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Abstract. Nowadays, the demand for medical image computing is exceptional-
ly high. This growth was mostly driven by the manual development of machine 
learning models, in particular neural networks. However, due to the constant 
evolution of domain requirements, manual model development has become in-
sufficient. The present study proposes a heuristic architecture search that can be 
in an excellent service for the task of medical image classification. We imple-
mented a novel approach called network morphism to the search algorithm. The 
proposed search method utilizes the enforced hill-climbing algorithm and func-
tional-saving modifications. As a result of computational experiments, the 
search method found the optimal architecture in 28 GPU hours. The model 
formed by the found architecture achieved performance of 73.2% in validation 
accuracy and 84.5% in AUC on the validation dataset that is competitive to the 
state-of-the-art hand-crafted networks. Moreover, the proposed search method 
managed to find the architecture that contains four times fewer parameters. Be-
sides, the model requires almost ten times less physical memory, which may in-
dicate the practical usefulness of our method in medical image analysis. 

Keywords: heuristic search, neural architecture search, network morphism, 
medical image classification, Chest X-Ray 

1 Introduction 

Over the past decade, there has been a dramatic increase in the manual development 
of deep convolutional neural network (DCNN) architectures that show significant 
results in image processing. The most recognized hand-crafted DCCNs are VGG [1], 
ResNet [2], and DenseNet [3]. These networks were customized to solve multi-
classification tasks, e.g., the Imagenet classification benchmark [4] with 1000 classes. 

In contrast, practical tasks usually require models that can perform well on various 
data, either small or large images, with two or many classes, based on numerous or 
few training data. For instance, state-of-the-art architectures [1–3] show excellent 
performance in image classification tasks with many classes. However, these net-
works contain a significant number of parameters that make them heavy in terms of 
memory and training time and, therefore, redundant for many practical tasks. Moreo-
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ver, different cases may involve various features in the implemented models. Medical 
image processing is a representative example of a real challenge that requires both 
flexibility and reliability in classification tasks. 

Automated machine learning (AutoML) and its branch neural architecture search 
(NAS) might be an excellent solution to the mentioned-above issues. To date, Au-
toML and NAS methods have been actively developed and employed in various 
fields. For instance, NAS allows deploying neural networks into classification and 
segmentation tasks with little domain expertise and small datasets. The most recog-
nized NAS approaches employ search strategies based on genetic algorithms [5], 
reinforcement learning techniques [6], Bayesian optimization [7], gradient-based 
methods [8]. According to recent reviews [9,10], the most promising in terms of effi-
ciency are architecture search methods based on genetic algorithms. 

Despite significant advances in NAS, its impact on the practical tasks in healthcare 
is yet not clear. There is still much uncertainty about the efficiency of NAS approach-
es in medical screening. To address this issue, the present study examines the applica-
tion of automated search methods to find optimal neural architecture medical image 
classification. 

2 Related Works 

Genetic or so-called evolutionary algorithms have significantly advanced and expand-
ed the use of AutoML. In the field of NAS, genetic algorithms are designed to con-
struct new sets of neural architectures, called population [11]. The algorithm starts 
with establishing underlying networks, either random or predefined. Each structure is 
then trained and evaluated based on the requirements of a particular task, such as 
image classification or segmentation. After that, the most suitable network may serve 
as a parent for further search. At the following stage, the algorithm creates offspring 
by implementing modifications (mutations) in the structure of the parent network. The 
algorithm ends when new adjustments cannot be applied to an offspring as it reaches 
the best performance in the task. 

Evolutionary algorithms have become particularly popular due to the use of a vast 
search space, which has considerably improved NAS techniques. Even though genetic 
algorithms allow achieving decent results in NAS [9], neural models based on evolu-
tionary search require to train an enormous number of architectures [12] that lead to 
significant time expenses [13]. Also, many real-world applications cannot afford high 
computational cost due to technical limitations. Thus, the development of methods 
that would be effective at computational and time constraints is a relevant task at 
present. 

Over the past years, researchers have proposed various methods to solve primary 
drawbacks of any NAS methods: significant time costs and the considerable weight of 
an output network. For example, Veniat et al. [14] applied the gradient descent meth-
od to the budgeted learning function, which includes the maximum allowable cost. 
They could train a neural network capable of predicting well in less than 100 milli-
seconds on both CIFAR10 and CIFAR100 datasets. In [15], Li et al. presented a prun-



ing method to cut search space by including profile information about the output 
speed on the target dataset. This approach was able to provide an automated architec-
ture search with an excellent compromise in speed and accuracy on the ImageNet 
dataset. In [16], Tan et al. suggested a scaling technique that uniformly expanded all 
dimensions using a compound coefficient. Also, the authors rescaled MobileNets and 
ResNet up to obtain a family of efficient models. This approach showed decent results 
in the relevant transfer training stands. 

Other researchers moved in a slightly different direction. In [17], Wei et al. system-
ized preserved functions and introduced a set of parametric operations that could en-
hance the morphing of any continuous nonlinear activation neurons. Their approach 
showed decent results on the CIFAR10 and CIFAR100 datasets. In [18], Elsken et al. 
evolved network morphism by combining it with a simple hill-climbing search algo-
rithm. Furthermore, the authors conducted optimization runs by cosine annealing after 
each operation. This method achieved a stunning 94% validation accuracy in only 12 
hours on a single GPU on the CIFAR10 dataset. Gordon et al. [19] presented a novel 
framework called MorphNet that could iteratively shrink and expand a neural net-
work. Their method was adaptable to specific resource constraints and could improve 
network performance on different data sets. 

Several studies have addressed the efficiency of NAS on different medical datasets. 
Gessert et al. [20] proposed an efficient NAS by subsequently transferring low-
dimensional data to high-dimensional one for OCT image segmentation. The authors 
achieved an 87.5% reduction in search time on one-dimensional data, compared to 
two-dimensional data. In [21], the authors proposed a NAS framework based on par-
ticle swarm optimization technique that could temporally evolve and finally con-
verged to a feasible optimal architecture. The framework ensured robust architecture 
design having been trained on a single GPU card and tested on the volumetric fMRI 
data. Kwasigroch et al. [22] employed network morphism operations to the evolution 
strategy in order to diversify the exploring network without reducing validation accu-
racy.  Such an approach provided a significant reduction in computational cost on the 
skin lesion dataset.  

From the analysis of the literature, we assumed that network morphism could be an 
excellent solution to reduce the running time of the search method and facilitate the 
output model. Therefore, in this work, we apply network morphism to a genetic 
search for Chest X-ray classification. 

3 The Problem Statement 

The main goal of the present research is to investigate the efficiency of the network 
morphism approach in the medical classification task. To achieve the goal, the follow-
ing tasks are due to be resolved: 

1. To consider network morphism and adjust it to a genetic algorithm. 
2. To select an appropriate dataset of medical images for the multiclassification task. 
3. To construct a CNN as a baseline architecture and investigate its impact on the 

output architecture. 



4. To implement a heuristic algorithm based on network morphism to search for an 
optimal neural architecture. 

5. To evaluate an optimal architecture found automatically with objective metrics and 
compare it with state-of-the-art manual networks on the medical image dataset. 

In this paper, we address the issue of searching for the optimal neural network archi-
tecture for the target data set { }, ,tran test valD D D D= , where tranD  is a training dataset, 

testD  stands for a test dataset, and valD  is a validation dataset. Let us consider the 
target problem as a two-level multipurpose optimization problem. The function of 
multiobjective bilevel optimization can be presented in a general form as follows: 
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where opta  represents the final architecture among optimized ones A from the search 

space of all possible architectures of A , ( )C A  is the function of the complexity of 
the optimized architecture and other related values, w  stands for the weights of the 
neural network from the weight space of W , tranL  and valL  are loss functions on 

tranD  and valD , respectively. 
Below, we describe the proposed NAS method that was designed and assessed step 

by step by the conceptual framework from [23]. 

4 Heuristic Architecture Search Algorithm 

In this study, we investigate a heuristic architecture search inspired by network 
morphism operators proposed in [18]. The morphism allows modifying a neural net-
work without losing the obtained information about network structure and its hy-
perparameters. Created by the use of morphism, neural architectures can achieve per-
formance measures as their predecessors but concurrently show encouraging compu-
tational capabilities. Fig. 1 illustrates the idea behind network morphism. 



 
Fig. 1. The procedure of network morphism [17]. According to the algorithm, the child network 
will inherit all knowledge (A–F) from the parent network while maintaining the network func-

tion. A combination of morphing modifications can provide diverse network morphism. 

In contrast, our paper applied a morphism algorithm to the classification task with 
large medical images. In this regard, we implemented various functional-saving oper-
ations into the algorithm to achieve the best training performance. 

4.1 Functional-Saving Modifications 

Network morphism allows avoiding training of each new network from scratch. 
Thereby, researchers can test many models in a short time. In this study, we applied 
several modifications to ensure model efficiency. Concatenation operations and add 
nodes serve as in [18]. Convolutional layers were expanded by the morphism func-
tions, according to [19]. However, in contrast with previous studies, we implemented 
a combination of an additional operational layer with an extra node to provide skip 
connection in training. Also, we applied a new modification by inputting noise into 
the weights of the newly generated network after all previously mentioned modifica-
tions. Besides the introduced operations, symmetry disruption in the neural network 
parameter sequence can also lead to significant performance improvements in the 
NAS algorithm. 



4.2 The Enforced Hill-Climbing Search 

In this section, we briefly describe a heuristic search that executes the task (1). As a 
search strategy, we utilized a genetic algorithm called the enforced hill-climbing 
search [23]. Fig. 2 depicts the scheme of the search. 

 
Fig. 2. The scheme of a genetic algorithm based on the enforced hill-climbing and enhanced 

with network morphism. 

The algorithm begins with a data D input. Then, a pre-trained original neural network 
serves as a baseline architecture for climbing a so-called hill. In response to the appli-
cation of functional-saving modifications, the original network produces a certain 
number of descendants. These modifications ensure that each descendant performs the 
same as its parent network. Moreover, due to the genetic algorithm, the descendants 
suit better for training than their parents. Each descendant is trained on a small num-
ber of epochs and then evaluated by a precision measure – the best descendent moves 



to the next step, where they form new descendants. The search procedure ends after a 
certain number of epochs. The algorithm presents the so-called best architecture opta , 
which then serves for final long-term training. Fig. 3 demonstrates a heuristic archi-
tecture search based on enforced hill-climbing algorithm inspired by [18]: 

 
function HAS( 0model , stepsn , neighn , morphn , neighepoch , finalepoch , lrate ) 

# 0model  – initial model, stepsn  – number of hill-climbing steps; 

# neighn  – number of neighbors, morphn – number of func.-saving 

# modifications, neighepoch  – number of epochs to train each neighbor, 

# finalepoch  – number of epochs for final training, 

# ratel  – value of learning rate during model optimization. 
 

bestmodel  := 0model  
# start enforced hill climbing 
for stepsi:= 1,n  do 

# get neighn  neighbors of 0model  by applying morphn  func.-saving 

# modifications to bestmodel  

for neighj:= 1,n -1  do 

jmodel := ( )best morphmodApplyFunc , nS v ela  

# train the model for several epochs on the training dataset 

jmodel := ( )j neigh ratemodel , epoch , lTrain  

end for 
# in case the last neighbor is the best 

neighnmodel := ( )best neigh ratemodel , epoch ,T lrain   

# receive the best model on the validation dataset 

bestmodel := ( ){ }
neigh

val j
j=1,…,n
argmax peformance model  

end for 
# train the final model both on training and validation datasets 

bestmodel := ( )best neigh ratemodel , epoch ,T lrain  

return bestmodel  
end function 

Fig. 3. The pseudo-code of heuristic architecture search with network morphism 

The algorithm does not have to choose a new model at each iteration, and can also 
hold the one from the previous step if others do not improve. Consequently, the cur-
rent best model at iteration may also be considered a child network. It is assumed that 

neighepoch  should be small, as the algorithm is forced to train numerous networks. 
Thus, to check the possibility of overfitting, we conducted two experiments with 
small and large numbers of epochs. 

The algorithm presented above is a straightforward implementation of the hill-
climbing method. It can be interpreted as a simple genetic algorithm with one organ-



ism, population size of neighn , and without crossover. While climbing, the functional-
saving modifications of network morphism serve as mutations. Besides, the selection 
part considers only members of the population with the best performance as a parent 
for the next generation. 

5 Implementation Details 

5.1 Benchmark Dataset and Data Augmentation 

To evaluate the proposed heuristic search, we chose the CheXpert benchmark dataset 
[25]. The whole dataset comprises 224,316 chest radiographs with a size of 320×320 
pixels excluded from 65,240 patients. The images are labeled for 14 diseases as nega-
tive, positive, or uncertain. In the original dataset, positive and negative cases were 
marked as ones, dubious images – as zeros. Fig. 4 presents an example of the CheX-
pert dataset. 

 
Fig. 4. CheXpert dataset sample [25]. 

For the experiment, we formed a subgroup of five diseases, namely atelectasis, cardi-
omegaly, consolidation, edema, and pleural effusion. Therefore, the number of classes 
was set to five. We split the subset into 70% training, 20% testing, and 10% valida-
tion images. Furthermore, several data augmentation techniques, such as random 
flips, translations, and rotations, were applied to the pictures of the training dataset. 

5.2 Baseline Architecture 

Here, we describe the baseline architecture, which serves as an original network for 
further optimization. According to the recent comprehensive overviews [26,27], 
CNNs are the type of neural architectures that suite the best for the classification of 
medical images. Therefore, this work is devoted to applying heuristic architecture 



search only to CNNs. Hence, guided by [28,29], a small baseline convolutional archi-
tecture was represented as follows 

 { }31

1
Input 16 2 ConvL MPL 128 ConvL SMLi

i i i

−

=
→ ⋅ × → → × → ,  (2) 

where ConvL stands for convolutional layer, from 16 to 128 filters of size 3×3 and 
stride 1, ReLU is an activation function, MPL stands for MaxPool layer of size 2×2 
and stride 2, and SML represents SoftMax function for the probability distribution of 
the output result. 

The large-scale convolutional architecture was set as 

 { }31

1
Input 16 2 ConvL ReLU MPL

128 ConvL BN ReLU SML,

i
i i i i

−

=
→ ⋅ × → →

→ × → → →
 (3) 

where BN represents batch normalization. All other parts of architecture (2) denote 
the corresponding elements in the network (1). 

5.3 Parameters Setup 

In this section, we describe the setup of the training parameters. In the hill-climbing 
algorithm, we set the number of search epochs of 10, the number of organisms in the 
population of 10, the number of epochs for training each element of 5, the number of 
mutations of 5. We also limited the possible size of the model. If the sample model 
became too large, the agent would reject the investigated architecture and choose 
another one. 

For the training procedure, we employed Adam optimization method with the 
learning rate of 310− , the weight decay of 30.5 10−⋅ , the momentum of 0.9, and a 
batch size of 256. According to experimental results in [30], this setup of training 
parameters can assure excellent model approximation in training. The original net-
work was pre-trained by ten epochs on one fold of the training dataset, while the final 
architecture was optimized by one hundred runs on each fold from scratch. Overall, 
the training was performed five times, and the milestone results were averaged. 

All experiments were performed in Python v3.6, using the TensorFlow v.1.13 
backend [31]. The hardware setup consists of 8 core Ryzen 2700 and a single 
NVIDIA GeForce GTX1080 GPU with 8 GB memory. The working code is open-
sourced and available by [32]. 

5.4 Evaluation Criteria 

In this study, we evaluate the output architecture and compare it with other networks 
by several statistical measures, which are recall (REC), precision (PREC), accuracy 
(ACC), and area under the curve (AUC). Let us consider the number of real positive 
(P) and real negative (N) cases in the data. As it is known from the theory of statistics 
[33], the classification results are distributed as true positive (TP), true negative (TN), 



false positive (FP) and false negative (FN) cases. Thus, the evaluation metrics used in 
this study are as follows 

 
TPREC

TP FN
=

+
, (4) 

 
TPPREC

TP FN
=

+
, (5) 

 
TP TNACC

TP TN FP FN
+

=
+ + +

. (6) 

For binary classification, AUC is set as 

 2 1 2 1

2 2 1 1 2 2 1 1

FP FP TP TP1
2 FP TN FP TN TP FN TP FN

A
      = − × −      − − − −   

.  

In the case of five classes, AUS is as follows 

 ( ) ( )
5

5
1

AUC i i
i

c p cµ
=
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where ( )icµ  stands for AUC under the ROC curve of class ic , ( )ip c  is the prior 
probability of class ic . 

Also, the different architectures were evaluated and compared by network size, 
number of parameters, number of training epochs, and training time. 

6 Experiments and Results 

In this section, we describe how the initial type of network can influence the results of 
the heuristic architecture search. Also, we compare the result of our approach with 
two different numbers of epochs to the set of hand-crafted architectures. 

6.1 Impact of a Baseline Architecture on the Search Process 

The conducted experiments revealed that selecting a small original network lead to a 
lengthy search process. Moreover, small network (2) required numerous mutations, 
and thus, the time to evolve into an optimal architecture. In contrast, a large-scale 
architecture (3) could limit the search space with large structures, neglecting smaller 
ones that might also be suitable for search. 

We conducted two representative experiments to investigate the above-mentioned 
hypothesis. In the first run, we checked the small original network (2), in the second – 
the large one (3). Fig. 5 shows a comparison of the results of two possible original 
architectures. 



 
Fig. 5. The efficiency of a baseline architecture depending on its size. 

According to Fig. 5, a large-scale network provides higher model accuracy. 

6.2 The Final Network Performance 

In this section, we examine the final architecture optimized by our NAS algorithm. 
We employed three hand-crafted convolutional networks commonly used in medical 
image tasks. These networks are VGG19 [1]. Inception v4 [2] and DenseNet [3]. The 
final network generated by the search algorithm can be observed via [32]. 

We trained the networks on the selected dataset and compared them with the final 
architecture of our algorithm. Besides, we conducted two separate experiments with 
different numbers of epochs to investigate the probability of overfitting. All networks 
were evaluated by metrics (4)–(7). The hyperparameters remained the same. Table 1 
presents averaged evaluation results of k-fold validation ( 5k = ). 

Table 1. Comparison of recognized hand-crafted neural networks with NAS architecture. 

Network REC PREC ACC AUC 
VVG19 [1] 0.723 0.631 0.627 0.747 

Inception v4 [2] 0.739 0.646 0.715 0.815 
DensNet [3] 0.812 0.742 0.727 0.838 

The final NAS architecture, 
1st experiment 

0.764 0.701 0.731 0.842 

The final NAS architecture, 
2nd experiment 

0.758 0.699 0.732 0.845 



According to Table 1, the architecture found by our heuristic search demonstrates 
competitive results to state-of-the-art models in the classification tasks. The NAS 
architecture comprises various branches such as concatenates, skip nodes, adds. In 
contrast, hand-crafted architectures usually lack additional layers as it requires nu-
merous experiments. While most state-of-the-art models have a regular structure, that 
is, they consist of multiple blocks that are repeated in the architecture, the NAS archi-
tecture has a structure without a noticeable repeating pattern. This approach allows for 
creating flexible architectures for different datasets. Table 2 reveals more details of 
the comparison. 

Table 2. Comparison of networks by computational costs and weight of trained models. 

Network 
Training 

time (GPU 
hours) 

Number of 
training 
epochs 

Number of 
parameters 

(mil.) 

Network 
size (MB) 

VVG19 [1] 7.4 33 134.2 417 
Inception v4 [2] 9.6 27 24.5 314 

DensNet [3] 13.7 41 25.8 285 
The final NAS architecture, 

1st experiment 
9.1 62 6.2 29 

The final NAS architecture, 
2nd experiment 

7.8 21 6.1 29 

The proposed NAS algorithm allowed finding the optimal architecture in 28 GPU 
hours, while the manual search can require weeks of tedious attempts and experi-
ments. Furthermore, the final model fewer number of parameters with sufficiently 
high accuracy compared to the state-of-the-art. Thus, the model requires less physical 
memory and could ensure efficient use in practice. 

7 Discussion and Conclusion 

In this study, we proposed a heuristic algorithm of neural architecture search in medi-
cal image analysis. To investigate the issue of medical image classification, we em-
ployed the CheXpert benchmark dataset and considered a multiclassification task. The 
core of the search method was the enforced hill-climbing algorithm enhanced with 
network morphism. 

Firstly, we composed and examined two hand-crafted CNNs as baseline architec-
ture. As a result of numerical experiments, the large-scale network turned out to be a 
better solution. Secondly, we implemented a heuristic search with network morphism 
modifications in order to find optimal neural architecture. To check if the final net-
work was subjected to overfitting, we conducted two separate experiments with num-
bers of epochs 21 and 69. As a result, even taking into account the almost three-fold 
difference between the number of epochs, both statistical indicators and computation-
al costs and weight were approximately equal. This outcome could occur due to either 



the use of one organism within the algorithm or lack of crossover. The authors aim to 
investigate this knowledge gap in future work. 

We evaluated the final architecture found automatically with an objective statistical 
metrics and compared it with recognized hand-crafted networks on CheXpert dataset. 
Our search algorithm managed to find the optimal architecture in total in 28 GPU 
hours. The optimized architecture in the second experiment achieved the performance 
of 73.2% in accuracy and 84.5% in AUC on the validation dataset, yielding the com-
petitive results to the state-of-the-art hand-crafted networks. Moreover, the optimized 
model contained four times fewer parameters and required almost ten times less phys-
ical memory compared to other networks. In summary, these results could indicate the 
practical usefulness of the proposed heuristic search method. 

Further work needs to be done to determine the influence of sensitivity and speci-
ficity on the proposed heuristic search. A reasonable approach to tackle this issue 
could be the inclusion of diverse medical datasets of both X-Ray images and comput-
er tomography scans. Further research should also focus on the optimization of hy-
perparameters within the heuristic architecture search. 
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