM Demos, 2020.

[13] F. M. Maggi, M. Montali, M. Westergaard, and W. M. P. van der
Aalst, “Monitoring business constraints with linear temporal logic: An
approach based on colored automata,” in BPM 2011. Proceedings, 2011,
pp. 132–147.

[14] F. M. Maggi, M. Westergaard, M. Montali, and W. M. P. van der
Aalst, “Runtime verification of ltl-based declarative process models,”
in Runtime Verification, 2011, Revised Selected Papers, 2011, pp. 131–
146.

[15] J. Brooke, SUS-A quick and dirty usability scale. (in Usability Eval-
uation in Industry, by P.W. Jordan, B. Thomas, I.L. McClelland, B.
Weerdmeester). CRC Press, June 1996, iSBN: 9780748404605.

[16] P. T. Kortum and A. Bangor, “Usability ratings for everyday products
measured with the system usability scale,” International Journal of
Human–Computer Interaction, vol. 29, no. 2, pp. 67–76, 2013.

[17] C. Di Ciccio, F. M. Maggi, and J. Mendling, “Efficient discovery of
Target-Branched Declare constraints,” Inf. Syst., vol. 56, pp. 258–283,
2016.


	Introduction
	Functional Overview
	Discovery
	Conformance Checking
	Log Generation
	MP-Declare Editor
	Monitoring
	The Inventory

	Maturity and Future Remarks
	References

