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Abstract

In many sequential decision-making problems, eth-
ical compliance is enforced by either myopic rule
sets or provisional modifications to the objective
function. The effect of these strategies is exceed-
ingly difficult to predict, often leading to inad-
vertent behavior that can jeopardize the values of
stakeholders. We propose a novel approach for
ethically compliant planning, based on decoupling
ethical compliance from task completion within the
objective function, that produces optimal policies
subject to the constraints of an ethical framework.
This paper introduces a formal definition of a moral
autonomous system and its key properties. It also
offers a range of ethical framework examples for
divine command theory, prima facie duties, and
virtue ethics. Finally, it demonstrates the effective-
ness of our approach in a set of autonomous driving
simulations and a user study of MDP experts.

1 Introduction

Integrating decision making and ethics in autonomous sys-
tems is challenging due to the diversity and complexity of
deployment domains and stakeholder value systems. For de-
cision making in the real world, Markov decision processes
(MDPs) are a common, general-purpose model because of
their support for long-term, nonmyopic reasoning in fully
observable, stochastic environments. However, MDPs pose
two additional challenges when generating ethically compli-
ant behavior. First, the complexity of these models often
obfuscates the effect of the reward function on the behavior
of the agent. Seemingly innocuous adjustments may dras-
tically change resulting behavior, leading to unpredictabil-
ity [Bostrom, 2016]. Second, and more fundamentally, using
the reward function to model both desirable and undesirable
behavior often involves incommensurable unit conversions.
For example, an autonomous vehicle with a reward function
that encourages completing a route efficiently and discour-
ages driving recklessly blends task completion and ethical
compliance implicitly. The resulting policy may drive too
recklessly if offered enough time savings. Thus, in complex
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environments, autonomous systems may encounter unantici-
pated scenarios that lead to behavior that fails to reflect the
intentions of developers or the values of stakeholders [Taylor
et al., 2016; Hadfield-Menell and Hadfield, 2019].

Ideally, researchers and practitioners integrating ethical
theories and decision processes could access methods that
offer several desirable features. These features include sup-
port for interpretability and control over behavior with formal
guarantees, nonmyopic reasoning, the acquisition of rules
from a non-technical person, and the application of one or
more ethical theories simultaneously. Ethicists often describe
an ethical theory as a set of moral principles for evaluating
if an action is required, permitted, or prohibited in a given
scenario [Shafer-Landau, 2009]. Given this interpretation, an
ethical theory can be operationalized in a decision process as
constraints on the actions of the agent in specific states.

In this paper, we propose a novel approach for building
moral autonomous systems that produce an optimal policy to
a decision-making problem subject to the constraints of an
ethical framework. The system models a task with a decision-
making model and models an ethical framework as a moral
principle and an ethical context. While we use MDPs for
the decision-making models in our experiments, our approach
supports any decision process expressible as a mathematical
program. The moral principle is an approximation of an in-
terpretation of an ethical theory that can be represented as a
Boolean function that evaluates whether or not a policy vio-
lates a particular ethical theory. The ethical context contains
all of the information necessary to evaluate the moral prin-
ciple. Formally, this system is expressed as an optimization
problem with a set of constraints representing the task and a
constraint that operationalizes the ethical framework. The so-
lution to the optimization problem is a policy that optimizes
completing the task while following the ethical framework.

We evaluate our approach in two experiments. First, in an
autonomous driving simulation, we confirm that our approach
produces optimal behavior while complying with moral re-
quirements. Second, in a user study, we find that MDP ex-
perts who use our approach require less development time to
produce policies that have higher rates of ethical compliance
compared to modifying the reward function directly.

Our main contributions in this paper are: (1) a formal def-
inition of a moral autonomous system and its key properties,
(2) a range of ethical framework examples for divine com-
mand theory, prima facie duties, and virtue ethics, and (3)
a set of autonomous driving simulations and a user study of
MDP experts that shows the effectiveness of our approach.



2 Related Work

Autonomous systems attempt to address a range of problems,
are deployed in diverse social contexts, and draw upon a het-
erogeneous collection of algorithms. The potential harms
of these systems can be mitigated through many strategies:
(1) abandonment of technologies that are likely to be abused
when analyzed in a historical context [Browne, 2015], such
as facial recognition [Brey, 2004; Introna and Wood, 2004]
and surveillance of online activity [Burgers and Robinson,
2017; Zimmer, 2008], (2) legal or legislative intervention
that provides oversight and regulation in enough detail to
prevent or discourage malevolent or negligent use [Good-
man and Flaxman, 2017; Desai and Kroll, 2017; Raymond
and Shackelford, 2013; Scherer, 2015], including meta-
regulation [Pasquale, 2017], and (3) algorithmic advances
that improve accuracy and interpretability. Though these
strategies will continue to play important roles in the future,
our approach focuses on a fourth strategy that reduces the op-
portunity for error during design and development.

Recently, various principles [Boden et al., 2017], guide-
lines [Robertson et al., 20191, and standards [Adamson et al.,
2019] have been proposed for the design and development of
autonomous systems. Although these are essential for pro-
moting the values of stakeholders throughout the design pro-
cess, these initiatives do not offer developers enough detail
to operationalize ethical frameworks in autonomous systems.
In fact, implicit ethical systems, which satisfy moral require-
ments through careful design, may not always produce desir-
able behavior [Moor, 2006]. Many autonomous systems must
therefore be capable of explicit moral reasoning [Dignum et
al., 2018; Bench-Capon and Modgil, 2017].

Engineering efforts to develop explicit autonomous moral
agents take two forms [Allen et al., 2005]. Bottom-up ap-
proaches generate ethical behavior naturally through learn-
ing or evolution [Anderson er al., 2017; Shaw et al., 2018].
While this is theoretically compelling given the natural evolu-
tion of ethical ideas in human society, the instability and lack
of interpretability are major drawbacks. Instead, we choose
a top-down approach in which prescriptive rules describing
moral behavior are provided to the agent. Many top-down
approaches use logics, such as deontic logic [van der Torre,
2003; Bringsjord et al., 2006], temporal logic [Wooldridge
and Van Der Hoek, 2005; Atkinson and Bench-Capon, 2006],
or Answer Set Programming [Berreby et al., 2015]. Some
even propose a form of metareasoning over logics [Bringsjord
et al., 2011]. However, as systems become more complex
and operate in stochastic, partially observable environments,
norm specification represented by logics will become increas-
ingly challenging [Abel ez al., 2016].

A common approach for handling these environments em-
ploys an ethical governor that reasons online about whether
an action is required, permitted, or prohibited [Arkin, 2008].
Applications include eldercare [Shim er al., 2017] and phys-
ical safety [Vanderelst and Winfield, 2018; Winfield et al.,
2014]. These methods use reactive ethical governors that only
consider a single action at a time as the situation presents the
agent with the opportunity to act. In contrast, our approach is
nonmyopic because it considers entire sequences of actions.

We are aware of only one other approach that focuses
on proactive ethical governors of policies [Kasenberg and
Scheutz, 2018]. However, since it is specific to norms, it is
unclear how it could support other forms of ethical reason-
ing, such as adherence to a moral principle like utilitarianism
or deontology. Moreover, both task completion and ethical
behavior are defined in terms of real-valued norm weights,
the coupling of which elides guarantees of ethical behavior.
In contrast, our approach can generate policies that follow
arbitrary ethical theories and avoid unpredictable trade-offs
between task completion and ethical behavior.

3 Background

A Markov decision process (MDP) is a decision-making
model for reasoning in fully observable, stochastic environ-
ments [Bellman, 1966]. An MDP can be described as a tuple
(S, A, T, R,d), where S is a finite set of states, A is a finite set
of actions, T : S x A x S — [0, 1] represents the probability
of reaching a state s’ € S after performing an action a € A in
astate s € S, R: S x Ax S — Rrepresents the expected im-
mediate reward of reaching a state s’ € S after performing an
actiona € Ainastate s € S,and d : S — [0, 1] represents
the probability of starting in a state s € S. A solution to an
MDP is a policy 7 : S — A indicating that an action 7 (s) €
A should be performed in a state s € S. A policy 7 induces
a value function V™ : S — R representing the expected dis-
counted cumulative reward V™ (s) € R for each state s € S
given a discount factor 0 < ~ < 1. An optimal policy 7*
maximizes the expected discounted cumulative reward for ev-
ery state s € .S by satisfying the Bellman optimality equation
V*(s) = maxeea ) g T(s,a,5")[R(s,a,s") +~yV*(s')].

A common approach for finding an optimal policy ex-
presses the optimization problem as a linear program in either
the primal form or the dual form [Manne, 1960]. In this pa-
per, we propose ethical frameworks that naturally map to the
dual form. The dual form maximizes a set of occupancy mea-
sures o for the discounted number of times an actiona € A
is performed in a state s € .S subject to a set of constraints
that maintain consistent and nonnegative occupancy.
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4 Moral Autonomous Systems

We propose a novel approach for building moral autonomous
systems that decouples ethical compliance from task comple-
tion. The system completes a task by using a decision-making
model and follows an ethical framework by adhering to a
moral principle within an ethical context. We describe these
three components of a moral autonomous system below.
First, the system has a decision-making model that de-
scribes the information needed to complete the task. For ex-
ample, a self-driving vehicle could have a decision-making
model that includes a map of a city [Nashed er al., 2018;



Svegliato er al., 2019]. An engineer must select a represen-
tation for the decision-making model that reflects the proper-
ties of the task. For many tasks, an MDP, a decision process
that assumes full observability, can be used easily. However,
for more complex tasks with partial observability, start and
goal states, or multiple agents, it is possible to use a decision
process like a partially observable MDP, a stochastic shortest
path problem, or a decentralized MDP instead. In short, the
decision-making model is an amoral, descriptive model for
completing the task but not following the ethical framework.

Next, the system has an ethical context that describes the
information required to follow the ethical framework. For
instance, an autonomous vehicle could have an ethical con-
text that includes any details related to inconsiderate and haz-
ardous driving that permit speeding on a highway in some
scenarios but never in a school zone or near a crosswalk [Van-
derelst and Winfield, 2018]. Similar to the decision-making
model, an ethicist must select a representation for the ethical
context that informs the fundamental principles of the ethical
framework. While the ethical context can be represented as a
tuple of different values, sets, and functions, the specification
of the tuple depends on the ethical framework. In summary,
the ethical context is a moral, descriptive model for following
the ethical framework but not completing the task.

Finally, the system has a moral principle that evaluates the
morality of a policy of the decision-making model within the
ethical context by considering the information that describes
how to complete the task and follow the ethical framework.
As an illustration, a moral principle could require a policy
to maximize the overall well-being of the moral community
in utilitarianism [Bentham, 1789; Mill, 1895] or universal-
ize to the moral community without contradiction in Kantian-
ism [Kant and Schneewind, 2002]. Given a decision-making
model and an ethical context, a moral principle can be ex-
pressed as a function that maps a policy to its moral status.

Definition 1. A moral principle, p : 11 — B, represents
whether a policy m € 11 of a decision-making model D is
moral or immoral within an ethical context £.

By putting all of these attributes together, we provide a for-
mal description of a moral autonomous system as follows.

Definition 2. A moral autonomous system, (D, &, p), com-
pletes a task by using a decision-making model D and fol-
lows an ethical framework by adhering to a moral principle
p within an ethical context .

A moral autonomous system has the goal of finding an op-
timal policy that completes its task and follows its ethical
framework. This can be expressed as an optimization prob-
lem solving for a policy in the space of policies that maxi-
mizes the value of the policy subject to the constraint that the
policy satisfies the moral principle. We define the goal of a
moral autonomous system as follows.

Definition 3. The goal of a moral autonomous system is to
Jfind an optimal moral policy, 7, € 11, by solving for a policy
7 € 11 that maximizes a value function V'™ subject to a moral
principle p(m) in the following optimization problem.
maximize V7
mell
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Figure 1: A simple view of the goal of a moral autonomous system
and a standard autonomous system in terms of the space of policies

However, the goal of a standard autonomous system has typi-
cally been to find an optimal amoral policy, 7* € 11, that only
completes its task without following any ethical framework.

Figure 1 depicts the goal of a moral autonomous system
and a standard autonomous system. For a moral principle
p, the space of policies 1I is partitioned into a moral region
II, and an immoral region II-,. The moral region contains
the optimal moral policy 7, € II of the moral autonomous
system while the immoral region contains the optimal amoral
policy 7* € II of the standard autonomous system. In gen-
eral, the optimal amoral policy 7* € II can be contained by
either the moral region II, or the immoral region II,,.

A moral autonomous system may follow an ethical frame-
work that adversely impacts completing its task. Engineers
and ethicists can assess the cost of this impact by calculating
the maximum difference across all states between the value
function of the optimal moral policy and the value function
of the optimal amoral policy. We define this cost below.

Definition 4. Given the optimal moral policy 7, € I and the
optimal amoral policy 7 € 11, the price of morality, 1), can
be represented by the expression 1) = |V — V™ || .

A moral autonomous system may even follow an ethi-
cal framework that is mutually exclusive with completing its
task. In this situation, engineers and ethicists should recon-
sider the moral implications of the system and could augment
the decision-making model or adjust the ethical context if
deemed safe. Naturally, depending on whether or not there
is a solution to the optimization problem, the system can be
considered either feasible or infeasible as follows.

Definition 5. A moral autonomous system is realizable if and
only if there exists a policy m € 11 such that its moral princi-
ple p(m) is satisfied. Otherwise, the system is unrealizable.

It is natural to find the optimal moral policy by solving the
optimization problem of a moral autonomous system using
mathematical programming. This process involves four steps.
First, the moral principle can be mapped to a moral constraint
in terms of the occupancy measures of a policy. We show that
this mapping can always be performed as follows.

Theorem 1. A moral principle, p : I1 — B, can be expressed
as a moral constraint c, () in terms of the matrix of occu-
pancy measures [ for a given policy m € I1.

Proof (Sketch) 1. We start with a moral principle p(7) using
a deterministic or stochastic policy 7(s) or w(als). Recall
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Table 1: The moral constraints that have been derived from the moral principle of each ethical framework

that the discounted number of times that an action a € A is
performed in a state s € S is an occupancy measure (1;. Ob-
serve that the discounted number of times that a state s € S'is
visited is the expression ), 4 15 A policy 7(s) or w(als) is
thus argmax,e o (15 D pea 1] or ps/ > uca b There-
fore, by substitution, we end with a moral constraint c,, ().

Second, the moral principle can be classified as either lin-
ear or nonlinear depending on the form of its moral constraint.
If the moral constraint is linear in the occupancy measures of
a policy, the moral principle is linear. Otherwise, the moral
principle is nonlinear. We formalize this property below.

Definition 6. A moral principle, p : I1 — B, is linear if it can
be expressed as a moral constraint c,(p) that is linear with
respect to the matrix of occupancy measures p for a given
policy w € I1. Otherwise, the moral principle is nonlinear.

Third, the optimization problem can be described as a
mathematical program. For task completion, following the
linear program of an MDP in the dual form, the program
maximizes a set of occupancy measures y. for the discounted
number of times an action a € A is performed in a state s € S
subject to a set of constraints that maintain consistent and
nonnegative occupancy. However, for ethical compliance, the
program has a moral constraint ¢, (x) derived from the moral
principle p(1) given a matrix of occupancy measures .

Fourth, the mathematical program can be solved to find
the optimal moral policy. Given a linear moral principle, it
can be solved using techniques designed for linear program-
ming, such as the simplex method or the criss-cross algo-
rithm [Bertsimas and Tsitsiklis, 1997]. However, given a non-
linear moral principle, it can be solved using techniques de-
signed for nonlinear programming instead [Bertsekas, 1997].
Note that, while we use the dual form of the linear program of
an MDP, this process can also be used with the primal form.

5 Ethical Frameworks

In this section, we offer a range of ethical framework exam-
ples that can be used to build a moral autonomous system.
Each ethical framework is influenced by an interpretation of
an ethical theory in moral philosophy [Shafer-Landau, 2009].
During the design of an ethical framework, ethicists and en-
gineers select a representation for the ethical context and the
moral principle. This involves choosing the contextual details
of the ethical context and the logical structure of the moral
principle that most accurately describe the capabilities of the
agent, the effect of its actions on its environment, and the
moral implications of its behavior. In short, an ethical frame-
work, composed of an ethical context and a moral principle,
is an approximation of an interpretation of an ethical theory.

Table 1 offers the moral constraints that have been derived
from the moral principle of each ethical framework. For each
moral constraint, there are several columns that describe its
computational tractability. The Type column lists whether
the moral constraint is linear or nonlinear with respect to the
occupancy measures of a policy. The Conjunctions column
states the number of logical conjunctions that compose the
moral constraint. The Operations column indicates an upper
bound on the number of arithmetic, comparison, and logical
operations that must be performed for each logical conjunc-
tion. The Computations column contains an upper bound on
the number of computations that must be executed for the
moral constraint to evaluate the moral status of a policy.

We now present a set of simplified ethical frameworks.
They are not definitive and do not capture all nuances of eth-
ical theories. Their purpose is to tractably operationalize an
ethical theory within a decision process. We encourage the
development of more complex ethical frameworks that reflect
the depth of different ethical theories, including those below.

5.1 Divine Command Theory

Divine command theory (DCT), a monistic, absolutist eth-
ical theory, holds that the morality of an action is based
on whether a divine entity commands or forbids that ac-
tion [Idziak, 1979; Quinn, 2013]. We consider a simplified
ethical framework in which a moral autonomous system uses
a policy that selects actions that have a nil probability of tran-
sitioning to any forbidden state [Mouaddib et al., 2015]

Definition 7. A DCT ethical context, £, can represented by
a tuple, Ex = (F), where F is a set of forbidden states.

Definition 8. A DCT moral principle, pr, can be expressed
as the following equation:

pr(m) = \ (T(s,7(s), f) = 0).

seS,feF

5.2 Prima Facie Duties

Prima facie duties (PFD), a pluralistic, nonabsolutist ethi-
cal theory, holds that the morality of an action is based on
whether that action fulfills fundamental moral duties that can
contradict each other [Ross, 1930; Morreau, 1996]. We con-
sider a simplified ethical framework in which a moral au-
tonomous system uses a policy that selects actions that do not
neglect duties of different penalties within some tolerance.

Definition 9. A PFD ethical context, Ea, can be represented
by a tuple, En = (A, &, T), where

o A is a set of duties,



e ¢: A xS — R" isapenalty function that represents
the expected immediate penalty for neglecting a duty § €
A in a state s € S, and

e 7 € Rt is atolerance.

Definition 10. A PFD moral principle, pa, can be expressed
as the following equation:

palr) =3 d(s)J7™(s) < .

ses

The expected cumulative penalty, J" : S — R, is below:

T(s) = 30 Tls,m(s), ) [ 32 0(8,8) + I7(5')],

s'es SEA
where Ay is the set of duties neglected in a state ' € S.

5.3 Virtue Ethics

Virtue ethics (VE), a monistic, absolutist ethical theory, holds
that the morality of an action is based on whether a virtuous
person who acts in character performs that action in a similar
situation [Anscombe, 1958; Hursthouse, 1999]. We consider
a simplified ethical framework in which a moral autonomous
system uses a policy that selects actions that align with any
moral trajectory performed by a moral exemplar.

Definition 11. A VE ethical context, £, can represented by
a tuple, Exg = (M), where M is a set of moral trajectories.

Definition 12. A VE moral principle, p, can be expressed
as the following equation:

paa(m) = [\ als, ().

ses

The alignment function, o : S x A — B, is below:
a(s,a) = Inemo<i<e(s = m(si) Aa=m(a;)),

where m(s;) and m(a;) are the ith state and the ith action of
a moral trajectory m = (Sq, g, 81,01, - -, S¢—1,@r—1, S¢) Of
length ¢ < L bounded by a maximum length L.

6 Autonomous Driving

We turn to an application of moral autonomy to autonomous
driving. A moral self-driving vehicle must complete a nav-
igation task by driving from an origin to a destination in a
city. However, to follow an ethical framework, the moral self-
driving vehicle must adjust its route and speed depending on
the type and pedestrian traffic of each road. We describe how
to separate task completion and ethical compliance below.

6.1 Task Completion

The vehicle must complete a navigation task by driving from
a start location A\g € A to a goal location A; € A along a
set of roads (2 in a city with a set of locations A. At each
location A € A, the vehicle must turn onto a road w € €.
Each road w € Qis atype v € T that indicates either a city
street, county road, or highway with a low, medium, or high
speed limit. Once the vehicle turns onto a road w € {2, the
vehicle observes the pedestrian traffic § € O as either light

or heavy with a probability Pr(© = ). After the vehicle
observes the pedestrian traffic # € ©, the vehicle accelerates
to a speed o € X that reflects either a low, normal, or high
speed under, at, or above the speed limit. To drive along the
road w € € from the current location A € A to the next
location \ € A, the vehicle cruises at the speed o € 3. Note
that this is repeated until arriving at the goal location A, € A.

We represent the decision-making model of a navigation
task by an MDP D = (S, A, T, R, d). The set of states S =
S USq has a set of location states S for being at a location
A € A and a set of road states Sq, for being on a road w € )
of a type v € T with a pedestrian traffic § € O at a speed
o € X. The set of actions A = Aq U Ay U {®,©} has a
set of turn actions A, for turning onto a road w € €2, a set
of accelerate actions Ay, for accelerating to a speed o € 3, a
stay action ®, and a cruise action ®. The transition function
T:8xAxS —[0,1] reflects the dynamics of a turn action
a € Aq and a stay action ® in a location state A € S or an
accelerate action a € As, and a cruise action ® in a road state
s € Sq (with a self-loop for any invalid action a € A). The
reward function R : § X A x S — R reflects the duration
of a turn action @ € Aq from a location state S, to a road
state s € Sgq, a stay action ® at a location state A € Sy, an
accelerate action a € Ay at aroad state s € Sq, and a cruise
action ® from aroad state s € S, to a location state S (with
an infinite duration for any invalid action ¢ € A and a nil
duration for a stay action ® at a state s € S that represents the
goal location A, € A). The start state function d : S — [0, 1]
has unit probability at a state s € .S that represents the start
location \g € A and nil probability at every other state s € S.

6.2 Ethical Compliance

The vehicle must follow one of the ethical frameworks. First,
the vehicle can follow DCT with forbidden states comprised
of hazardous states H and inconsiderate states Z. Hazardous
states H contain any road state at high speed while incon-
siderate states Z contain any road state at normal speed with
heavy pedestrian traffic. With the DCT moral principle pr,
we represent the DCT ethical context by a tuple, Ex = (F),
where F = H U T is the set of forbidden states.

Next, the vehicle can follow PFD with duties comprised of
smooth operation §1 and careful operation d5. Smooth oper-
ation 47 is neglected in any road state at low speed with light
pedestrian traffic while careful operation - is neglected in
any road state at high speed or at normal speed with heavy
pedestrian traffic. When smooth operation §; and careful op-
eration Jo are neglected, they incur a low and high penalty
that changes with any pedestrian traffic. Neglecting duties
is permitted until a limit e. With the PFD moral princi-
ple pa, we represent the PFD ethical context by a tuple,
En = (A9, 7), where A = {61,02} is the set of duties,
¢ : A xS — RT is the penalty function that represents the
expected immediate penalty for neglecting smooth operation
01 € A and careful operation 65 € A in a state s € S with a
pedestrian traffic § € ©, and 7 = € is the tolerance.

Finally, the vehicle can follow VE with moral trajectories
comprised of cautious trajectories C and proactive trajectories
P. Cautious trajectories C exemplify driving on any road state
at normal speed with light pedestrian traffic or at low speed
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Figure 2: A city with different places connected by city streets, county roads, and highways

with heavy pedestrian traffic while proactive trajectories P
exemplify avoiding any highway road states and a set of pop-
ulated location states. With the VE moral principle pa, we
represent the VE ethical context by a tuple, oy = (M),
where M = C U P is the set of moral trajectories.

7 Experiments

We now demonstrate that the application of moral autonomy
to autonomous driving is effective in a set of simulations and
a user study. In the set of simulations, an amoral self-driving
vehicle and a moral self-driving vehicle that follows different
ethical frameworks both complete a set of navigation tasks.
Each navigation task can use a different start location \g €
A and goal location A, € A based on the city in Figure 2. The
speed limits of city streets, county roads, and highways are
25, 45, and 75 mph. The probability Pr(© = ) of observing
light or heavy pedestrian traffic § € O is 0.8 and 0.2. A
low, normal, and high speed is 10 mph under, at, and 10 mph
above the speed limit. Turning onto a road w € ( from a
location A € A requires 5 sec. Accelerating 10 mph requires
2 sec. Cruising requires a time equal to the distance of the
road w € €2 divided by the speed o € X. Staying at a location
A € A other than the goal location A, € A requires 120 sec.
Each ethical framework can use different settings. For
DCT, the forbidden states F can be just hazardous states H or
both hazardous states H and inconsiderate states Z. For PFD,
the tolerance 7 = € can be the limite = 3, ¢ = 6, ore = 9.
For VE, the moral trajectories can be just cautious trajectories
C or both cautious trajectories C and proactive trajectories P
that avoid any highway road states and a set of populated lo-
cation states that contains the School and College locations.
Table 2 highlights that the price of morality incurred by
the behavior of the agent is appropriate given each ethical
framework. Naturally, the amoral self-driving vehicle does
not incur a price of morality. The moral self-driving vehicle,
however, incurs a price of morality that increases with more
forbidden states for DCT, decreases with more tolerance for
PFD, and increases with more moral trajectories for VE.
Figure 5 indicates that the behavior of the agent is correct
given each ethical framework. The amoral self-driving vehi-
cle drives the shortest route at high speed. The moral self-
driving vehicle, however, differs for each ethical framework.
For DCT, the vehicle drives the shortest route at low or normal
speed based on pedestrian traffic. For PFD, the vehicle drives
the shortest route at low or normal speed based on pedestrian

[ T5 ]
[T ]
(] [T ]
o (5T B
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Figure 3: An agent completes a task and follows an ethical frame-
work in a grid world with a blue amoral path and a green moral path.

traffic aside from driving on the first road at normal or high
speed with some probability for light pedestrian traffic and
at normal speed for heavy pedestrian traffic due to the toler-
ance. For VE, the vehicle drives at low or normal speed based
on pedestrian traffic but drives a different route to avoid the
highway road states and the set of populated location states.

In the user study, planning and robotics experts had to com-
plete two tasks in a randomized order. In both tasks, devel-
opers were given a complete decision-making model for nav-
igating efficiently around the example city and had to enforce
the following moral requirements. The agent should drive at
high speed with light pedestrian traffic or at normal speed
with heavy pedestrian traffic at most once in expectation but
should never drive at high speed with heavy pedestrian traf-
fic. In one task, developers were asked to achieve the desired
behavior by modifying the existing decision-making model,
an MDP, by changing its reward function or transition func-
tion. In the other task, developers were asked to achieve the
same desired behavior but by defining the ethical context for
the prima facie duties ethical framework.

Figure 4 illustrates that our method led to better policies
than the other method. In our method, all policies satisfy the
requirements and optimize the navigation task with exactly
one violation. However, in the other method, the majority of
policies fail to optimize the navigation task or even satisfy
the requirements: aggressive policies in the upper right cor-
ner are faster but immoral while conservative policies in the
lower left corner are slower but moral. It is also encourag-
ing that our method (24 min) had a significantly lower mean
development time than the other method (45 min).



Ethics  Setting TASK | (%) TASK 2 (%) TASK 3 (%)
None — 0 0 0
by 1455 1533 20.12
DCT 40z 2113 2235 27.92
c—3 16.07 16.52 2430
PFD =6 11.96 11.80 2137
=9 7.91 715 18.87
VE C 2113 2235 27.92
CUP 40.89 94.43 30.28

Table 2: The price of morality as a percentage of the value of the
optimal amoral policy for all vehicle options on each navigation task
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Figure 4: The results of the user study. For each exercise and loca-
tion in the city, there is a point that denotes the resulting policy. For
that policy, the horizontal axis is its time savings relative to the pol-
icy from the opposing exercise while the vertical axis is its number
of violations. The moral and immoral regions are in green and red.

Our open source library, Morality.js, which is available on
the website https://www.moralityjs.com with the
customizable grid world environment dashboard seen in Fig-
ure 3, was used for all experiments [Svegliato ef al., 2020].
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