
Copyright © 2020 for this paper by its authors. Use permitted under Creative Commons
License Attribution 4.0 International (CC BY 4.0). IntelITSIS-2020

Heuristic Architecture Search Using Network Morphism
for Chest X-Ray Classification

Pavlo Radiuk1 [0000-0003-3609-112X] and Hakan Kutucu2 [0000-0001-7144-7246]

1 Khmelnytskyi National University, 11, Instytuts’ka str., Khmelnytskyi, 29016, Ukraine
2 Karabük University, Kılavuzlar/Karabük Merkez/Karabük, 78050, Turkey

1radiukpavlo@gmail.com, 2yukselcelik@karabuk.edu.tr

Abstract. Nowadays, the demand for medical image computing is exceptional-
ly high. This growth was mostly driven by the manual development of machine
learning models, in particular neural networks. However, due to the constant
evolution of domain requirements, manual model development has become in-
sufficient. The present study proposes a heuristic architecture search that can be
in an excellent service for the task of medical image classification. We imple-
mented a novel approach called network morphism to the search algorithm. The
proposed search method utilizes the enforced hill-climbing algorithm and func-
tional-saving modifications. As a result of computational experiments, the
search method found the optimal architecture in 28 GPU hours. The model
formed by the found architecture achieved performance of 73.2% in validation
accuracy and 84.5% in AUC on the validation dataset that is competitive to the
state-of-the-art hand-crafted networks. Moreover, the proposed search method
managed to find the architecture that contains four times fewer parameters. Be-
sides, the model requires almost ten times less physical memory, which may in-
dicate the practical usefulness of our method in medical image analysis.

Keywords: heuristic search, neural architecture search, network morphism,
medical image classification, Chest X-Ray

1 Introduction

Over the past decade, there has been a dramatic increase in the manual development
of deep convolutional neural network (DCNN) architectures that show significant
results in image processing. The most recognized hand-crafted DCCNs are VGG [1],
ResNet [2], and DenseNet [3]. These networks were customized to solve multi-
classification tasks, e.g., the Imagenet classification benchmark [4] with 1000 classes.

In contrast, practical tasks usually require models that can perform well on various
data, either small or large images, with two or many classes, based on numerous or
few training data. For instance, state-of-the-art architectures [1–3] show excellent
performance in image classification tasks with many classes. However, these net-
works contain a significant number of parameters that make them heavy in terms of
memory and training time and, therefore, redundant for many practical tasks. Moreo-

mailto:radiukpavlo@gmail.com

ver, different cases may involve various features in the implemented models. Medical
image processing is a representative example of a real challenge that requires both
flexibility and reliability in classification tasks.

Automated machine learning (AutoML) and its branch neural architecture search
(NAS) might be an excellent solution to the mentioned-above issues. To date, Au-
toML and NAS methods have been actively developed and employed in various
fields. For instance, NAS allows deploying neural networks into classification and
segmentation tasks with little domain expertise and small datasets. The most recog-
nized NAS approaches employ search strategies based on genetic algorithms [5],
reinforcement learning techniques [6], Bayesian optimization [7], gradient-based
methods [8]. According to recent reviews [9,10], the most promising in terms of effi-
ciency are architecture search methods based on genetic algorithms.

Despite significant advances in NAS, its impact on the practical tasks in healthcare
is yet not clear. There is still much uncertainty about the efficiency of NAS approach-
es in medical screening. To address this issue, the present study examines the applica-
tion of automated search methods to find optimal neural architecture medical image
classification.

2 Related Works

Genetic or so-called evolutionary algorithms have significantly advanced and expand-
ed the use of AutoML. In the field of NAS, genetic algorithms are designed to con-
struct new sets of neural architectures, called population [11]. The algorithm starts
with establishing underlying networks, either random or predefined. Each structure is
then trained and evaluated based on the requirements of a particular task, such as
image classification or segmentation. After that, the most suitable network may serve
as a parent for further search. At the following stage, the algorithm creates offspring
by implementing modifications (mutations) in the structure of the parent network. The
algorithm ends when new adjustments cannot be applied to an offspring as it reaches
the best performance in the task.

Evolutionary algorithms have become particularly popular due to the use of a vast
search space, which has considerably improved NAS techniques. Even though genetic
algorithms allow achieving decent results in NAS [9], neural models based on evolu-
tionary search require to train an enormous number of architectures [12] that lead to
significant time expenses [13]. Also, many real-world applications cannot afford high
computational cost due to technical limitations. Thus, the development of methods
that would be effective at computational and time constraints is a relevant task at
present.

Over the past years, researchers have proposed various methods to solve primary
drawbacks of any NAS methods: significant time costs and the considerable weight of
an output network. For example, Veniat et al. [14] applied the gradient descent meth-
od to the budgeted learning function, which includes the maximum allowable cost.
They could train a neural network capable of predicting well in less than 100 milli-
seconds on both CIFAR10 and CIFAR100 datasets. In [15], Li et al. presented a prun-

ing method to cut search space by including profile information about the output
speed on the target dataset. This approach was able to provide an automated architec-
ture search with an excellent compromise in speed and accuracy on the ImageNet
dataset. In [16], Tan et al. suggested a scaling technique that uniformly expanded all
dimensions using a compound coefficient. Also, the authors rescaled MobileNets and
ResNet up to obtain a family of efficient models. This approach showed decent results
in the relevant transfer training stands.

Other researchers moved in a slightly different direction. In [17], Wei et al. system-
ized preserved functions and introduced a set of parametric operations that could en-
hance the morphing of any continuous nonlinear activation neurons. Their approach
showed decent results on the CIFAR10 and CIFAR100 datasets. In [18], Elsken et al.
evolved network morphism by combining it with a simple hill-climbing search algo-
rithm. Furthermore, the authors conducted optimization runs by cosine annealing after
each operation. This method achieved a stunning 94% validation accuracy in only 12
hours on a single GPU on the CIFAR10 dataset. Gordon et al. [19] presented a novel
framework called MorphNet that could iteratively shrink and expand a neural net-
work. Their method was adaptable to specific resource constraints and could improve
network performance on different data sets.

Several studies have addressed the efficiency of NAS on different medical datasets.
Gessert et al. [20] proposed an efficient NAS by subsequently transferring low-
dimensional data to high-dimensional one for OCT image segmentation. The authors
achieved an 87.5% reduction in search time on one-dimensional data, compared to
two-dimensional data. In [21], the authors proposed a NAS framework based on par-
ticle swarm optimization technique that could temporally evolve and finally con-
verged to a feasible optimal architecture. The framework ensured robust architecture
design having been trained on a single GPU card and tested on the volumetric fMRI
data. Kwasigroch et al. [22] employed network morphism operations to the evolution
strategy in order to diversify the exploring network without reducing validation accu-
racy. Such an approach provided a significant reduction in computational cost on the
skin lesion dataset.

From the analysis of the literature, we assumed that network morphism could be an
excellent solution to reduce the running time of the search method and facilitate the
output model. Therefore, in this work, we apply network morphism to a genetic
search for Chest X-ray classification.

3 The Problem Statement

The main goal of the present research is to investigate the efficiency of the network
morphism approach in the medical classification task. To achieve the goal, the follow-
ing tasks are due to be resolved:

1. To consider network morphism and adjust it to a genetic algorithm.
2. To select an appropriate dataset of medical images for the multiclassification task.
3. To construct a CNN as a baseline architecture and investigate its impact on the

output architecture.

4. To implement a heuristic algorithm based on network morphism to search for an
optimal neural architecture.

5. To evaluate an optimal architecture found automatically with objective metrics and
compare it with state-of-the-art manual networks on the medical image dataset.

In this paper, we address the issue of searching for the optimal neural network archi-
tecture for the target data set { }, ,tran test valD D D D= , where tranD is a training dataset,

testD stands for a test dataset, and valD is a validation dataset. Let us consider the
target problem as a two-level multipurpose optimization problem. The function of
multiobjective bilevel optimization can be presented in a general form as follows:

 () (){ }*min , ,opt valA
a L A w C A

∈
=

A
 (1)

subject to

 (){ }* arg min ,tran
w

w L w a
∈

∈
W

,

where opta represents the final architecture among optimized ones A from the search

space of all possible architectures of A , ()C A is the function of the complexity of
the optimized architecture and other related values, w stands for the weights of the
neural network from the weight space of W , tranL and valL are loss functions on

tranD and valD , respectively.
Below, we describe the proposed NAS method that was designed and assessed step

by step by the conceptual framework from [23].

4 Heuristic Architecture Search Algorithm

In this study, we investigate a heuristic architecture search inspired by network
morphism operators proposed in [18]. The morphism allows modifying a neural net-
work without losing the obtained information about network structure and its hy-
perparameters. Created by the use of morphism, neural architectures can achieve per-
formance measures as their predecessors but concurrently show encouraging compu-
tational capabilities. Fig. 1 illustrates the idea behind network morphism.

Fig. 1. The procedure of network morphism [17]. According to the algorithm, the child network
will inherit all knowledge (A–F) from the parent network while maintaining the network func-

tion. A combination of morphing modifications can provide diverse network morphism.

In contrast, our paper applied a morphism algorithm to the classification task with
large medical images. In this regard, we implemented various functional-saving oper-
ations into the algorithm to achieve the best training performance.

4.1 Functional-Saving Modifications

Network morphism allows avoiding training of each new network from scratch.
Thereby, researchers can test many models in a short time. In this study, we applied
several modifications to ensure model efficiency. Concatenation operations and add
nodes serve as in [18]. Convolutional layers were expanded by the morphism func-
tions, according to [19]. However, in contrast with previous studies, we implemented
a combination of an additional operational layer with an extra node to provide skip
connection in training. Also, we applied a new modification by inputting noise into
the weights of the newly generated network after all previously mentioned modifica-
tions. Besides the introduced operations, symmetry disruption in the neural network
parameter sequence can also lead to significant performance improvements in the
NAS algorithm.

4.2 The Enforced Hill-Climbing Search

In this section, we briefly describe a heuristic search that executes the task (1). As a
search strategy, we utilized a genetic algorithm called the enforced hill-climbing
search [23]. Fig. 2 depicts the scheme of the search.

Fig. 2. The scheme of a genetic algorithm based on the enforced hill-climbing and enhanced

with network morphism.

The algorithm begins with a data D input. Then, a pre-trained original neural network
serves as a baseline architecture for climbing a so-called hill. In response to the appli-
cation of functional-saving modifications, the original network produces a certain
number of descendants. These modifications ensure that each descendant performs the
same as its parent network. Moreover, due to the genetic algorithm, the descendants
suit better for training than their parents. Each descendant is trained on a small num-
ber of epochs and then evaluated by a precision measure – the best descendent moves

to the next step, where they form new descendants. The search procedure ends after a
certain number of epochs. The algorithm presents the so-called best architecture opta ,
which then serves for final long-term training. Fig. 3 demonstrates a heuristic archi-
tecture search based on enforced hill-climbing algorithm inspired by [18]:

function HAS(0model , stepsn , neighn , morphn , neighepoch , finalepoch , lrate)

0model – initial model, stepsn – number of hill-climbing steps;

neighn – number of neighbors, morphn – number of func.-saving

modifications, neighepoch – number of epochs to train each neighbor,

finalepoch – number of epochs for final training,

ratel – value of learning rate during model optimization.

bestmodel := 0model
start enforced hill climbing
for stepsi:= 1,n do

get neighn neighbors of 0model by applying morphn func.-saving

modifications to bestmodel

for neighj:= 1,n -1 do

jmodel := ()best morphmodApplyFunc , nS v ela

train the model for several epochs on the training dataset

jmodel := ()j neigh ratemodel , epoch , lTrain

end for
in case the last neighbor is the best

neighnmodel := ()best neigh ratemodel , epoch ,T lrain

receive the best model on the validation dataset

bestmodel := (){ }
neigh

val j
j=1,…,n
argmax peformance model

end for
train the final model both on training and validation datasets

bestmodel := ()best neigh ratemodel , epoch ,T lrain

return bestmodel
end function

Fig. 3. The pseudo-code of heuristic architecture search with network morphism

The algorithm does not have to choose a new model at each iteration, and can also
hold the one from the previous step if others do not improve. Consequently, the cur-
rent best model at iteration may also be considered a child network. It is assumed that

neighepoch should be small, as the algorithm is forced to train numerous networks.
Thus, to check the possibility of overfitting, we conducted two experiments with
small and large numbers of epochs.

The algorithm presented above is a straightforward implementation of the hill-
climbing method. It can be interpreted as a simple genetic algorithm with one organ-

ism, population size of neighn , and without crossover. While climbing, the functional-
saving modifications of network morphism serve as mutations. Besides, the selection
part considers only members of the population with the best performance as a parent
for the next generation.

5 Implementation Details

5.1 Benchmark Dataset and Data Augmentation

To evaluate the proposed heuristic search, we chose the CheXpert benchmark dataset
[25]. The whole dataset comprises 224,316 chest radiographs with a size of 320×320
pixels excluded from 65,240 patients. The images are labeled for 14 diseases as nega-
tive, positive, or uncertain. In the original dataset, positive and negative cases were
marked as ones, dubious images – as zeros. Fig. 4 presents an example of the CheX-
pert dataset.

Fig. 4. CheXpert dataset sample [25].

For the experiment, we formed a subgroup of five diseases, namely atelectasis, cardi-
omegaly, consolidation, edema, and pleural effusion. Therefore, the number of classes
was set to five. We split the subset into 70% training, 20% testing, and 10% valida-
tion images. Furthermore, several data augmentation techniques, such as random
flips, translations, and rotations, were applied to the pictures of the training dataset.

5.2 Baseline Architecture

Here, we describe the baseline architecture, which serves as an original network for
further optimization. According to the recent comprehensive overviews [26,27],
CNNs are the type of neural architectures that suite the best for the classification of
medical images. Therefore, this work is devoted to applying heuristic architecture

search only to CNNs. Hence, guided by [28,29], a small baseline convolutional archi-
tecture was represented as follows

 { }31

1
Input 16 2 ConvL MPL 128 ConvL SMLi

i i i

−

=
→ ⋅ × → → × → , (2)

where ConvL stands for convolutional layer, from 16 to 128 filters of size 3×3 and
stride 1, ReLU is an activation function, MPL stands for MaxPool layer of size 2×2
and stride 2, and SML represents SoftMax function for the probability distribution of
the output result.

The large-scale convolutional architecture was set as

 { }31

1
Input 16 2 ConvL ReLU MPL

128 ConvL BN ReLU SML,

i
i i i i

−

=
→ ⋅ × → →

→ × → → →
 (3)

where BN represents batch normalization. All other parts of architecture (2) denote
the corresponding elements in the network (1).

5.3 Parameters Setup

In this section, we describe the setup of the training parameters. In the hill-climbing
algorithm, we set the number of search epochs of 10, the number of organisms in the
population of 10, the number of epochs for training each element of 5, the number of
mutations of 5. We also limited the possible size of the model. If the sample model
became too large, the agent would reject the investigated architecture and choose
another one.

For the training procedure, we employed Adam optimization method with the
learning rate of 310− , the weight decay of 30.5 10−⋅ , the momentum of 0.9, and a
batch size of 256. According to experimental results in [30], this setup of training
parameters can assure excellent model approximation in training. The original net-
work was pre-trained by ten epochs on one fold of the training dataset, while the final
architecture was optimized by one hundred runs on each fold from scratch. Overall,
the training was performed five times, and the milestone results were averaged.

All experiments were performed in Python v3.6, using the TensorFlow v.1.13
backend [31]. The hardware setup consists of 8 core Ryzen 2700 and a single
NVIDIA GeForce GTX1080 GPU with 8 GB memory. The working code is open-
sourced and available by [32].

5.4 Evaluation Criteria

In this study, we evaluate the output architecture and compare it with other networks
by several statistical measures, which are recall (REC), precision (PREC), accuracy
(ACC), and area under the curve (AUC). Let us consider the number of real positive
(P) and real negative (N) cases in the data. As it is known from the theory of statistics
[33], the classification results are distributed as true positive (TP), true negative (TN),

false positive (FP) and false negative (FN) cases. Thus, the evaluation metrics used in
this study are as follows

TPREC

TP FN
=

+
, (4)

TPPREC

TP FN
=

+
, (5)

TP TNACC

TP TN FP FN
+

=
+ + +

. (6)

For binary classification, AUC is set as

 2 1 2 1

2 2 1 1 2 2 1 1

FP FP TP TP1
2 FP TN FP TN TP FN TP FN

A
 = − × − − − − −

.

In the case of five classes, AUS is as follows

 () ()
5

5
1

AUC i i
i

c p cµ
=

=∑ , (7)

where ()icµ stands for AUC under the ROC curve of class ic , ()ip c is the prior
probability of class ic .

Also, the different architectures were evaluated and compared by network size,
number of parameters, number of training epochs, and training time.

6 Experiments and Results

In this section, we describe how the initial type of network can influence the results of
the heuristic architecture search. Also, we compare the result of our approach with
two different numbers of epochs to the set of hand-crafted architectures.

6.1 Impact of a Baseline Architecture on the Search Process

The conducted experiments revealed that selecting a small original network lead to a
lengthy search process. Moreover, small network (2) required numerous mutations,
and thus, the time to evolve into an optimal architecture. In contrast, a large-scale
architecture (3) could limit the search space with large structures, neglecting smaller
ones that might also be suitable for search.

We conducted two representative experiments to investigate the above-mentioned
hypothesis. In the first run, we checked the small original network (2), in the second –
the large one (3). Fig. 5 shows a comparison of the results of two possible original
architectures.

Fig. 5. The efficiency of a baseline architecture depending on its size.

According to Fig. 5, a large-scale network provides higher model accuracy.

6.2 The Final Network Performance

In this section, we examine the final architecture optimized by our NAS algorithm.
We employed three hand-crafted convolutional networks commonly used in medical
image tasks. These networks are VGG19 [1]. Inception v4 [2] and DenseNet [3]. The
final network generated by the search algorithm can be observed via [32].

We trained the networks on the selected dataset and compared them with the final
architecture of our algorithm. Besides, we conducted two separate experiments with
different numbers of epochs to investigate the probability of overfitting. All networks
were evaluated by metrics (4)–(7). The hyperparameters remained the same. Table 1
presents averaged evaluation results of k-fold validation (5k =).

Table 1. Comparison of recognized hand-crafted neural networks with NAS architecture.

Network REC PREC ACC AUC
VVG19 [1] 0.723 0.631 0.627 0.747

Inception v4 [2] 0.739 0.646 0.715 0.815
DensNet [3] 0.812 0.742 0.727 0.838

The final NAS architecture,
1st experiment

0.764 0.701 0.731 0.842

The final NAS architecture,
2nd experiment

0.758 0.699 0.732 0.845

According to Table 1, the architecture found by our heuristic search demonstrates
competitive results to state-of-the-art models in the classification tasks. The NAS
architecture comprises various branches such as concatenates, skip nodes, adds. In
contrast, hand-crafted architectures usually lack additional layers as it requires nu-
merous experiments. While most state-of-the-art models have a regular structure, that
is, they consist of multiple blocks that are repeated in the architecture, the NAS archi-
tecture has a structure without a noticeable repeating pattern. This approach allows for
creating flexible architectures for different datasets. Table 2 reveals more details of
the comparison.

Table 2. Comparison of networks by computational costs and weight of trained models.

Network
Training

time (GPU
hours)

Number of
training
epochs

Number of
parameters

(mil.)

Network
size (MB)

VVG19 [1] 7.4 33 134.2 417
Inception v4 [2] 9.6 27 24.5 314

DensNet [3] 13.7 41 25.8 285
The final NAS architecture,

1st experiment
9.1 62 6.2 29

The final NAS architecture,
2nd experiment

7.8 21 6.1 29

The proposed NAS algorithm allowed finding the optimal architecture in 28 GPU
hours, while the manual search can require weeks of tedious attempts and experi-
ments. Furthermore, the final model fewer number of parameters with sufficiently
high accuracy compared to the state-of-the-art. Thus, the model requires less physical
memory and could ensure efficient use in practice.

7 Discussion and Conclusion

In this study, we proposed a heuristic algorithm of neural architecture search in medi-
cal image analysis. To investigate the issue of medical image classification, we em-
ployed the CheXpert benchmark dataset and considered a multiclassification task. The
core of the search method was the enforced hill-climbing algorithm enhanced with
network morphism.

Firstly, we composed and examined two hand-crafted CNNs as baseline architec-
ture. As a result of numerical experiments, the large-scale network turned out to be a
better solution. Secondly, we implemented a heuristic search with network morphism
modifications in order to find optimal neural architecture. To check if the final net-
work was subjected to overfitting, we conducted two separate experiments with num-
bers of epochs 21 and 69. As a result, even taking into account the almost three-fold
difference between the number of epochs, both statistical indicators and computation-
al costs and weight were approximately equal. This outcome could occur due to either

the use of one organism within the algorithm or lack of crossover. The authors aim to
investigate this knowledge gap in future work.

We evaluated the final architecture found automatically with an objective statistical
metrics and compared it with recognized hand-crafted networks on CheXpert dataset.
Our search algorithm managed to find the optimal architecture in total in 28 GPU
hours. The optimized architecture in the second experiment achieved the performance
of 73.2% in accuracy and 84.5% in AUC on the validation dataset, yielding the com-
petitive results to the state-of-the-art hand-crafted networks. Moreover, the optimized
model contained four times fewer parameters and required almost ten times less phys-
ical memory compared to other networks. In summary, these results could indicate the
practical usefulness of the proposed heuristic search method.

Further work needs to be done to determine the influence of sensitivity and speci-
ficity on the proposed heuristic search. A reasonable approach to tackle this issue
could be the inclusion of diverse medical datasets of both X-Ray images and comput-
er tomography scans. Further research should also focus on the optimization of hy-
perparameters within the heuristic architecture search.

References

1. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image
recognition. Paper presented at the 3rd International Conference on Learning Representa-
tions (ICLR-2015), San Diego, CA, USA, 7–9 May 2015

2. Szegedy, C., Ioffe, S., Vanhoucke, V., Alemi, A.A.: Inception-v4, Inception-ResNet and
the impact of residual connections on learning. In: Proceedings of the 31st AAAI Confer-
ence on Artificial Intelligence (AAAI-2017), San Francisco, California, USA, 4–10 Febru-
ary 2017. pp. 4278–4284. AAAI Press (2017). doi:10.5555/3298023.3298188

3. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolu-
tional networks. In: Proceedings of the 30th IEEE Conference on Computer Vision and
Pattern Recognition (CVPR-2017), Honolulu, HI, USA, 21–26 July 2017. pp. 2261–2269.
IEEE Inc. (2017). doi:10.1109/CVPR.2017.243

4. Deng, J., Dong, W., Socher, R., Li, L., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierar-
chical image database. In: Proceedings of 2009 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR-2009), Miami, FL, USA, 20–25 June 2009. pp. 248–255.
IEEE Inc. (2009). doi:10.1109/CVPR.2009.5206848

5. Angeline, P.J., Saunders, G.M., Pollack, J.B.: An evolutionary algorithm that constructs
recurrent neural networks. IEEE Trans. Neural Networks. 5(1), 54–65 (1994).
doi:10.1109/72.265960

6. Bello, I., Zoph, B., Vasudevan, V., Le, Q. V: Neural optimizer search with reinforcement
learning. In: Precup, D. and Teh, Y.W. (eds.) Proceedings of the 34th International Con-
ference on Machine Learning (ICML-2017), Sydney, Australia, 6–11 August 2017. vol.
70, pp. 459–468. JMLR.org (2017). doi:10.5555/3305381.3305429

7. Kandasamy, K., Neiswanger, W., Schneider, J., Póczos, B., Xing, E.P.: Neural architecture
search with bayesian optimisation and optimal transport. In: Bengio, S., Wallach, H.M.
(eds.) Proceedings of the 32nd International Conference on Neural Information Processing
Systems (NIPS-2018), Montreal, QC, Canada, 3–8 December 2018. pp. 2020–2029. Cur-
ran Associates Inc. (2018). doi:10.5555/3326943.3327130

https://doi.org/10.1109/72.265960

8. Liu, H., Simonyan, K., Yang, Y.: DARTS: Differentiable architecture search. Paper pre-
sented at the 7th International Conference on Learning Representations (ICLR-2019), New
Orleans, LA, USA, 6–9 May 2019

9. Kerschke, P., Hoos, H.H., Neumann, F., Trautmann, H.: Automated algorithm selection:
Survey and perspectives. Evol. Comput. 27(1), 3–45 (2019). doi:10.1162/evco_a_00242

10. Elsken, T., Metzen, J.H., Hutter, F.: Neural architecture search: A survey. J. Mach. Learn.
Res. 20(55), 1–21 (2019)

11. Radiuk, P.M.: Neuroevolution of convolutional neural networks for the classification of
lung cancer images. Her. Khmelnytskyi Natl. Univ. 267(6), 188–192 (2018).
doi:10.31891/2307-5732-2018-267-6(2)-188-192

12. Floreano, D., Dürr, P., Mattiussi, C.: Neuroevolution: From architectures to learning. Evol.
Intell. 1, 47–62 (2008). doi:10.1007/s12065-007-0002-4

13. Chugh, T., Sindhya, K., Hakanen, J., Miettinen, K.: A survey on handling computationally
expensive multiobjective optimization problems with evolutionary algorithms. Soft Com-
put. 23(9), 3137–3166 (2019). doi:10.1007/s00500-017-2965-0

14. Veniat, T., Denoyer, L.: Learning time/memory-efficient deep architectures with budgeted
super networks. In: Proceedings of 2018 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR-2018), Salt Lake City, UT, USA, 18–23 June 2018. pp. 3492–
3500. IEEE Inc. (2018). doi:10.1109/CVPR.2018.00368

15. Li, X., Zhou, Y., Pan, Z., Feng, J.: Partial order pruning: for best speed/accuracy trade-off
in neural architecture search. In: Proceedings of 2019 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR-2019), Long Beach, CA, USA, USA, 15–20 June
2019. pp. 9137–9145. IEEE Inc. (2019). doi:10.1109/CVPR.2019.00936

16. Tan, M., Le, Q.: EfficientNet: Rethinking model scaling for convolutional neural net-
works. In: Chaudhuri, K. and Salakhutdinov, R. (eds.) Proceedings of the 36th Internation-
al Conference on Machine Learning (ICML-2019), Long Beach, California, USA, 10–15
Jun 2019. vol. 97, pp. 6105–6114. PMLR Inc. (2019)

17. Wei, T., Wang, C., Rui, Y., Chen, C.W.: Network morphism. In: Balcan, M.F., and Wein-
berger, K.Q. (eds.) Proceedings of the 33rd International Conference on Machine Learning
(ICIML-2016), New York City, NY, USA, 19–24 Jun 2016. vol. 48, pp. 564–572.
JMLR.org (2016). doi:10.5555/3045390.3045451

18. Elsken, T., Metzen, J.-H., Hutter, F.: Simple and efficient architecture search for convolu-
tional neural networks. Paper presented at the 6th International Conference on Learning
Representations (ICLR-2018), Vancouver, BC, Canada, 30 April – 3 May 2018

19. Gordon, A., Eban, E., Nachum, O., Chen, B., Wu, H., Yang, T., Choi, E.: MorphNet: Fast
& simple resource-constrained structure learning of deep networks. In: Proceedings of
2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR-2018),
Salt Lake City, UT, USA, 18–23 June 2018. pp. 1586–1595. IEEE Inc. (2018).
doi:10.1109/CVPR.2018.00171

20. Gessert, N.T., Schlaefer, A.: Efficient neural architecture search on low-dimensional data
for OCT image segmentation. In: Proceedings of Conference on Medical Imaging with
Deep Learning (MIDL-2019), London, The UK, 8–10 July 2019. pp. 1–5. Medizintech-
nische Systeme E-1 Institute (2019). doi:10.15480/882.2731

21. Qiang, N., Ge, B., Dong, Q., Ge, F., Liu, T.: Neural architecture search for optimizing
deep belief network models of fMRI data. In: Li, Q., Leahy, R., Dong, B., and Li, X. (eds.)
Proceedings of the 1st International Workshop on Multiscale Multimodal Medical Imaging
(MMMI-2019), Shenzhen, China, 13 October 2019. vol. 11977, pp. 26–34. Springer Inter-
national Publishing (2020). doi:10.1007/978-3-030-37969-8_4

22. Kwasigroch, A., Grochowski, M., Mikołajczyk, A.: Neural architecture search for skin le-
sion classification. IEEE Access. 8, 9061–9071 (2020).
doi:10.1109/ACCESS.2020.2964424

23. Radiuk, P.M., Hrypynska, N.V.: A framework for exploring and modeling neural architec-
ture search methods. Paper presented at the 4th International Conference on Computational
Linguistics and Intelligent Systems (COLINS-2020), Lviv, Ukraine, 23–24 April 2020.
CEUR-Workshop Proceedings, vol. 2604, pp. 1060–1074. CEUR-WS.org (2020)

24. Edelkamp, S., Schrödl, S.: Memory-restricted search. In: Edelkamp, S. and Schrödl,
S.B.T.-H.S. (eds.) Heuristic Search: Theory and Applications. pp. 227–281. Morgan
Kaufmann, San Francisco (2012). doi:10.1016/B978-0-12-372512-7.00006-7

25. Irvin, J., et al.: CheXpert: A large chest radiograph dataset with uncertainty labels and ex-
pert comparison. In: Proceedings of the 33d AAAI Conference on Artificial Intelligence
2019 (AAAI-2019), Honolulu, Hawaii, USA, 27 January – 1 February 2019. vol. 33(1),
pp. 590–597. Association for the Advancement of Artificial Intelligence (2019).
doi.10.1609/aaai.v33i01.3301590

26. Shen, J., Zhang, C.J.P., Jiang, B., Chen, J., Song, J., Liu, Z., He, Z., Wong, S.Y., Fang, P.-
H., Ming, W.-K.: Artificial intelligence versus clinicians in disease diagnosis: A systemat-
ic review. JMIR Med. Informatics. 7(3), e10010 (2019). doi:10.2196/10010

27. Kim, M., Yan, C., Yang, D., Wang, Q., Ma, J., Wu, G.: Deep learning in biomedical image
analysis. In: Feng, D.D. (eds.) Biomedical Information Technology. pp. 239–263. San Di-
ego, Elsevier (2020). doi:10.1016/B978-0-12-816034-3.00008-0

28. Romanuke, V.V.: An attempt of finding an appropriate number of convolutional layers in
CNNs based on benchmarks of heterogeneous datasets. Electr. Control Commun. Eng.
14(1), 51–57 (2018). doi:10.2478/ecce-2018-0006

29. Romanuke, V.V.: Smooth non-increasing square spatial extents of filters in convolutional
layers of CNNs for image classification problems. Appl. Comput. Syst. 23(1), 52–62
(2018). doi:10.2478/acss-2018-0007

30. Radiuk, P.M.: Impact of training set batch size on the performance of convolutional neural
networks for diverse datasets. Inf. Technol. Manag. Sci. 20(1), (2017).
doi:10.1515/itms-2017-0003

31. Abadi, M., et al.: TensorFlow: A system for large-scale machine learning. In: Keeton, K.
and Roscoe, T. (eds.) Proceedings of 12th USENIX Symposium on Operating Systems
Design and Implementation (OSDI-2016), Savannah, GA, USA, 2–4 November 2016.
pp. 265–283. USENIX Association (2016)

32. Heuristic NAS. GitHub, Inc. https://github.com/soolstafir/Heuristic-NAS (2020). Accessed
27 Apr 2020

33. Fawcett, T.: An introduction to ROC analysis. Pattern Recognit. Lett. 27(8), 861–874
(2006). doi:10.1016/j.patrec.2005.10.010

https://doi.org/10.1016/B978-0-12-816034-3.00008-0

	1 Introduction
	2 Related Works
	3 The Problem Statement
	4 Heuristic Architecture Search Algorithm
	4.1 Functional-Saving Modifications
	4.2 The Enforced Hill-Climbing Search

	5 Implementation Details
	5.1 Benchmark Dataset and Data Augmentation
	5.2 Baseline Architecture
	5.3 Parameters Setup
	5.4 Evaluation Criteria

	6 Experiments and Results
	6.1 Impact of a Baseline Architecture on the Search Process
	6.2 The Final Network Performance

	7 Discussion and Conclusion
	References

